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Abstract. Many real world applications can be naturally formulated
as a directed graph learning problem. How to extract the directed link
structures of a graph and use labeled vertices are the key issues to in-
fer labels of the remaining unlabeled vertices. However, directed graph
learning is not well studied in data mining and machine learning areas.
In this paper, we propose a novel Co-linkage Analysis (CA) method to
process directed graphs in an undirected way with the directional infor-
mation preserved. On the induced undirected graph, we use a Green’s
function approach to solve the semi-supervised learning problem. We
present a new zero-mode free Laplacian which is invertible. This leads
to an Improved Green’s Function (IGF) method to solve the classifica-
tion problem, which is also extended to deal with multi-label classifica-
tion problems. Promising results in extensive experimental evaluations
on real data sets have demonstrated the effectiveness of our approach.

1 Introduction

Different from undirected graphs, which only characterize symmetric pairwise
similarity between data objects, directed graphs take into account edge direc-
tionality. This additional link structure usually brings useful information, though
it makes learning on a directed graph more challenging. As a result, in contrast to
a large number of classification methods devised for undirected graphs, classifica-
tion on directed graphs has been much less studied [29]. In this work, we explore
this area and solve the problem to classify unlabeled data on a directed graph
by leveraging directed link structures when partially labeled data are given.

Directed graph appears extensively in diverse real world applications. Typical
examples of classification on directed graphs include web page categorization [12]
and spam host identification [1] on hyperlink networks, document classification
or recommendation on citation graphs [10], and many practical problems in other
domains such as computational biology [17,15]. Besides these natural real world
directed networks, asymmetric pairwise similarities between data objects also
generate directed graphs, e.g., the immediate outputs of widely used k-Nearest
Neighbor (k-NN) graph construction method [11] and recently proposed sparse
representation based graph construction methods [5,25].

J.L. Balcázar et al. (Eds.): ECML PKDD 2010, Part III, LNAI 6323, pp. 451–466, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



452 H. Wang, C. Ding, and H. Huang

Because most existing graph-based semi-supervised classification algorithms
only deal with undirected graphs, directed graphs are routinely converted to
undirected ones via symmetrization in different ways prior to usage. For instance,
when constructing a k-NN graph [11], an edge is placed between two data points
xi and xj when one of them is among the k nearest neighbors of the other one.
However, in reality, xi is not necessary to be among the k nearest neighbors of
xj , when xj is among the k nearest neighbors of xi. Such symmetrization treat-
ments [11,1,5,25] indeed simply discard the important structural information
conveyed by edge directions, which inevitably impair the efficacy of subsequent
classifications. For example, it is almost impossible to detect spam host with-
out taking into consideration hyperlink direction — the main mechanism for
web spam identification [1]: spam hosts frequently link to genuine hosts, while
genuine hosts are rarely observed to link to spam ones. Therefore, there is a
great need to develop directed graph based semi-supervised learning algorithms
to make use of edge directionality of an input directed graph.

In this work, we focus on semi-supervised learning on a directed graph which
classifies unlabeled vertices on a directed graph with partially labeled vertices.
Our approach consists of two following steps.

Firstly, we provide an in-depth co-linkage analysis on co-citation and co-
reference linkages at second, third and fourth orders. This leads to a novel Co-
linkage Analysis (CA) similarity to process a directed graph in an undirected way
with the directional information preserved. We also emphasize the importance of
link normalization and refine CA similarity by symmetrically normalizing both
in-links and out-links in a balanced manner. Once the symmetric pairwise simi-
larity are obtained through this co-linkage analysis process, existing graph based
semi-supervised learning methods can be employed.

Secondly, we further develop the Green’s function learning framework [8], and
present an Improved Green’s Function (IGF) method to classify unlabeled data
on the induced graph via CA similarity. Here we solve the problem caused by
the zero-mode of the combinatorial Laplacian of an input graph. In addition,
by incorporating label correlations through the kernel regularization framework
derived from the theory of reproducing kernel Hilbert space (RKHS) [23], IGF
method is extended to deal with multi-label data.

