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ABSTRACT

The rapid growth of Internet and modern technologies has brought
data involving objects of multiple types that are related to each
other, called as multi-type relational data. Traditional clustering
methods for single-type data rarely work well on them, which calls
for more advanced clustering techniques to deal with multiple types
of data simultaneously to utilize their interrelatedness. A major
challenge in developing simultaneous clustering methods is how to
effectively use all available information contained in a multi-type
relational data set including inter-type and intra-type relationships.
In this paper, we propose a Symmetric Nonnegative Matrix Tri-
Factorization (S-NMTF) framework to cluster multi-type relational
data at the same time. The proposed S-NMTF approach employs
NMTF to simultaneously cluster different types of data using their
inter-type relationships, and incorporate the intra-type information
through manifold regularization. In order to deal with the symmet-
ric usage of the factor matrix in S-NMTF, we present a new generic
matrix inequality to derive the solution algorithm, which involves
a fourth-order matrix polynomial, in a principled way. Promising
experimental results have validated the proposed approach.

Categories and Subject Descriptors

H.3.3 [Information Storage And Retrieval]: Information Search
and Retrieval—Clustering; I.2.6 [Artificial Intelligence]: Learn-
ing

General Terms

Algorithms, Experimentation, Performance

Keywords

Clustering, Multi-Type Relational Data, Web, Nonnegative Matrix
Tri-Factorization

1. INTRODUCTION
Clustering aims to partition a set of objects into groups or clus-

ters such that objects in a same cluster are similar while those in
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different clusters are dissimilar. Most traditional clustering algo-
rithms concentrate on dealing with homogeneous data, in which all
the objects are of one single type. Recently, the rapid progress of
Internet and computational technologies have brought data much
richer in structure, involving objects of multiple types that are re-
lated to each other. For example, in a Web search system in Fig-
ure 1, we have four different types of data objects including words,
Web pages, search queries and Web users. Each of the four types of
entities have their own attributes. Meanwhile different types of data
are also interrelated to each other by various means, e.g., Web pages
and words are related via co-occurrences. Due to their high hetero-
geneity and close interrelationships, these data are called as multi-

type relational data [10]. The information contained in a multi-type
relational data set typically appears in two forms as follows:

• Inter-type relationships characterize the relations between
data objects from different types, such as the co-occurrences
between data objects from different types, as illustrated by
the green solid lines in Figure 1.
• Intra-type relationships characterize the native relations be-

tween objects within one data type, e.g., as illustrated by the
blue dashed lines in Figure 1, the internet hyperlinks among
Web pages, the pairwise affinities among users that are in-
duced from user attributes, etc.

Inter-type relationships appear exclusively in multi-type relational
data, while intra-type information, due to its homogeneity, appears
in both multi-type relational data and traditional single-type data.

The rich structures of multi-type relational data provide a poten-
tial opportunity to improve the clustering accuracy, which, how-
ever, also present a new challenge on how to take advantage of all
available information. In this paper, we tackle this new, yet impor-
tant, problem to simultaneously cluster multiple types of relational
data. Our goal is to make full use of the both forms of information
of a multi-type relational data set.

1.1 Difficulties of Traditional Clustering Meth-
ods on Multi-Type Relational Data

Because each type of a multi-type relational data set can be viewed
as homogeneous data, one may argue that clustering heterogeneous
data can be solved using traditional methods to cluster each type of
objects independently. However, this may not work well.

First, various data types in a multi-type relational data set are
interrelated to each other. Clustering each data type independently
will lose these interaction information, such as that conveyed by
internet hyper-links or co-occurrences, which are essential to gain
a full understanding of the Web data.

