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ABSTRACT

Traditional video classification methods typically require a
large number of labeled training video frames to achieve sat-
isfactory performance. However, in the real world, we usu-
ally only have sufficient labeled video clips (such as tagged
online videos) but lack labeled video frames. In this paper,
we formalize the video classification problem as a Multi-
Instance Learning (MIL) problem, an emerging topic in ma-
chine learning in recent years, which only needs bag (video
clip) labels. To solve the problem, we propose a novel Pa-
rameterized Class-to-Bag (P-C2B) Distance method to learn
the relative importance of a training instance with respect
to its labeled classes, such that the instance level labeling
ambiguity in MIL is tackled and the frame relevances of
training video data with respect to the semantic concepts
of interest are given. Promising experimental results have
demonstrated the effectiveness of the proposed method.
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1. INTRODUCTION
Many existing video annotation approaches label every

frame of a video clip and traditional video classification
methods are usually designed to use the frame labels. How-
ever, frame level labeling requires expensive human labors,
which often makes training an accurate video classification
model very cost prohibitive. On the other hand, due to the
rocketing growth of online videos with user tags at video
clip level, we have abundant inexpensive coarsely labeled
video training data. Therefore, devising video classification
methods relying on only video clip labels is of great practi-
cal interest. In this paper, we explore this challenging, yet
important, multimedia content analysis problem.

Given a video clip, the associated semantic labels usually
arise from only a few of its frames but not all. For ex-
ample, for the video clip in Figure 1, the “Studio” concept
only comes from the two left frames, while the “Outdoor”
concept is only attached to the three right frames. Appar-
ently, labeling all the frames of this video clip is neither
cost effective nor necessary. Therefore, identifying the rel-
evances of the frames of coarsely labeled video clips to the
semantic concepts of interest could potentially reduce the
labeling cost while maintaining satisfactory video classifica-
tion performance. To this end, we propose a novel Param-
eterized Class-to-Bag (P-C2B) Distance method by placing
video classification under the framework of Multi-Instance
Learning (MIL) that only leverages video clip labels, such
that we are able to predict labels for unseen video clips as
well as to learn frame relevances for the training video clips.

MIL [2] is an emerging topic in machine learning to ad-
dress the classifications of data bags, in which each bag is
a collection of instances with features associated to the in-
stance. The aim of MIL is to infer bag labels based on the
assumption that a positive bag contains at least one positive
instance, while a negative bag contains negative instances
only. MIL has attracted a lot of attention in recent years,
and has been applied to many real-world applications [4, 9,
10, 11]. In the scenario of video classification, as illustrated
in Figure 1, a video clip is considered as a bag and its frames
are considered as instances. Our goal is to predict labels for
a new coming bag (video clip) using the classification model
learned from training bags and their associated labels.
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A bag (video clip)Instances (frames)

Studio Studio Outdoor Outdoor Outdoor

Figure 1: In multi-instance learning a video clip is represented as a bag and its frames are represented as
instances. The semantic concepts associated with a video clip, e.g ., “Studio” and “Outdoor”, usually arise
only from a few of its frames but not all.

In the proposed method, we aim to address the two main
challenges of MIL [9]: measuring set-to-set distance and
weak label association. For the former, instead of computing
the traditional Bag-to-Bag (B2B) distance that often does
not truly reflect the semantic relationships between data ob-
jects [1], we consider to directly assess the relevance between
classes and data objects, and propose to use Class-to-Bag
(C2B) distance. For the latter, we take into account the
relative importance of a training instance with respect to its
labeled classes by assigning it with a weight for each of its
labeled classes, called as Significance Coefficient (SC). Ide-
ally, the learned SCs of an instance, i.e., frame relevance,
with respect to its true associated classes should be large,
whereas its SCs with respect other classes should be small.
Parameterizing the C2B distance by the learned SCs, our
P-C2B distance method for multi-instance data is proposed.

2. PARAMETERIZED CLASS-TO-BAG DIS-

TANCE FOR MULTI-INSTANCE DATA
In this section, we first introduce a novel Parameterized

Class-to-Bag (P-C2B) Distance to address the challenges of
multi-instance data, followed by the objective and optimiza-
tion procedures to learn it.

Problem formalization. Given a video classification task,
we have N training video clips X = {X1, . . . , XN} and K

conceptual classes. Each video clip contains a number of
frames represented by a bag of instancesXi =

[

x1
i , . . . ,x

ni
i

]

∈

R
d×ni , where ni is the number of the frames (instances)

in video clip Xi. Each instance is abstracted as a vector
xj
i ∈ R

d of d dimensions. We are also given the class mem-

berships of the input data, denoted as Y = [y1, . . . ,yN ]T ∈
{0, 1}N×K where yi is the label indicator of Xi. In the
setting of MIL, if there exists j ∈ {1, . . . , ni} such that xj

i

belongs to the k-th class, Xi is assigned to the k-th class and
Yik = 1, otherwise Yik = 0. Yet the concrete value of the
index j is unknown. More specifically, the following assump-
tions are held in the settings of MIL: (1) bag X is assigned
to the k-th class ⇐⇒ at least one instance of X belongs to
the k-th class; (2) bag X is not assigned to the k-th class
⇐⇒ no instance in X belongs to the k-th class. Our goal is
to learn from the training data D = {Xi,yi}

N
i=1 a classifier

that is able to predict labels for a new query video clip X.