Related works. Due to the broad usage of directed graphs in numerous real ap-
plications, directed graph learning has attracted increasing attention in recent
years. F. Chung [6] defined the combinatorial Laplacian of a directed graph,
which laid foundation for label propagation on a directed graph. Zhou et al . [30]
generalized their earlier work [28] for semi-supervised learning on undirected
graphs to that on directed graphs by discriminatively normalizing in-links and
out-links. They also proposed another method [29] upon the same intuition, in
which the regularization on a directed graph has a similar form to the combina-
torial Laplacian of a directed graph defined in [6]. Shin et al . considered learning
on an artificial directed graph derived from an undirected graph through an in-
teresting method — “graph sharpening” [18], which removes the direction from
an unlabeled datum to a labeled one on all edges. Besides label propagation,
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various other mechanisms have also been used to devise learning methods on a
directed graph to take advantage of its asymmetric nature [17,15,31,1,27].

Notations. Pairwise similarities between data objects are usually described as
an undirected graph Gu with a symmetric weight matrix W ∈ R

n×n. D =
diag (We), where e = {1, . . . , 1}T , and (D − W ) is the graph Laplacian.

Suppose Gd = (V , E) is an unweighted directed graph with vertex set V and
edge set E ⊆ V × V . Gd is described by an asymmetric adjacency matrix L =
{0, 1}n×n, such that |V| = n, and Lij = 1 if there exists an edge i → j from
vertex i to vertex j, and Lij = 0 otherwise. The edge i → j is an ordered pair,
and we say j is the out-neighbor of i, or i is the in-neighbor of j. The number
of out-neighbors of i is the out-degree of i, given by di

out =
∑

k Lik. Similarly,
the number of in-neighbors of j is the in-degree of j, given by dj

in =
∑

k Lkj . Let
Dout be a diagonal matrix and Dout (i, i) = di

out, and Din be a diagonal matrix
and Din (i, i) = di

in. When i → i ∈ E , the edge is called as a loop. A graph is
simple if it has no loop. In this work, we only consider simple directed graphs,
which are also strongly connected and aperiodic [2].

A weighted directed graph is described by a weight matrix R ∈ R
n×n when

there exists a function r : E → R
+, which associates a nonnegative value Ri→j

with every edge i → j ∈ E . Here we use R for directed graph to distinguish
from W for undirected graph. An unweighted directed graph is a special case of
weighted directed graphs when R = L. For a weighted directed graph, the out-
degree is defined as di

out =
∑

k Rik, and the in-degree is defined as di
in =

∑
k Rkj .

When it is clear from context, we use W and Gu interchangeably, and the
same for R (or L) and Gd.

2 Challenges of Semi-supervised Learning on A Directed
Graph

The semi-supervised learning problem on a directed graph is as following. On a
small subset of the vertices, the class labels are known. The task is to classify
the rest vertices on the graph.

On an undirected graph, this problem is easy to understand. However, on a
directed graph, this problem can be very intriguing. A semi-supervised learning
problem on a simple unweighted directed graph is shown in Fig. 1(a). On this
graph, the final class labels on the unlabeled vertices are not obvious. Fig. 1
illustrates three possible solutions.

Using nearest neighbor classification. If we use the nearest neighbor clas-
sification (NNC), the results are shown in Fig. 1(b). The NNC algorithm is the
following iterative algorithm. It computes the label (y1, · · · , yn) on all unlabeled
vertices with yi fixed to their signs on all labeled vertices while y

(t=0)
j = 0 for all

unlabeled vertices. We iterate with y
(t+1)
j = sign

(∑
i Lijy

(t)
i

)
until convergence.

Vertex f will be labeled as “−” due to the the incoming neighbor a. Vertex e will
be labeled as “−” due to the the incoming neighbor f . Repeating this, vertices
d and c will be labeled as “−”.
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Fig. 1. (a) Semi-supervised learning on a simple directed graph. Vertex a is positively
labeled and vertex b is negatively labeled. The task is to classify the rest vertices.
(b) Solution of the problem in (a) via nearest neighbor method.
(c) Solution of the problem in (a) via symmetrization and label propagation method.
(d) Solution of the problem in (a) via random walk method.

