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Abstract

Many existing approaches employ one-vs-rest method to de-
compose a multi-label classification problem into a set of 2-
class classification problems, one for each class. This method
is valid in traditional single-label classification, it, however,
incurs training inconsistency in multi-label classification, be-
cause in the latter a data point could belong to more than one
class. In order to deal with this problem, in this work, we fur-
ther develop classical K-Nearest Neighbor classifier and pro-
pose a novel Class Balanced K-Nearest Neighbor approach
for multi-label classification by emphasizing balanced usage
of data from all the classes. In addition, we also propose
a Class Balanced Linear Discriminant Analysis approach to
address high-dimensional multi-label input data. Promising
experimental results on three broadly used multi-label data
sets demonstrate the effectiveness of our approach.

Introduction

Multi-label classification frequently arises in many real life
applications, such as document categorization, image anno-
tation, etc. Different from traditional single-label classifi-
cation where each object belongs to only one class, multi-
label classification deals with problems where an object may
belong to more than one class. Formally, for a classifi-
cation task, given K predefined classes and n data points,
each data point xi ∈ p is associated with a subset of
class labels represented by a binary label indicator vector
yi ∈ {1, 0}K, such that yi(k) = 1 if xi belongs to the k-th
class, and 0 otherwise. In single label classification, it holds

that
∑K

k=1 yi (k) = 1; while for multi-label classification,
∑K

k=1 yi (k) ≥ 1. Given a training data set {(xi,yi)}
l
i=1

with l (l < n) data points, our goal is to predict labels
{yi}

n
i=l+1 for the rest n − l testing data points {xi}

n
i=l+1.

Inconsistency of One-vs-Others Method in

Multi-label Classification

Some of the most powerful classification algorithms, such
as Support Vector Machine (SVM), are built upon 2-class
classifiers. One of the most popular approach to construct
a multi-class classifier from these algorithms is to employ
“one-vs-others” method, in which a multi-class problem is
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decomposed into a set of 2-class classification problems, one
for each class. In each 2-class subproblem, data points be-
longing the given class are considered as positive samples,
while those belonging to other classes are considered as neg-
ative samples. This treatment is reasonable in single-label
classification, because the classes here are assumed mutu-
ally exclusive and a data point belongs to only one class.

As one of our contribution, in this paper, we point out
that the above one-vs-others method has a fundamental de-
ficiency when it is applied to multi-label classification, al-
though it has been broadly used in many existing multi-label
classification algorithms.

The deficiency occurs at the training (or parameter esti-
mation) stage. The standard training process of the one-
vs-others method for multi-label classification is as follow-
ing. In a 2-class classifier for a given class, the training data
points belonging to the class are used as positive samples,
while those not belonging to the class are used as nega-
tive samples. This, however, is inconsistent in multi-label
classification. For example, let us consider a 4-class multi-
label classification problem, in which we have four target
classes, which are denoted as c1, c2, c3 and c4, respec-
tively. For the 2-class subproblem c1-vs-others, i.e., {c1}-
vs-{c2 ∪ c3 ∪ c4}, suppose data point x1 has two labels c1

and c2, it should simultaneously belong to both class {c1}
and class {c2 ∪ c3 ∪ c4}. More precisely, x1 belongs to c1

with probability 1, and belongs to class (c2 ∪ c3 ∪ c4) with
probability 1/3. Therefore, it can not be completely consid-
ered as a positive sample of class {c1}. Suppose another
data point x2 has three labels c1, c2 and c3. When training
the same c1-vs-{c1 ∪ c2 ∪ c3} 2-class c1-vs-others classi-
fier, x2 should belong to class c1 with probability 1, and be-
long to class {c2 ∪ c3 ∪ c4} with probability 2/3. Therefore,
the training process in the standard one-vs-others method for
multiple-label classification is inconsistent.

On the other hand, one-vs-others method is particularly
appropriate to classify new data points, because it naturally
assigns multiple labels to a new/testing data point.

A straightforward remedy to the training inconsistency
problem when using one-vs-others method in multi-label
classification is to weight the training error. For example,
we can assign a weight of 1 to the training error to misclas-
sify x1 to class {c2 ∪ c3 ∪ c4}, and assign 1/3 to the training
error to misclassify x1 to class {c1}.
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Another multi-class/label classifier construction approach
from 2-class classifiers is “one-vs-one” method, which also
decomposes a multi-class/label problem into a set of 2-class
subproblems, one for each class pair. This approach solves
the above training inconsistency problem. When training ck-
vs-cl 2-class classifier, if (1) data points with both class la-
bels ck and cl are excluded, and (2) data point not belonging
to either class are excluded, the rest data points are uniquely
used by either ck or cl. However, the classification of new
data points for multi-label problem requires a threshold to
determine how many labels the new data point should ac-
quire. In addition, as well known, one-vs-one method re-
quires 2K sub-classifiers, which could easily lead to explo-
sion of computation.