2.1 Parameterized Class-to-Bag Distance
To tackle the two major difficulties of MIL, the estima-

tion of set-to-set distances and instance level labeling ambi-
guity [9], we first propose a novel P-C2B distance for multi-
instance data.

Class-to-Bag (C2B) Distance. We first represent every
class as a super-bag that comprises the instances of all its
training bags: Ck =

{

xj
i | i ∈ πk

}

where πk = {i | Yik = 1}
is the index set of all the training bags belonging to the k-th
class. We denote the number of instances in Ck as mk, i.e.,
|Ck| = mk. Note that, in single-label video data sets where

each video clip belongs to exactly one class, i.e.,
∑K

k=1 Yik =

1, therefore Ck∩Cl = ∅ (∀ k 6= l) and
∑K

k=1 mk =
∑N

i=1 ni.
In multi-label video data sets where each video clip (thereby
each instance) may belong to more than one class, i.e.,
∑K

k=1 Yik ≥ 1, thus Ck ∩ Cl 6= ∅ (∀ k 6= l) and
∑K

k=1 mk ≥
∑N

i=1 ni, i.e., different super-bags may overlap and one in-

stance xj
i may appear in multiple super-bags.

Then we define the elementary distance from an instance
xj
i of a super-bag Ck to a data bag Xi′ by the distance

between xj
i and its nearest neighbor instance in Xi′ :

distk

(

xj
i , Xi′

)

=
∥

∥

∥
xj
i −Ni′

(

xj
i

)∥

∥

∥
, ∀i ∈ πk , (1)

where Ni′
(

xj
i

)

denotes the nearest neighbor of xj
i in Xi′ .

Finally, the C2B distance from Ck to Xi′ is computed as:

Dist (Ck, Xi′) =
∑

i∈πk

ni
∑

j=1

distk

(

xj
i , Xi′

)

=
∑

i∈πk

eTdii′k ,

(2)

where e = [1, . . . , 1]T is a constant vector, and dii′k ∈ R
ni

in which the j-th element is
∥

∥xj
i −Ni′

(

xj
i

)∥

∥.

Parameterized Class-to-Bag (P-C2B) Distance. Be-
cause the C2B distance defined in Eq. (2) does not take into
account the the instance level labeling ambiguity in MIL, we
further develop it by weighting the instances in a super-bag
upon their relevance to a concerned class.

Due to the ambiguous associations between instances and
labels, not all the instances in a super-bag really characterize
the corresponding class. For example, in Figure 1 the right-
most instance (frame) is in the super-bag of “Studio” class,
because the entire video clip is labeled with both “Studio”
and “Outdoor”. Intuitively, we should give it a smaller, or
even no, weight when determining whether to assign “Stu-
dio” label to a query video clip; and give it a higher weight
when deciding “Outdoor” label. To be more precise, let wj

ik

be the weight for xj
i with respect to the k-th class, we com-

pute the parameterized C2B distance from Ck to Xi′ as:

Dist (Ck, Xi′) =
∑

i∈πk

wT
ikdii′k , (3)

where wik =
[

w1
ik, . . . , w

ni

ik

]T
. As can be seen, different from

Eq. (2) in which all the elementary distances are equally
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weighted by e, the C2B distance defined in Eq. (3) gives
different weights to the instances in a super-bag upon their
relevances by wik. Because w

j
ik reflects the relative impor-

tance of instance xj
i when determining the label for the k-th

class, we call it as the Significance Coefficient (SC) of xj
i

with respect to the k-th class, and the resulted C2B dis-
tance computed by Eq. (3) as the proposed Parameterized
Class-to-Bag (P-C2B) Distance.

2.2 Objective and Optimization Algorithm
Armed with the P-C2B distance defined in Eq. (3), we

learn w
j
ik by maximizing the data separability, i.e., we min-

imize the overall P-C2B distance from a class to all its be-
longing bags, whilst maximizing the overall P-C2B distance
from the same class to all the bags not belonging to it. For-
mally, for a given class Ck, we solve the following optimiza-
tion problem:

min
wik≥0, wT

ik
e=1

∑

i′∈πk

∑

i∈πk
wT

ikdii′k
∑

i′ /∈πk

∑

i∈πk
wT

ikdii′k

. (4)

Let dw
ik =

∑

i′∈πk
dii′k ∈ R

ni and db
ik =

∑

i′ /∈πk
dii′k ∈

R
ni , we rewrite the problem in Eq. (4) as:

min
wik≥0, wT

ik
e=1

∑

i∈πk

(

wT
ikd

w
ik + αwT

ikwik

)

∑

i∈πk
wT

ikd
b
ik

, (5)

where the second term in the numerator is added to avoid
the degenerate solution.