Using symmetrization. If we symmetrize the directed graph into an undi-
rected graph by W = L + LT , the results are shown in Fig. 1(c). In this case,
the problem becomes the semi-supervised learning on an undirected graph. It is
now obvious that the final class labels are assigned as shown in Fig. 1(c).

Using random walk. If we use information propagation via random walks,
the results are shown in Fig. 1(d), i.e., class labels on the unlabeled vertices
are undetermined. The reason is as following. A random walker starting from
vertex a will carry negative class information. This walker will walk to vertex f
with probability 1. It then will walk to vertex e with probability 1, etc. At time
tends to infinity, this walker will reach all vertices with equal probability of 1/6,
passing on a negative label.

On the other hand, a random walker starting from vertex b will carry positive
class information. It will visit each vertex with 1/6 probability as time tends to
infinity, passing on a positive label. Thus on each unlabeled vertex, the prob-
ability of positive label is equal to the probability of negative label. Therefore,
the final labeling is undetermined.

Note that the situation will be very different if the graph is undirected as
shown in Fig. 1(c). On the undirected graph, the random walker starting from
vertex a (call it walker-a) will have a higher probability reaching f than reaching
e, because after reaching f , instead of going to e (as required by the directed
graph), it has the choice of walking back to a. Thus the farther-away from a, the
smaller probability walker-a will reach. The same holds for the random walker
starting from vertex b (call it walker-b). Therefore, the probability for walker-a
reaching f is higher than the probability for walker-b reaching f , leading to a
“−” label for f .
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Challenges of learning on a directed graph The above discussions show
that semi-supervised learning on a directed graph is rather intriguing. Different
approaches lead to very different results (while on an undirected graph, different
approaches lead to the same results). Our analysis also shows that simple sym-
metrization of the adjacency matrix (link matrix L), i.e., W = L + LT , loses
critical information and results in very different outcomes.

We point out without elaboration that unsupervised learning such as cluster-
ing on a directed graph also has very similar intriguing problems. In general,
research on directed graphs learning is lacking.

In this paper, we attempt to solve this learning problem by building a sym-
metric pairwise similarity from a directed graph. Once this symmetric similarity
is constructed, the problem becomes learning on an undirected graph, and we
may solve the problem using any existing algorithm for undirected graphs.

3 Co-linkage Analysis of A Directed Graph

In this section, we propose a novel Co-linkage Analysis (CA) method to process
a directed graph in an undirected way. We first study the two fundamental
co-linkages: co-citation and co-reference [9,7], and extend them to higher orders.
Then we emphasize the importance of edge weight normalization. In our previous
work [24], we use only second-order processes to describe a directed graph. In
this work, we induce a symmetric similarity from a directed graph using both
second-order co-linkages and their high-order extensions.

3.1 Pairwise Similarity via Co-linkage Analysis

Second-order co-citation and co-reference processes. On a directed graph,
we consider the following two second-order fundamental processes: co-citation
[19] as shown in Fig. 2(a) and co-reference [13] as shown in Fig. 2(b).

If two vertices i and j are co-cited by many other vertices, such as vertex k
in Fig. 2(a), i and j are likely to be related in some sense. Thus co-citation is a
similarity measure and defined as the number of vertices that co-cite i and j:

W
(c)
ij =

∑

k

LkiLkj =
(
LT L

)
ij

. (1)

On the other hand, if two vertices i and j co-reference several other vertices,
such as vertex k in Fig. 2(b), i and j are supposed to have certain commonality.
Co-reference also measures similarity between vertices:

W
(r)
ij =

∑

k

LikLjk = (LLT )ij . (2)

Combining W (c) and W (r), we define the second-order similarity as:

W (2nd) = LT L + LLT , (3)

where we assume co-citation and co-reference are equally important.
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(a) Co-citation (b) Co-reference

Fig. 2. Two fundamental second-order processes on a directed graph

Third-order co-citation and co-reference processes. Now we extend the
co-citation and co-reference processes to the third-order. Specifically, for the co-
citation between vertices i and j with respect to vertex k as in Fig. 2(a), an
intermediate vertex can be inserted between k and i as in Fig. 3(a) or between k
and j as in Fig. 3(b). We call them as third-order co-citations. Similarly, third-
order co-references are defined as in Fig. 3(c) and Fig. 3(d). Same as the original
second-order co-citation and co-reference, they also measure the similarities be-
tween vertices i and j.