Second, in practice the clustering of a data type may not be the
one based on the intra-type relationships (i.e., the similarity of fea-
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Figure 1: A Web search system is an example of multi-type relational data, involving (1) Inter-type relationships (green solid lines):

the relations between objects in different data types. (2) Intra-type relationships (blue dashed lines): the relations between different

objects in a same data type.

tures) but the one based on the inter-type relationships between this
data type and others. For example, in the Web search system in
Figure 1, instead of the similarity between Web pages themselves,
people are often interested in the relationships between user groups
and Web page styles.

Last, but not least, heterogeneous data contain different types of
objects. Processing and interpreting them in one single way may
not be appropriate and presents a major challenge. Ad hoc integra-
tion or normalization (e.g., concatenating different features into a
vector of fixed length) rarely works.

As a result, recent research has advanced swiftly from simple
clustering of one type of data to simultaneous clustering of multi-
ple types of data, for both two data types (pairwise co-clustering)
[3, 6, 7, 16] and multiple (more than two) data types (high-order
co-clustering) [10, 12, 15]. Through simultaneous clustering, one
can discover the hidden global structures in the heterogeneous data,
which seamlessly integrates multiple data types to provide a better
picture of the underlying data distribution.

1.2 Our Contributions
Given the inter-type relationships and the intra-type information,

we present a Symmetric Nonnegative Matrix Tri-Factorization (S-
NMTF) framework for simultaneous clustering of multi-type rela-
tional data. In our new approach, we use NMTF to simultaneously
cluster different types of data upon their inter-type relationship ma-
trices. Meanwhile, users are allowed to provide optional intra-type
information for different types of data in form of pairwise affinity,
which is incorporated as manifold regularization to NMTF. Promis-
ing empirical results in extensive experiments validate the proposed
method. We summarize our contributions as following.

1. We present a simple, yet effective, framework to tackle the
complicated problem of simultaneous clustering of multi-type rela-
tional data, which aims to fully exploit all available information.

2. Existing NMF algorithms usually deal with asymmetric (rect-
angle data-feature) matrix factorization [4, 6, 12–14] and optimize
one factor matrix at a time, which only involve second-order matrix
polynomials. When dealing with symmetric matrix factorization, a
fourth-order matrix polynomial is involved, which is much harder
to be dealt with and heuristics are usually used in existing works.
In this paper, as an important theoretical contribution, we present a
new generic matrix inequality (in Lemma 4), such that the difficulty
is tackled in a principled way.

2. SIMULTANEOUSLY CLUSTER MULTI-

TYPE RELATIONAL DATA BY S-NMTF
In this section, we first briefly review NMTF based co-clustering

of two-type relational data, from which we gradually develop the
proposed S-NMTF approach for simultaneous clustering of multi-

type relational data. Our approach employs both inter-type rela-
tionships as well as intra-type information.

2.1 Problem Formalization
We first formalize the problem of simultaneous clustering of multi-

type relational data.
We denote a K-type relational data set asX = {X1,X2, . . . ,XK},

where Xk =
{

x
k
1 ,x

k
2 , . . . ,x

k
nk

}

represents the data objects of the
k-th type. Suppose that we are given a set of relationship matrices
{

Rkl ∈ ℜ
nk×nl

}

(1≤k≤K,1≤l≤K)
between different types of data

objects, and we have Rkl = RT
lk . Our goal is to simultaneously

partition the data objects in X1,X2, . . . ,XK into c1, c2, . . . , cK
disjoint clusters respectively.

Most existing simultaneous clustering algorithms only rely on
inter-type relationships, i.e., Rij . However, in practice we may
also have intra-type information for each type of data. For the k-
th type of data, for example, we usually have pairwise affinities
Wk ∈ ℜ

nk×nk between the objects of the type. In this study,
we aim to make full use of both inter-type relationships Rkl (in
Section 2.3) and intra-type information Wk (in Section 2.4).

Throughout this paper, we denote A(ij) as the entry at the i-th
row and j-th column of a matrix A.