To solve the optimization objective in Eq. (5), we derive
an iterative algorithm as following.

Algorithm 1: The algorithm to solve the problem (5).

t = 0. Randomly initialize w
(0)
ik

satisfying w
(0)
ik

≥ 0,
(

w
(0)
ik

)T

e = 1.

while not converge do

1. Calculate λ(t) =

∑

i∈πk

[

(

w
(t)
ik

)T
d
w
ik

+α

(

w
(t)
ik

)T
w

(t)
ik

]

∑

i∈πk

(

w
(t)
ik

)

T
db
ik

.

2. Calculate

w
(t+1)
ik

= argmin
wik≥0,

w
T
ik

e=1

∑

i∈πk

(

w
T
ikd

w
ik + αw

T
ikwik

)

−λ
(t)

∑

i∈πk

w
T
ikd

b
ik.

(6)

3. t = t + 1.

end

Let dik = dw
ik − λ(t)db

ik, we may rewrite the optimization
problem in Eq. (6) as following:

min
wik≥0, wT

ik
e=1

∑

i∈πk

(wT
ikdik + αwT

ikwik) . (7)

We can see that the problem in Eq. (7) can be decoupled to
solve the following subproblems separately for each i ∈ πk:

min
wik≥0, wT

ik
e=1

wT
ikdik + αwT

ikwik , (8)

which are convex quadratic programming (QP) problems,
and can be efficiently solved because wik ∈ R

ni and the
value of ni, i.e., the bag size of Xi, is usually not large.

Given the learned w
j
ik (1 ≤ k ≤ K, 1 ≤ i ≤ N, 1 ≤ j ≤ ni),

we can compute D (Ck, X) (1 ≤ k ≤ K) for a query video
clip X using Eq. (3), based on which the classification can
be conducted following the same rules as in [9].

3. EXPERIMENTAL RESULTS
In this section, we experimentally evaluate the proposed

P-C2B method in automatic video classification tasks, where
we emphasize its effectiveness in low-cost conditions.

3.1 Data Preparation
We conduct our experiments usingTRECVID 2005 video

data set1, which contains 277 video clips with 61,901 shots
labeled by 39 LSCOM-Lite concepts. Each shot (key frame)
is considered as an instance in our study. For each instance,
following [8] we extract a 384-dimensional low-level visual
feature vector by dividing the corresponding key frame into
64 blocks by a 8×8 grid and computing the first and second
moments (mean and variance) of each color band. We split
each video clip into 5 consecutive parts and end up with 1385
bags. Different bags have different numbers of instances.
In average, each bag comprises 44.7 instances. Because in
TRECVID 2005 data set, each video clip is annotated with
more than one semantic label, it is a multi-label data set.

3.2 Experimental Settings
Because the main purpose of the proposed P-C2B dis-

tance method is to deal with low-cost video classification,
we evaluate it in the conditions where we only have video
clips labels but not frame labels. We employ standard 5-fold
cross-validation for evaluation and report the average per-
formance over the 5 trials. For each video clip, we randomly
select a fraction of its frames and assign their labels to the
video clip, while the labels of both selected and not-selected
frames are assumed to be unknown. We emulate two differ-
ent conditions when the amount of selected frames are 80%
and 50%, and the corresponding results are reported in the
top and bottom halves of Table 1 respectively.

The proposed P-C2B method has only one parameter, i.e.,
the regularization parameter α in Eq. (5). Empirically, we
set α = 0.01 throughout our experiments.

We first compare our method to two baseline classification
methods including support vector machine (SVM) method
and transductive support vector machine (TSVM) [3] method.
The former is one of the most widely used supervised clas-
sification method in statistical learning, while the latter is
an extension of the former and is a semi-supervised classi-
fication method. Because both of these two methods are
designed for single-instance data, they are not able to han-
dle data objects with varied sizes. To this end, we assign
the bag labels to all its component frames. This brings in-
stance level labeling ambiguity, which, on the other hand,
significantly reduces required labeling cost for training, be-
cause we only need human experts to label either the whole
video clips or a fraction of their frames instead of all. For
each class we train a one-vs-others classier using the frames
in the training video clips, and classify the frames in the
test video clips. Gaussian kernel is used for the both meth-
ods, i.e., K (xi,xj) = exp

(

−β ‖xi − xj‖
2), where β and the

regularization parameter C are fine tuned by searching the
grid of

{

10−5, . . . , 10−1, 1, 10, . . . , 105
}

via an internal 5-fold
cross-validation using the training data of each of the 5 trails.
The both methods are implemented using SVM-light2.