(a)
(
LT LT L

)
ij

(b)
(
LT LL

)
ij

(c)
(
LLLT

)
ij

(d)
(
LLT LT

)
ij

Fig. 3. Third-order processes on a directed graph. (a)—(b): third-order co-citation;
(c)—(d): third-order co-reference.

For the third-order co-citation in Fig. 3(a), the similarity between vertices i
and j can be easily counted by

∑
k

∑
l LliLklLkj =

(
LT LT L

)
ij

. Following the
same way for the rest three processes, the third-order similarity is defined as:

W (3rd) = LT LT L + LT LL + LLLT + LLT LT

= L
(
L + LT

)
LT + LT

(
L + LT

)
L,

(4)

where we assume the four third-order processes in Fig. 3 are equally important.
Note that, on a directed graph, other third-order processes also exist, such

as the one shown in Fig. 4(a). However, because this process forms neither co-
citation nor co-reference, it is not taken into account.

Fourth-order co-citation and co-reference processes. We further extend
the co-citation and co-reference processes to the fourth-order, which are illus-
trated in Fig. 5. Again, we do not consider the processes not forming either
co-citation or co-reference such as the one shown in Fig. 4(b). Thus, the fourth-
order similarity is defined as:

W (4th) = LT LLL + LT LT LT L + LT LT LL + LLLLT + LLT LT LT + LLLT LT

= L
(
LL + LT LT + LLT

)
LT + LT

(
LL + LT LT + LT L

)
L . (5)
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(a) Invalid 3rd-order process:
(
LLT L

)
ij

(b) Invalid 4th-order process:
(
LLLT L

)
ij

Fig. 4. Invalid third-order and fourth-order processes on a directed graph
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)
ij
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ij
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)
ij

(d)
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)
ij

j

(e)
(
LLT LT LT

)
ij

(f)
(
LLLT LT

)
ij

Fig. 5. Fourth-order processes on a directed graph. (a)—(c): fourth-order co-citation;
(d)—(e): fourth-order co-reference.

Combining W (2nd), W (3rd) and W (4th), we obtain the proposed Co-linkage
Analysis (CA) similarity as following:

W = W (2nd) + μW (3rd) + νW (4th), (6)

where μ and ν are the parameters to balance the relative importance of the
third-order and fourth-order similarities, which are empirically selected as μ =(∑

i�=j W
(2nd)
ij

)
/

(∑
i�=j W

(3rd)
ij

)
and ν =

(∑
i�=j W

(2nd)
ij

)
/

(∑
i�=j W

(4th)
ij

)
.

3.2 Link Normalization

On the web, a vertex/web page with bigger out-degree has greater influence
than another one with smaller out-degree. However, since these out-links can be
arbitrarily added by the web page designer, and the importance of this web page
can be arbitrarily increased.

In PageRank algorithm, every out-going hyperlinks from a vertex is inversely
weighted by its out-degree, thereby every vertex has the same total out-going
weight. This can be stated as Internet Democracy : every web site has a total of one
vote. The hyperlink normalization and its importance are illustrated in Fig. 6(a).
Basically, if a web page has a large out-degree, the significance/uniqueness of its
co-citation is reduced. This points the necessity of out-degree normalization.
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(a) Out-degree normalization. (b) In-degree normalization.

Fig. 6. Importance of link normalization. (a): vertices i and j are co-cited by vertices
k, m and n. However, since vertex m also cites vertices p and q, the co-citation of i
and j by m is not as significant as that by either k or n. This fact can be compensated
by normalizing the weights on the out-bound links of a vertex, i.e., the co-citation of
i and j by m is then 2/4 = 50% as important as that by either k or n. (b): vertices i
and j co-reference vertices k, m and n. However, since vertex m is also referenced by
p and q, the co-reference of i and j by m is not as significant as that to either k or n.
This fact can be similarly compensated by normalizing the in-bound links of a vertex.