2.2 A Brief Review of Co-Clustering of Two-
Type Relational Data Using NMTF

The close connection between Nonnegative Matrix Factorization
(NMF) and clustering [4] provides the potential theory to develop
co-clustering methods. Ding et al. proposed to use NMTF [6] to si-
multaneously cluster the rows and columns of an input nonnegative
relationship matrix R12 by decomposing it into three nonnegative
factor matrices, which minimizes the following objective:

J1 = ‖R12 −G1S12G
T
2 ‖

2, s.t. G1 ≥ 0, G2 ≥ 0, S12 ≥ 0, (1)

where ‖ · ‖ denotes the Frobenius norm of a matrix, G1 ∈ ℜ
n1×c1
+

and G2 ∈ ℜ
n2×c2
+ are the cluster indicator matrices for X1 and

X2 respectively, and S12 ∈ ℜ
c1×c2
+ absorbs the different scales of

R12, G1 and G2. Note that, the original NMF problem [9] requires
R12 to be nonnegative. In co-clustering scenarios, this constraint
(thereby the nonnegativity constraint on S12), however, can be re-
laxed [5], which leads to the semi-NMTF problem to minimize:

J2 = ‖R12 −G1S12G
T
2 ‖

2, s.t. G1 ≥ 0, G2 ≥ 0 . (2)

Simultaneous clustering on X1 and X2 is then achieved by solving
Eq. (2). Because the rows of the resulted Gk (k ∈ {1, 2}) (with
normalization) can be interpreted as the posterior probability for
clustering on Xk [4, 6], the cluster label of xk

i is obtained by

l
(

x
k
i

)

= argmax
j

Gk(ij) . (3)
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2.3 Simultaneous Clustering of Multi-Type Re-
lational Data Using Inter-Type Relation-
ships

A natural generalization of the co-clustering objective in Eq. (2)
to simultaneous clustering of multi-type relational data is to solve
the following optimization problem [10, 12]:

min J3 =
∑

1≤k<l≤K

‖Rkl −GkSklG
T
l ‖

2,

s.t. Gk ≥ 0, ∀ 1 ≤ k ≤ K .

(4)

However, it is not straightforward to solve Eq. (4) by general-
izing existing iterative multiplicative NMTF solution algorithms.
Motivated by [3] that deals with bipartite graphs, we propose to
solve the optimization problem in Eq. (4) by solving an equivalent
Symmetric NMTF problem.

We first introduce the following useful lemma.

LEMMA 1. The optimization problem in Eq. (2) can be equiva-

lently solved by the following S-NMTF problem:

min J4 = ‖R −GSGT ‖2, s.t. G ≥ 0, (5)

in which

R =

[

0n1×n1 Rn1×n2
12

Rn2×n1
21 0n2×n2

]

,

G =

[

Gn1×c1
1 0n1×c2

0n2×c1 Gn2×c2
2

]

, S =

[

0c1×c1 Sc1×c2
12

Sc2×c1
21 0c2×c2

]

,

(6)

where the superscripts denote the matrix sizes, and R21 = RT
12,

S21 = ST
12. 0n1×n1 is a matrix with all zero entries of size n1×n1.

PROOF. Following the definitions of R, G and S, we can derive

‖R −GSGT ‖2 =

∥

∥

∥

∥

∥

[

0 R12

RT
12 0

]

−

[

0 G1S12G
T
2

G2S
T
12G

T
1 0

]∥

∥

∥

∥

∥

2

= 2‖R12 −G1S12G
T
2 ‖,

which proves the lemma.

Based upon Lemma 1, we have the following theorem.

THEOREM 1. It is equivalent to solve Eq. (4) and to solve

min J5 = ‖R −GSGT ‖, s.t. G ≥ 0, (7)

in which

R =















0n1×n1 Rn1×n2
12 · · · Rn1×nK

1K

Rn2×n1
21 0n2×n2 · · · Rn2×nK

2K

.

..
.
..

. . .
.
..