An entirely new direction to avoid the training inconsis-
tency problem is to use non-parametric classification meth-
ods, such as K-Nearest Neighbor (KNN) classifier, either
directly on the original input space or on a reduced fea-
ture space, because there is no training phase involved. The
KNN approach, however, suffers from unbalanced data dis-
tribution problem, which become more severe for multi-
label problem. Fundamentally, because we need to assign
multiple labels to a test data point, a simple 1NN or 3NN do
not have enough information for this multi-label assignment
(in contrast to single label), which will be discussed in detail
later in algorithm description section.

In this work, we deal with the training inconsistency prob-
lem incurred by one-vs-others method in multi-label classifi-
cation. We take the perspective to use non-parametric classi-
fication method and propose our Class Balanced K-Nearest
Neighbor (BKNN) approach for multi-label classification
by emphasizing balanced usage of data from all the classes.
The aforementioned problems in non-parametric classifi-
cation methods are solved in our BKNN approach. We
also propose a Class Balanced Linear Discriminant Analysis
(BLDA) method to embed high-dimensional multi-label in-
put data into a lower dimensional space, which can be used
for optional dimensionality reduction prior to classification.

Class Balanced Linear Discriminant Analysis
Same as single-label classification, high-dimensional in-
put data could make multi-label classification computation-
ally infeasible due to “curse-of-dimensionality” (Fukunaga
1990). Therefore, dimensionality reduction to prune irrel-
evant features and reduce dimensionality is necessary prior
to classification. In this work, we further develop the clas-
sical LDA to reduce the dimensionality of multi-label data.
We first point out the difficulties in computing the scatter
matrices when using traditional single-label definitions in
multi-label classification, and then propose our class-wise
multi-label scatter matrices to deal with the problem. Mean-
while the powerful classification capability inherited from
classical LDA is preserved.

In traditional single-label multi-class classification, the
scatter matrices Sb and Sw are well defined in standard LDA
algorithm as per the geometrical dispersion of data points.
These definitions, however, become obscure when applied
to multi-label classification. Because a data point with mul-
tiple labels belong to different classes at the same time, how

much it should contribute to the between-class and within-
class scatters remains unclear.

Therefore, instead of computing the scatter matrices from
data points perspective as in standard LDA, we propose

to formulate them by class-wise, i.e., Sb =
∑K

k=1 Sb(k),

Sw =
∑K

k=1 Sw(k), and St =
∑K

k=1 St(k). In this way,
the structural variances of the training data are represented
more lucid and the construction of the scatter matrices turns
out easier. Especially, the ambiguity, how much a data point
with multiple labels should contribute to the scatter matrices,
is avoided. The multi-label between-class scatter matrix is
defined as:

Sb =
K

k=1

S
(k)
b

, S
(k)
b

=
l

i=1

Yik (mk −m)(mk −m)T
, (1)

the multi-label within-class scatter matrix Sw is defined as:

Sw =

K

k=1

S
(k)
w , S

(k)
w =

l

i=1

Yik (xi −mk) (xi − mk)T
, (2)

where mk is the mean of class k and m is the multi-label
global mean, which are defined as follows:

mk =

∑l

i=1 Yikxi
∑l

i=1 Yik

, m =

∑K

k=1

∑l

i=1 Yikxi
∑K

k=1

∑l

i=1 Yik

. (3)

Note that, the multi-label global mean m defined in Eq. (3)
is different from the global mean in single-label sense as in

standard LDA. The latter is defined as 1
l

∑l

i=1 xi.
Equipped with the class-wise scatter matrices defined

in Eqs. (1–2), we can compute the transformation matrix
U ∈ p×r following the standard LDA algorithm (Fuku-
naga 1990), where r is the reduced dimensionality. The pro-
jected data points are hence computed by qi = UT

xi.

Class Balanced K-Nearest Neighbor Classifier

Given input data, either original features xi or reduced fea-
tures qi, we may use statistical learning method to conduct
classification. Considering the training inconsistency prob-
lem of one-vs-others method in multi-label classification, we
consider to use KNN classifier due to its non-parametric
property. However, the following difficulties prevent us
from directly using the classical KNN classifier.