Generally speaking, the in-degree of a document is not easily manipulated
and is therefore a good indicator of the importance of the web page. But, when
counting co-reference between two web pages as in Fig. 6(b) as similarity between
the web pages, in-degree should also be normalized, because a web page i with
large in-degree lose the specificity of the those web pages pointing to i.

With these discussions, the reasonable choices of link normalizations are:

L → D−1
outL, (7)

L → LD−1
in , (8)

L → D−1/2
out LD

−1/2
in . (9)

Normalization of Eq. (7) uses the out-degree and is used in the PageRank al-
gorithm [3,16], which is essentially the transition probability of a random walk.
Normalization using out-degree is related to the concept of co-citation since
co-citation uses out-links from those web pages/vertices pointing to them. Nor-
malization using out-degree will balance the importance of each of these vertices.

Normalization of Eq. (8) uses the in-degree and can be viewed as the transi-
tion probability of a random walk on the inverse direction of the directed graph.
Normalization using in-degree is related to the concept of co-reference since
co-reference uses in-links from those web pages/vertices pointing to them. Nor-
malization using in-degree will balance the importance of each of these vertices.

Normalization of Eq. (9) can be viewed as a compromise between the above
two normalizations. This is also symmetric among the in-degree and out-degree.
Considering the balance of in-degree and out-degree normalization and the bal-
ance among co-citation and co-reference, we adopt this symmetric normalization
in our work.

Replacing L in Eq. (3), Eq. (4) and Eq. (5) by the symmetrically normal-
ized D

−1/2
out LD

−1/2
in defined in Eq. (9), we can compute normalized CA through
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Eq. (6), which is used in all our empirical evaluations. When a weighted directed
graph is used, L is replaced by R.

4 Semi-supervised Learning via Improved Green’s
Function Method

With the symmetric CA similarity induced from a directed graph, we may
use any existing graph-based semi-supervised learning algorithm for undirected
graphs to classify the unlabeled data points. In this paper, we further develop
the Green’s function learning framework [8], and present a Improved Green’s
Function (IGF) method for classification. In this method, we solve the problem
caused by the zero-mode of the combinatorial Laplacian of an input graph.

4.1 A Brief Review of the Green’s Function Learning Framework

Suppose we have n = nl +nu data points {xi}n
i=1, where the first nl data points

are labeled with {yi}nl
i=1 for K target classes. Here, xi ∈ R

p and yi ∈ {−1, +1}K,
such that yi (k) = +1 if xi belongs to the k-th class, and −1 otherwise. Our task
is to learn the classification {yi}n

i=nl+1 for the unlabeled data. For the unlabeled
data points, we set yi (k) = 0. We write Y = [y1, · · · ,yn]T .

Given a graph with edge weight W among the data points {xi}n
i=1, we wish to

learn the mapping function F = R
n×K such that |F −Y | is minimized, where | · |

stands for the Frobenious norm of a matrix. Adding a penalty (regularization)
term to ensure smoothness with respect to the underlying data manifold, the
Green’s function learning framework minimizes the following objective [8]:

J (F ) = |F − Y | + αFTK−1F, (10)

where K is a kernel in RKHS, and K−1 = (D − W ). Here α is a parameter to
balance the relative importance of the regularization term.

Taking the derivative of J with respect to F and set it as 0, we obtain F =
[I + α (D − W )]−1

Y . At large α limit, F is computed as following:

F = GY = (D − W )−1Y, (11)

where G = (D − W )−1 is the Green’s function of the input graph. However, G
is not well defined due the existence of the zero-mode of (D − W ).

Let (D − W )vk = λkvk, where 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of
(D − W ) and vk are the corresponding eigenvectors. Because we consider con-
nected graphs, the first eigenvector is a constant vector v1 = e/

√
n with zero

eigenvalue and multiplicity one. Thus, G is not well defined because v1vT
1 /λ1 =

eeT /nλ1. The analysis in [8] shows that this zero-mode of (D − W ) is a con-
sequence of the Von Neumann boundary condition (derivatives are continuous
at the boundary) and thus the solution is undetermined up to an overall constant.
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This overall constant is removed in [8] by explicitly discarding the zero-mode of
(D − W ) and the Green’s function is computed as follows:

G =
1

(D − W )+
=

n∑

i=2

vivT
i

λi
. (12)