RnK×n1
K1 RnK×n2

K2 · · · 0nK×nK















,

G =















Gn1×c1
1 0n1×c2 · · · 0n1×cK

0n2×c1 Gn2×c2
2 · · · 0n2×cK

...
...

. . .
...

0nK×c1 0nK×c2 · · · GnK×cK
K















,

S =















0c1×c1 Sc1×c2
12 · · · Sc1×cK

1K

Sc2×c1
21 0c2×c2 · · · Sc2×cK

2K

.

..
.
..

. . .
.
..

ScK×c1
K1 ScK×c2

K2 · · · 0cK×cK















,

(8)

where Rji = RT
ij and Sij = ST

ji.

The proof of Theorem 1 can be easily obtained by generalizing the
proof of Lemma 1 to multi-type relational data.

Theorem 1 presents a general framework via S-NMTF to simul-
taneously cluster multi-type relational data using the mutual rela-
tionship matrices. However, the symmetric usage of the factor ma-
trix G in NMTF leads to a fourth-order matrix polynomial when
deriving the iterative algorithm, which is harder to be dealt with
compared to the second-order matrix polynomials involved in stan-
dard (asymmetric) NMTF. In Section 3, we will introduce a new
matrix inequality in Lemma 4 to solve this problem.

2.4 Incorporating Intra-Type Information via
Graph Regularization

The optimization objectives in Eq. (2) and Eq. (7) only involve
the inter-type relationships of a multi-type relational data set, whereas
the intra-type information, though often available, are not used. We
incorporate them through Laplacian regularization [2, 7].

For a two-type relational data set, given the intra-type informa-
tion in form of the pairwise affinity matrices W1 and W2 forX1 and
X2 respectively, we can incorporate them into Eq. (2) as following:

J6 = ‖R12 −G1S12G
T
2 ‖

2 + 2λ
[

tr
(

GT
1 L1G1

)

+ tr
(

GT
2 L2G2

)]

,

s.t. G1 ≥ 0, G2 ≥ 0, (9)

where Dk is the diagonal degree matrix with Dk(ii) =
∑

j
Wk(ij),

and Lk = Dk−Wk is the corresponding graph Laplacian. Because
Lk is the discrete approximation of the Laplace-Beltrami operator
on the underlying data manifold [1], the last two terms reflects the
label smoothness of the two types of data points. The smoother the
data labels are with respect to the underlying data manifolds, the
smaller their values will be.

Using R, S and G defined in Eq. (8), and denote

W =















W n1×n1
1 0n1×n2 · · · 0n1×nK

0n2×n1 W n2×n2
2 · · · 0n2×nK

...
...

. . .
...

0nK×n1 0nK×n2 · · · W nK×nK

K















, (10)

we approach simultaneous clustering on multi-type relational data
by solving the following optimization problem:

min JS-NMTF = ‖R −GSGT ‖2 + 2λ tr
[

GT (D −W )G
]

,

s.t. G ≥ 0, (11)

where D is the diagonal degree matrix with D(ii) =
∑

j W(ij). We
call Eq. (11) as our proposed S-NMTF approach. As can be seen,
the complicated problem of simultaneous clustering of multi-type
relational data is finally modeled by a very simple mathematical
formulation, which is the first contribution of this work.

3. ALGORITHM FOR S-NMTF
The computational algorithm for the proposed S-NMTF approach

is listed in Algorithm 1. Upon solution, the final cluster labels are
obtained from the resulted Gk using Eq. (3).

The main challenge to derive Algorithm 1 is the fourth-order ma-
trix polynomial incurred by the symmetric usage of G in Eq. (11).
Existing works [4, 6, 12] tackle this difficulty in an intuitive way:
solve the problem as a standard NMF problem with two different
factor matrices and set them as same in the solution. In this work,
as a theoretical contribution, we present a new matrix inequality in
Lemma 4 to tackle this difficulty in a principled way.
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Algorithm 1: Algorithm to solve S-NMTF in Eq. (11)

Data: Relationship matrices: {Rij}1≤i<j≤K

Unsupervised pairwise affinity matrices: {Wk}1≤k≤K

Result: Factor matrices: {Gk}1≤k≤K

1. Construct R,G, S as in Eq. (8), and W as in Eq. (10).
2. Initialize G as in [6].
repeat

3. Compute S =
(

GTG
)−1

GTRG
(

GTG
)−1

.