The first one is the unbalanced data distribution. The sec-
ond one is the thresholding problem, which is also caused
by the nature of multi-label data. For example, for a 4-class
multi-label classification problem same as before, we use
3NN and assume a testing data point xi has the following
nearest neighbors, x1 with labels c3 and c4, x2 with labels
c2, c3 and c4, x3 with labels c1 and c4. Therefore, the most
frequently appearing labels in the neighbors of the testing
data point xi are sorted as following: c4 for 3 times, c3 for 2
times, c1 for 1 times and c2 for 1 times. Apparently, c4 will
be assigned to xi if this is a single-label problem. However,
in multi-label case, a threshold is required to make classifi-
cation and it is hard to select an optimal one.

In order to exploit its non-parametric property, in this sec-
tion, we further develop classical KNN method, and pro-
pose a Class Balanced K-Nearest Neighbor (BKNN) ap-
proach for multi-label classification. The aforementioned
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two problems in classical KNN classifier are solved by our
BKNN approach.

Algorithm. Step 1. Given a test data point xi(l + 1 <
i ≤ n), we pick up b nearest neighboring data points in each
class. This leads to at most K × b data points, denoted as

Γi. Let {x
(k)
ij }b

j=1 be the data points in Γi for the kth class,

given a similarity matrix W ∈ n×n with Wij indicating
the similarity between xi and xj , we define:

s
(k)
i =

b
∑

j=1

W (x
(k)
ij ,xi), and s̄i =

∑K

k=1 s
(k)
i

K
, (4)

where W (xi,xj) = exp
(

−‖xi − xj‖
2/2σ

)

in this work.
Step 2. We compute the Balanced K-Nearest Neighbor

Decision Score of a test data point xi for the k-th class as:

f
(k)
i =

s
(k)
i − s̄i

s̄i

. (5)

Step 3. In order to decide the class membership of xi,
we learn a threshold from training data. We first compute

f
(k)
i for all the training data points for the kth class. Given

a threshold hk, let pk(hk) and rk(hk) denote the corre-
sponding “precision” and “recall” on the training data using

{f
(k)
i }l

i=1, we select our Adaptive Decision Boundary as:

hopt

k = argmax
hk

(

2
α

pk(hk) + 1−α
rk(hk)

)

, (6)

where α is an application dependent parameter to determine
how much the “weighted F1 score” should be biased to pre-
cision, and empirically selected as 0.5 in this work. Finally,
the labels yi for a test point xi is determined by

yi(k) = sign
(

f
(k)
i − hopt

k

)

. (7)

Obviously, although different class could have very differ-
ent number of labeled data points, for a given test data point,
we pick up the most representative training data points from
every class with equal number, i.e., b for each class, such
that the label of a test data point is determined via the infor-
mation from all the classes in a balanced manner.

Note that, b in our approach is a free parameter like K
in KNN, which is normally fine tuned by cross validation.
Empirically, small b gives good classification results.

Empirical Studies

We use standard 5-fold cross validation to evaluate the pro-
posed BKNN approach in multi-label classification, and
compare the experimental results with the following most re-
cent multi-label classification methods: (1) Semi-supervised
learning by Sylvester Equation (SMSE) (Chen et al. 2008)
method, (2) Multi-Label Least Square (MLLS) (Ji et al.
2008) method and (3) Multi-label Correlated Green’s Func-
tion (MCGF) (Wang, Huang, and Ding 2009) method. We
follow the implementation details as in the original works.
The input data are first projected to a lower r dimensional
subspace before being fed into the respective classification
approaches. In our evaluations, we set r = K − 1.

Table 1: Multi-label classification performance measured by
“average precision” for the four compared approaches.

Approaches
data sets

TRECVID Yahoo Music

SMSE 10.7% 13.5% 21.3%
MLLS 23.7% 27.6% 31.2%
MCGF 24.9% 24.3% 30.3%
BKNN (b = 5) 25.6% 26.8% 36.2%

We apply the compared approaches on the following three
broadly used multi-label datasets from different applica-
tions: TRECVID 2005 dataset (Smeaton, Over, and Kraaij
2006) (image), Music emotion dataset (Trohidis et al. 2008)
(music), and Yahoo dataset (“Science” topic) (Ueda and
Saito 2002) (document). For performance evaluation, we
adopt “Average Precision” as recommended by TRECVID
(Smeaton, Over, and Kraaij 2006), which computes the pre-
cision for each class and average them over all the classes.

We adopt “Average Precision” as our performance metric
as recommended by TRECVID (Smeaton, Over, and Kraaij
2006), which computes the precision for each class and av-
erage them over all the classes.

Table 1 presents the overall classification performance
comparisons measured by average precision on the three
data sets. The results show that the proposed BKNN
approach outperforms all the other compared approaches,
which quantitatively demonstrate the advantage of our ap-
proach.
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