We also compare our method to two most related meth-
ods, i.e., two recent MIL methods including miGraph [11]

1http://www-nlpir.nist.gov/projects/trecvid/
2http://svmlight.joachims.org/
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Table 1: Video classification performances (mean ± standard deviation) comparison when only 80% (top
half) and 50% (bottom half) of the frames are labeled.

Method Hamming loss ↓ One-error ↓ Coverage ↓ Rank loss ↓ Average precision ↑

SVM 0.239 ± 0.014 0.448 ± 0.010 1.323 ± 0.010 0.240 ± 0.012 0.335 ± 0.020
TSVM 0.235 ± 0.012 0.444 ± 0.012 1.312 ± 0.016 0.233 ± 0.014 0.338 ± 0.022
SML 0.228 ± 0.013 0.441 ± 0.015 1.308 ± 0.011 0.229 ± 0.016 0.342 ± 0.025
miGraph 0.215 ± 0.012 0.366 ± 0.016 1.202 ± 0.015 0.213 ± 0.010 0.386 ± 0.021
MIMLSVM+ 0.208 ± 0.010 0.357 ± 0.015 1.116 ± 0.018 0.205 ± 0.012 0.398 ± 0.021
P-C2B 0.191± 0.011 0.341± 0.010 1.093± 0.007 0.188± 0.010 0.420± 0.012

SVM 0.282 ± 0.012 0.515 ± 0.013 1.585 ± 0.019 0.289 ± 0.017 0.240 ± 0.019
TSVM 0.280 ± 0.013 0.511 ± 0.015 1.580 ± 0.020 0.283 ± 0.015 0.245 ± 0.020
SML 0.276 ± 0.010 0.505 ± 0.013 1.574 ± 0.015 0.277 ± 0.013 0.249 ± 0.018
miGraph 0.233 ± 0.012 0.418 ± 0.015 1.310 ± 0.019 0.244 ± 0.012 0.306 ± 0.020
MIMLSVM+ 0.227 ± 0.014 0.404 ± 0.015 1.293 ± 0.016 0.237 ± 0.013 0.318 ± 0.018
P-C2B 0.209± 0.011 0.373± 0.012 1.183± 0.014 0.214± 0.011 0.354± 0.013

method and MIMLSVM+ [4] method. Because miGraph
method is a single-label classification method, one-vs-others
strategy is used to conduct classification, one class at a time.
Note that, because both of these two method and the pro-
posed P-C2B method are multi-instance classification meth-
ods, thus we perform classification at bag, i.e., video clip,
level. Namely, although we know the ground truth instance
labels, these three methods do not use them. They only use
bag labels following standard MIL settings.

Finally, we report the performance of a most recent video
classification method, i.e., supervised manifold learning (SML)
[5] method which has demonstrated state-of-the-art classifi-
cation performance. Since this method is designed to work
at frame level, we employ the same strategy as that for SVM
to conduct classification. We implement the method follow-
ing its original work and set the parameters as optimal.

3.3 Experimental Results
Because TRECVID 2005 data set is a multi-label data set,

we evaluate the classification performances of the compared
methods using five widely used multi-label evaluation met-
rics, as shown in Table 1, where “↓” indicates “the smaller
the better” while “↑” indicates “the bigger the better”. We
refer readers to [6] for details of these evaluation metrics.

The average classification performances (mean ± standard
deviation) of the compared methods over the 5 trials of the
experiments are reported in Table 1, from which we can
see that the proposed method is consistently better than
the other compared methods, sometimes very significantly.
Moreover, when labeling cost is reduced, i.e., the amount of
labeled frames are reduced, the classification performance
degradations of the multi-instance methods, including the
proposed P-C2B distance method, are not very significant,
whereas those of the single-instance methods are consider-
ably large. These results concretely demonstrate the useful-
ness of multi-instance learning in cost effective video classi-
fication, as well as the effectiveness of the proposed method.

4. CONCLUSION
In this paper, we proposed a novel Parameterized Class-

to-Bag (P-C2B) Distance method to solve the video clas-
sification problem under the framework of Multi-Instance
Learning (MIL). The Significance Coefficients (SCs) are learned
to assess the relative importance of a training instance with
respect to its labeled classes, which thus solves the notori-
ous instance label assignment ambiguity in MIL. Moreover,

through the learned SCs, the frame relevances to the con-
cerned semantic concepts of the coarsely labeled video clips
are explicitly given to reveal the insight of the input data set.
The promising experimental results were reported in empir-
ical evaluations, which validated the proposed method.
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