4. Update Gij ← Gij







(RGS + λWG)
ij

(

GSGTGS + λDG
)

ij







1
4

.

until Converges

3.1 Correctness of the Algorithm
The following theorem guarantees the correctness of Algorithm 1.

THEOREM 2. If the updating rules of G and S in Algorithm 1

converges, the final solution satisfies the KKT optimal condition.

PROOF. For the objective in Eq. (11), following the standard
theory of constrained optimization, we introduce the Lagrangian
multipliers 4Λ and minimize the Lagrangian function as follows:

L (G, S) = JS-NMTF + tr
(

4ΛGT
)

, (12)

which gives

∂L

∂G
= −4RGS + 4GSGTGS − 4λWG+ 4DG + 4Λ, (13)

∂L

∂S
= −2GTRG+ 2GTGSGTG. (14)

Fixing G, letting ∂L/∂S = 0, from Eq. (14) we obtain

S =
(

GTG
)−1

GTRG
(

GTG
)−1

. (15)

The KKT complementary condition for the nonnegativity of Gij

gives GijΛij = 0. Setting ∂L/∂G = 0, from Eq. (13) we have:
(

−4RGS + 4GSGTGS − 4λWG+ 4DG
)

ij
Gij = 0 . (16)

This is the fixed point relationships that the solution must satisfy.
At convergence, G(∞) = G(t+1) = G(t), thus we can derive
(

−4RGS + 4GSGTGS − 4λWG+ 4DG
)

ij
G4

ij = 0,

which is identical to Eq. (16) and proves Theorem 2.

3.2 Convergence of the Algorithm
Now, we analyze the convergence of Algorithm 1 using the aux-

iliary function approach [9].

LEMMA 2. [9] Z (h, h′) is an auxiliary function of F (h) if the

conditions Z (h, h′) ≥ F (h) and Z (h, h′) = F (h) are satisfied.

[9] If Z is an auxiliary function for F , then F is non-increasing

under the update h(t+1) = argminh Z (h, h′).

LEMMA 3. [6] For any matrices A ∈ ℜn×n
+ , B ∈ ℜk×k

+ ,

S ∈ ℜn×k
+ and S′ ∈ ℜn×k

+ , and A and B are symmetric, the

following inequality holds:

∑

ip

(AS′B)
ip
S2
ip

S′
ip

≥ tr
(

STASB
)

. (17)

As one of our contribution, we prove the following generic ma-
trix inequality to analyze objective functions involving 4-th order
matrix polynomials, such as that our S-NMTF objective in Eq. (11).

LEMMA 4. For any nonnegative symmetric matrices A ∈ ℜk×k
+

and B ∈ ℜk×k
+ , for H ∈ ℜn×k

+ the following inequality holds:

tr
(

HAHTHBHT
)

≤

∑

ik

(

H ′AH ′TH ′B +H ′BH ′TH ′A

2

)

ik

H4
ik

H ′3
ik

.
(18)

PROOF. Let Hik = H ′
ikuik . The 1st term in RHS of Eq. (18) is

∑

ik

(H ′AH ′TH ′B)ik
H4

ik

H ′3
ik

=
∑

ijkrpq

H ′
jrArkH

′
ikH

′
ipBpqH

′
jqu

4
jq

Now, switching indexes: i⇔ j, p⇔ q, r ⇔ k, we obtain

∑

ik

(H ′AH ′TH ′B)ik
H4

ik

H ′3
ik

=
∑

ijkrpq

H ′
ikAkrH

′
jrH

′
jqBqpH

′
ipu

4
ip

The 2nd term in RHS of Eq. (18) is

∑

ik

(H ′BH ′TH ′A)ik
H4

ik

H ′3
ik

=
∑

ijkrpq

H ′
ipBpqH

′
jqH

′
jrArkH

′
iku

4
ik .