4.2 Zero-Mode Free Laplacian

In this paper, we propose a zero-mode free Laplacian. The graph Laplacian is
usually defined as the embedding of q1, · · · , qn by solving

min
q

1
2

∑

ij

(qi − qj)2Wij , s.t.
∑

i

q2
i = 1,

∑

i

qi = 0 . (13)

Now, we propose to modify this to the following

min
q

1
2

∑

ij

(qi − qj)2Wij +
W++

n2
(
∑

i

qi)2, s.t.
∑

i

q2
i = 1,

∑

i

qi = 0, (14)

where W++ =
∑

ij Wij . Clearly, the optimal solution for Eq. (14) is identical to
that for Eq. (13). Note that

1
2

∑

ij

(qi − qj)2Wij +
W++

n2
(
∑

i

qi)2 = qT L+q, (15)

where the zero-mode free Laplacian L+ is defined as

L+ = D − W +
W++

n2
eTe . (16)

Some properties of L+ are:

(1) v1 = e/n1/2 is an eigenvector of L+ with eigenvalue λ1(L+) = W++/n.
(2) L+ and L = D−W have the same eigenvectors v2, · · · ,vn with same eigen-
values.
(3) L+ is positive definite and its inverse is well defined.

The new Green’s function becomes the following:

F =
1

D − W + W++
n2 E

Y, (17)

where E = eTe. We call Eq. (17) as Improved Green’s Function (IGF) method.

4.3 Kernel Regularized Correlative Multi-label Classification

Multi-label data present a new opportunity to improve classification accuracy
through label correlations, which is absent in single-label data. Typically, label
correlations of a multi-label data set is captured by a correlation matrix C ∈



Directed Graph Learning via High-Order Co-linkage Analysis 461

R
K×K , which can be computed as in [23]. Adding a penalty for label correlations

to impose smoothness, we minimize the following objective:

J (F ) = β|F − Y |2 + tr
(
FTK−1F − γK− 1

2 FCFTK− 1
2

)
, (18)

where K = G =
(
D − W + W++

n2 E
)−1

, β and γ are two small nonnegative
constants to balance the two regularization terms.

When 0 < γ < min {1, 1/max(ζk)} where ζk(0 < k < K) are the eigenvalues
of C, following the same derivation as in [23], the solution to the optimization
problem in Eq. (18) when β is small is obtained as:

F = GY (I − γC)−1
. (19)

We call Eq. (19) as Multi-Label Improved Green’s Function (ML-IGF) method,
which solves multi-label classification problems.

5 Experiments

We evaluate the effectiveness of the proposed CA similarity, and the classification
performances of IGF method on single-label data and ML-IGF method on multi-
label data through classification tasks on directed graphs.

Single-label data sets. Because web data naturally generate directed graphs,
we use the WebKB data set1 for single-label classification. We consider a sub-
set of the WebKB data set containing the pages from four universities, Cornell,
Texas, Washington and Wisconsin, from which we remove the isolated pages,
i.e., those have no incoming and outgoing links, resulting in 858, 825, 1195 and
1238 pages respectively, for a total of 4116. These pages have been manually
classified into the following seven categories: “student”, “faculty”, “staff”, “de-
partment”, “course”, “project” and “other”. We treat the extracted directed
graphs as unweighted directed graphs and conduct classification on them.

Multi-label data sets. The following multi-label data sets are used to evaluate
multi-label classification performance.

MSRC2 has 591 images annotated by 22 classes. We divide each image into
64 blocks by a 8× 8 grid and compute the first and second moments (mean and
variance) of each color band to obtain a 384-dimensional vector as features.

Mediamill [20] includes 43907 sub-shots with 101 classes, where each image
is characterized by a 120-dimensional vector. Eliminating the classes containing
less than 1000 samples, we have 27 classes. We randomly select 2609 sub-shots
such that each class has at least 100 labeled data points.