Now, switching indexes: i⇔ j, p⇔ q, r ⇔ k, we obtain

∑

ik

(H ′BH ′TH ′A)ik
H4

ik

H ′3
ik

=
∑

ijkrpq

H ′
jqBqpH

′
ipH

′
ikAkrH

′
jru

4
jr

A careful examination of the RHS of the above four equations
shows that they are identical except u4 terms. Thus, the RHS of
Eq. (18) is

∑

ijkrpq

H ′
ipBpqH

′
jqH

′
jrArkH

′
ik

u4
ik + u4

jr + u4
jq + u4

ip

4
. (19)

The LHS of Eq. (18) is
∑

ijkrpq
H ′

ipBpqH
′
jqH

′
jrArkH

′
ikuikujrujquip.

For any a, b, c, d > 0, we have a4 + b4 + c4 + d4 ≥ 2(a2b2 +
c2d2) ≥ 4(ab)(cd), thus uikujrujquip ≤

(

u4
ik + u4

jr + u4
jq + u4

ip

)

/4,
which proves Lemma 4.

Based upon the above lemmas, we prove the following theorem.

THEOREM 3. Let

JS-NMTF (G) = tr

(

−2RGSGT +GSGTGSGT

+2ΛGTDG − 2λGTWG
)

,
(20)

then the following function

Z
(

G,G′
)

= −2
∑

ijkl

G′
jiSjkG

′
klRli

(

1 + log
GjiGkl

G′
ijG

′
kl

)

+
∑

ij

(

G′SG′TG′S
)

ij

G4
ij

G′3
ij

+
∑

ij

(

DG′Λ
)

ij

G4
ij +G′4

ij

G′3
ij

− 2λ
∑

ijk

G′
jiWjkG

′
ki

(

1 + log
GjiGki

G′
jiG

′
ki

)

is an auxiliary function of JS-NMTF (G). Furthermore, it is a convex

function in G and its global minimum is

Gik = Gik

[

(RGS + λWG)
ik

(GSGTGS +DGΛ)ik

] 1
4

. (21)
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PROOF. By applying Lemma 4, we have

tr
(

GSGTGSGT
)

≤
∑

ij

(

G′SG′TG′S
)

ij

G4
ij

G′3
ij

.

Because of Lemma 3 and the inequality of 2ab < a2+ b2, we have

tr
(

ΛGTDG
)

≤
∑

ij

(

DG′Λ
)

ij

G2
ij

G′
ij

≤
∑

ij

(

DG′Λ
)

ij

G4
ij +G′4

ij

G′3
ij

.

Because z ≤ 1 + logz, ∀ z > 0, we have

tr
(

RGSGT
)

≥
∑

ijkl

G′
jiSjkG

′
klRli

(

1 + log
GjiGkl

G′
ijG

′
kl

)

.

tr
(

GTWG
)

≥
∑

ijk

G′
jiWjkG

′
ki

(

1 + log
GjiGki

G′
jiG

′
ki

)

.

Summing over all these bounds, we get Z (G,G′), which clearly
satisfies (1) Z (G,G′) ≥ JS-NMTF (G) and (2) Z (G,G) = JS-NMTF (G).
Therefore, Z (G,G′) is an auxiliary function of JS-NMTF (G).

Following the same derivations as in [5–7, 12, 13], it can be ver-
ified that the Hessian matrix of Z (G,G′) is a positive definite di-
agonal matrix (we skip the derivations due to space limit). Thus
Z (G,G′) is a convex function of G. We can obtain the global min-
imum of Z (G,G′) by setting ∂Z (G,G′) /∂Gij = 0 and solving
for G, from which we can get Eq. (21). This completes the proof
of Theorem 3.

THEOREM 4. Updating G using the rule in Algorithm 1 mono-

tonically decreases JS-NMTF (G) in Eq. (20).

PROOF. According to Lemma 2 and Theorem 3, we can get that
JS-NMTF

(

G0
)

= Z
(

G0, G0
)

≥ Z
(

G1, G0
)

≥ JS-NMTF

(

G1
)

. . . .
Thus JS-NMTF (G) is monotonically decreasing.

Because of Eqs. (14–15), in each iteration step of Algorithm 1

S(t+1) = argminS(t) JS-NMTF

(

S(t), G(t)
)

, which, together with

Theorem 3 and 4, guarantees the convergence of Algorithm 1, be-
cause J (G) in Eq. (11) is obviously lower bounded by 0.

4. EMPIRICAL STUDIES
In this section, we experimentally evaluate the proposed S-NMTF

approach. Our new method has only one parameter λ in Eq. (11).
Empirically, we set it as λ = 0.01.

4.1 Co-Clustering of Two-Type Relational Data
We first evaluate the proposed method on two-type relational

data, the simplest multi-type relational data. We use the following
three data sets: Newsgroup4 data set, WebKB4 data set, WebACE
data set, whose details can be found in [7].

4.1.1 Experimental Settings

For co-clustering of two-type relational data, we need two in-
puts from a data set: the relationship matrix between the two types
of data, and the pairwise affinity matrices for each type of data.
We obtain the relationship matrices directly from the testing data
sets. We construct neighborhood graphs from the both sides of the
relationship matrix following [7] to obtain the pairwise affinity ma-
trices for the both types of the entities, where, following [7], the
neighborhood size is set as 10.

We compare the proposed S-NMTF approach against two related
clustering methods that combine NMF and Laplacian regulariza-
tion: graph regularized NMF (GNMF) [2] method and dual regu-
larized co-clustering (DRCC) [7] method. These two methods are

Table 1: Clustering accuracy in co-clustering tasks.

Methods Newsgroup4 WebKB4 WebACE

GNMF 0.889 0.731 0.513
DRCC 0.931 0.738 0.568
PMF 0.923 0.727 0.566
CKMeans 0.643 0.594 0.477
S-NMTF 0.937 0.783 0.613

Table 2: Normalized mutual information in co-clustering tasks.

Methods Newsgroup4 WebKB4 WebACE

GNMF 0.716 0.462 0.618
DRCC 0.782 0.491 0.629
PMF 0.758 0.488 0.602
CKMeans 0.612 0.375 0.491
S-NMTF 0.795 0.554 0.643

largely same, except that the former uses two-factor factorization
and imposes Laplacian regularization on one side factor, while the
latter uses the three-factor factorization and imposes Laplacian reg-
ularizations on the both side factors. Following [7], two graphs are
built on both feature side and data point side for DRCC method,
and its parameters are set as λ = µ which is same as in [7].

In addition, we also compare our approach against the following
two methods: penalized matrix factorization (PMF) [12] method
and constrained K-means (CKmeans) [11] method.

To evaluate the clustering results, we adopt two standard mea-
sures widely used for clustering [2]: clustering accuracy and nor-
malized mutual information (NMI).

4.1.2 Experimental Results

The clustering performance measured by clustering accuracy and
normalized mutual information of the compared methods on the
three data sets are listed in Table 1 and Table 2. The results show
that the proposed S-NMTF approach consistently outperforms the
other methods, sometimes very significantly, which demonstrate
the effectiveness of the proposed S-NMTF approach in co-clustering
of two-type relational data.

4.2 Simultaneous Clustering of Multi-Type Re-
lational Web Data

Finally we evaluate the proposed S-NMTF approach for simul-
taneous clustering on multi-type relational data by using both inter-
type relationships and intra-type information, which is the ultimate
goal of this work.