Music emotion [21] comprises 593 songs with 6 emotions (labels). The di-
mensionality of the data points is 72.
1 http://www-2.cs.cmu.edu/~webkb/
2 http://research.microsoft.com/en-us/projects/objectclassrecognition/

default.htm

http://www-2.cs.cmu.edu/~webkb/
http://research.microsoft.com/en-us/projects/objectclassrecognition/default.htm
http://research.microsoft.com/en-us/projects/objectclassrecognition/default.htm
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Yahoo data described in [22] came from the “yahoo.com” domain. We use
the “science” topic as it has maximum number of labels, which contains 6345
web pages with 22 labels.

Because these data sets are supplied in format of feature vectors, we construct
directed graphs using k-NN graph construction method. Different from [11], we
place a directed edge i → j if vertex xj is a k-Nearest Neighbor of vertex xi.
In our evaluations, we set k = 3 (k = 1 and k = 5 lead to similar experimental
results, which are not shown due to space limit).

5.1 Effectiveness of Co-linkage Analysis

We first evaluate the effectiveness of the proposed CA similarity defined in
Eq. (6) in processing a directed graph in an undirected way.

A special benefit to use a separate graph construction step lies in that, ex-
isting graph-based semi-supervised learning methods can also benefit from the
additional information contained in edge directions of a directed graph. There-
fore we evaluate the effectiveness of the induced undirected graph by the pro-
posed CA when it is used in the following three representative graph-based
semi-supervised learning methods: (1) Gaussian fields and harmonic functions
(GFHF) [32] method, (2) local and global consistency (LGC) [28] method, and
(3) our previous work, i.e., the Green’s function (GF) [8] method. Because these
classification methods only work on undirected graphs, given a directed graph L,
a simple symmetrization broadly used in existing works is as following: Wij = 1
if L (i → j) = 1 or L (j → i) = 1. This graph is denoted as “Symmetrized graph”
in Table 1, and compared against the undirected graph induced by the proposed
CA which is denoted as “CA graph”.

We use the WebKB data set for evaluation. For each category of web pages
from each university, a binary classification is conducted, e.g., we classify “stu-
dent” web pages vs . non-student web pages from Cornell university, denoted as
“Cornell (student)”. Ignoring the “other” category, we perform 4 × 6 = 24 bi-
nary classifications by every compared classification method. Because web pages
within a same university are well-linked, and cross links between different uni-
versities are rare, we can imagine that a small number of training samples are
sufficient to exactly classify web pages based on only link information. Therefore,
in each binary classification, we randomly draw 4 pages as training examples,
under the constraint that there is at least one labeled instance for each class.
For each binary classification, we repeat 50 independent trials and the average
test errors are reported in Table 1.

From Table 1 we can see that, the classification performances measured by
“test error” on CA graphs always outperform those on symmetrized graphs. Due
to space limit, we cannot list all classification results, and pick up one binary
classification from each university as in Table 1, which are similar to those not
shown. Therefore, we conclude that the proposed CA method is more effective
to characterize a directed graph than the simple symmetrization methods that
do not consider edge directions.
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Table 1. Improved classification performance (test error) of three existing representa-
tive graph-based semi-supervised classification methods by using CA graph

Cornell (student) Wisconsin (student)

GFHF LGC GF GFHF LGC GF

Symmetrized graph 0.246 0.238 0.225 0.207 0.205 0.196
CA graph 0.223 0.212 0.173 0.195 0.191 0.183

Washington (course) Texas (faculty)

GFHF LGC GF GFHF LGC GF

Symmetrized graph 0.142 0.140 0.136 0.228 0.227 0.218
CA graph 0.137 0.135 0.121 0.221 0.215 0.204

5.2 Single-Label Classification Using IGF Method

We evaluate single-label classification performance of IGF method by conducting
2-class classification to distinguish “course” vs . non-course web pages in Wash-
ington University and “faculty” vs . non-faculty web pages in Texas University in
WebKB data set. We compare the classification results of our method against two
state-of-the-art classification algorithms on directed graphs: (1) Semi-Supervised
learning on Directed Graph (SSDG) [30] method, and (2) Distribution Regular-
ized classification on Directed Graph (DRDG) [29] method. We also report the
results by the Green’s Function (GF) [8] method, where a simple symmetriza-
tion of W =