4.2.1 Data Set

For the data set and experimental settings in this subsection, we
largely follow those in [12] (We acknowledge the author of [12] for
sharing the data).

We use a data set sampled from the Bulletin Board Systems
(BBS) in [8]. In a BBS system, the users first register IDs. Us-
ing their IDs, the users can read others’ published messages and
leave their own messages. The whole system consists of many dis-
cussion fields, each of which contains many boards with similar
themes. The boards are named to reflect the contents of the arti-
cles in them [8]. Once an ID posts a new article (initial article) on
one board, the others can show their opinions by replying the ini-
tial article using reply articles. The initial article and reply articles

283



Table 3: A subset of data sampled from a BBS data set [8].

Field name Board name

Computer Science C++ Builder
Computer Science Delphi
Computer Science Database

Sports Basketball
Sports Volleyball
Sports Badminton

Table 4: The F1 measure of the four compared algorithms.

MLSA SRC PMF S-NMTF

d = 3 0.712 0.731 0.795 0.832

d = 5 0.756 0.634 0.815 0.839

d = 7 0.711 0.621 0.780 0.811

d = 9 0.699 0.482 0.734 0.759

constitute a topic. Each board contains many topics. Each topic
connects with several IDs through articles.

We use a subset of the BBS data in [8], in which several boards
are sampled from several discussion fields. In each board, 80 topics
are sampled randomly. The names of the fields and boards that we
use are listed in Table 3. The user IDs related to these topics and
boards are found out. Then the tensor is constructed by the co-
occurrence of these three data types.

4.2.2 Experimental Settings

In the experiments, there exist three data types: topics (X1), user
IDs (X2) and boards (X3). The topic-user matrix (R12) is con-
structed with the number of articles each user posted in each topics
with TF-IDF normalization. The topic-board matrix (R13) is con-
structed such that if a topic belongs to a board, then the correspond-
ing entry of R13 is 1. R23 is constructed such that if the user had
posted any articles on that board, then the corresponding element
of R23 is set to 1. Finally the elements of R23 are also normalized
using TF-IDF scheme.

We only use the pairwise affinity matrices W1 and W2 for X1

and X2, which are constructed using R12 in a same way as in Sec-
tion 4.1. We set W3 = I to simulate the case in real applications
when the intra-type information for X3 is not available.

Besides our approach, the results of applying the Spectral Rela-
tional Clustering (SRC) [10] method and Multiple Latent Semantic
Analysis (MLSA) [15] method, and PMF method are also included
for comparison. All these three methods are for simultaneous clus-
tering on multi-type relational data.

The evaluation metric is the F1 score computed using the clus-
tering results on topics, the ground truth of which is set to be the
classes corresponding to the field names they belong to.

4.2.3 Experimental Results

The experimental results are shown in Table 4, in which the value
of d represent different number of clusters. From the table we can
clearly see the superiority of the proposed S-NMTF approach. Be-
sides, we also see that PMF method is always better than the other
two methods. By examining the implementation details, we can
see that these results are consistent with the information used by
these methods: MLSA and SRC methods only use the inter-type
relationships, while our S-NMTF approach additionally utilizes the
intra-type information.

5. CONCLUSIONS
In this paper, we presented a general Symmetric Nonnegative

Matrix Tri-Factorization (S-NMTF) framework to simultaneously
cluster multi-type relational data. Our approach clusters differ-
ent types of data at the same time using inter-type relationships
by transforming the original problem into a symmetric NMF prob-
lem, into which we can optionally incorporate the intra-type infor-
mation. In order to deal with the symmetric usage of the factor
matrix in S-NMTF, we presented a new generic matrix inequality
to derive the solution algorithm, which involves a fourth-order ma-
trix polynomial, in a principled way. Extensive empirical studies
in evaluating various aspects of our approach have demonstrated
encouraging results, which validate the usefulness of the proposed
S-NMTF approach.
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