(
L + LT

)
/2 is used to form the undirected graph. The classification

performance comparison measured by average test error over 50 independent tri-
als are listed in Fig. 7, which demonstrate the superiority of our method and
thereby confirm its usefulness.
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Fig. 7. Test errors to classify “course” vs. non-course web pages in Washington Uni-
versity and “faculty” vs. non-faculty web pages in Texas University in WebKB data
set by four compared methods
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Table 2. Performance evaluations of the compared methods by 5-fold cross validations

Data sets Evaluation metrics
Compared methods

SSDG DRDG MLSI SMSE ML-IGF-S ML-IGF

MSRC

Macro
average

Precision 0.215 0.224 0.252 0.248 0.281 0.311
F1 score 0.223 0.238 0.287 0.279 0.288 0.319

Micro
average

Precision 0.201 0.223 0.253 0.247 0.279 0.317
F1 score 0.267 0.278 0.301 0.298 0.324 0.338

MediaMill

Macro
average

Precision 0.201 0.203 0.207 0.210 0.252 0.274
F1 score 0.289 0.292 0.301 0.312 0.352 0.391

Micro
average

Precision 0.203 0.206 0.207 0.215 0.259 0.282
F1 score 0.332 0.334 0.341 0.347 0.368 0.406

Music
emotion

Macro
average

Precision 0.313 0.317 0.329 0.331 0.392 0.404
F1 score 0.305 0.308 0.323 0.331 0.399 0.415

Micro
average

Precision 0.308 0.311 0.328 0.332 0.395 0.412
F1 score 0.310 0.314 0.339 0.354 0.401 0.420

Yahoo
(Science)

Macro
average

Precision 0.367 0.372 0.396 0.398 0.421 0.443
F1 score 0.278 0.282 0.296 0.305 0.361 0.379

Micro
average

Precision 0.369 0.375 0.395 0.402 0.448 0.470
F1 score 0.202 0.203 0.209 0.215 0.236 0.256

5.3 Multi-label Classification Using Multi-label IGF Method

We use standard 5-fold cross validation to evaluate multi-label classification per-
formance of ML-IGF method. We empirically selected γ = min {0.1, 1/max(ζk)}.
We compare our method with (1) SSDG method and (2) DRDG method as in
Section 5.2, which, however, are designed for single label classifications. There-
fore, for every class, we conduct a binary classification. We also compare our
method to two recent multi-label classification methods: (3) Multi-label informed
Latent Semantic Indexing (MLSI) [26] method, and (4) Semi-supervised learn-
ing by Sylvester Equation (SMSE) [4] method. The classification by these two
methods are directly conducted on original data. Because, to our best knowledge,
ML-IGF method presented in this work is the first one to exploit the informa-
tion conveyed by both link directionality and label correlations, we cannot find
a counterpart method for comparison.

We also evaluate the effectiveness of link normalization discussed in Sec-
tion 3.2, and conduct classification using ML-IGF method on the induced graph
when no normalization is used. We denote these results as ML-IGF-S in Table 2.

The widely used classification performance metrics in statistical learning, pre-
cision and F1 score, are used to evaluate the compared methods. Precision and
F1 score are computed for every class following the standard definitions for a
binary classification problem. To address multi-label classification, macro aver-
age and micro average are used to assess the overall performance across multiple
labels [14].
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Table 2 presents the classification performance comparisons by 5-fold cross
validation, which show that ML-IGF method generally outperforms all other
methods, sometimes significantly. These results quantitatively demonstrate the
effectiveness of our method, and justify the utility of the CA similarity and label
correlations. Besides, the classification performances of ML-IGF is always better
than those of ML-IGF-S method, which provide a concrete evidence that link
normalization is an indispensable part of the proposed CA similarity.

6 Conclusions

This paper explored the usage of directed graphs to solve semi-supervised learn-
ing problems. We proposed a novel Co-linkage Analysis (CA) method to trans-
form a directed graph to an undirected one, which is built upon the co-linkage
processes on directed graphs. With the induced symmetric CA similarity, a Im-
proved Green’s Function (IGF) method was presented to solve the classification
problem, which is also generalized to deal with multi-label classification prob-
lems. Extensive experimental evaluations on real data sets have demonstrated
that the performance of the proposed approach outperforms other related pre-
vious methods in literature.
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