
Unsupervised and Semi-Supervised Learning via ℓ1-Norm Graph

Feiping Nie, Hua Wang, Heng Huang, Chris Ding

Department of Computer Science and Engineering

University of Texas, Arlington, TX 76019, USA

{feipingnie,huawangcs}@gmail.com, {heng,chqding}@uta.edu

Abstract

In this paper, we propose a novel ℓ1-norm graph model to

perform unsupervised and semi-supervised learning meth-

ods. Instead of minimizing the ℓ2-norm of spectral embed-

ding as traditional graph based learning methods, our new

graph learning model minimizes the ℓ1-norm of spectral

embedding with well motivation. The sparsity produced by

the ℓ1-norm minimization results in the solutions with much

clearer cluster structures, which are suitable for both im-

age clustering and classification tasks. We introduce a new

efficient iterative algorithm to solve the ℓ1-norm of spec-

tral embedding minimization problem, and prove the con-

vergence of the algorithm. More specifically, our algorithm

adaptively re-weight the original weights of graph to dis-

cover clearer cluster structure. Experimental results on

both toy data and real image data sets show the effective-

ness and advantages of our proposed method.

1. Introduction

Graph-based learning provides an efficient approach for

modeling data in clustering or classification problems. An

important advantage of working with a graph structure is its

ability to naturally incorporate diverse types of information

and measurements, such as the relationship between unla-

beled data (clustering) or both labeled and unlabeled data

(semi-supervised classifications).

As an important task in machine learning and computer

vision, the clustering analysis has been well studied and

solved from different perspectives such as K-means cluster-

ing, spectral clustering, support vector clustering, and max-

imum margin clustering. Among them, the use of manifold

information in spectral clustering has shown the state-of-

the-art clustering performance. Laplacian embedding pro-

vides an approximation solution of the ratio cut clustering

[1], and the generalized eigenvectors of the Laplace matrix

provides an approximation solution of the normalized cut

clustering [7]. The main drawback of graph-based cluster-

ing methods is their solutions can not be directly used as

clustering results because the solutions don’t have the clear

cluster structure, hence further clustering algorithm such as

K-means need to be applied to obtain the final clustering

result. However, the K-means algorithm converges to local

optimum and causes non-unique clustering results.

On the other hand, the graph-based learning models

have been used to develop the main algorithms for semi-

supervised classifications. Given a data set with pair-

wise similarities (W ), the semi-supervised learning can be

viewed as the label propagation from labeled data to unla-

beled data. Using the diffusion kernel, the semi-supervised

learning is like a diffusive process of the labeled infor-

mation. The harmonic function approach [9] emphasizes

the harmonic nature of the diffusive function and consis-

tency labeling approach [8] considers the spread of label

information in an iterative way. All existing graph-based

semi-supervised learning methods used the quadratic form

of graph embedding, thus the results are sensitive to noise

and outliers. A more robust graph-based learning model is

desired in real world applications to handle the noisy data.

In this paper, to solve the above problems, instead of us-

ing the quadratic form of graph embedding, we propose a

novel ℓ1-norm graph method to learn manifold information

via the ℓ1-norm of spectral embedding. The new ℓ1-norm

based objective are applied to both unsupervised clustering

and semi-supervised classification problems. The efficient

optimization algorithms are introduced to solve both sparse

learning objectives. In our methods, the ℓ1-norm of spectral

embedding formulation leads to sparse and direct clustering

results. Both unsupervised and semi-supervised computer

vision tasks performing on synthetic and real-world image

benchmark data sets are used demonstrate the superior per-

formance of our methods.

2. Unsupervised Clustering by ℓ1-Norm Graph

2.1. Problem Formulation and Motivation

Suppose we have n data points {x1, · · · , xn} ∈ R
d×1,

and construct a graph using the data with weight ma-

trix W ∈ R
n×n. Let the cluster indicator matrix Q =
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[q1, q2, · · · , qc] ∈ R
n×c, where qk ∈ R

n×1 is the k-th

column of Q. Without loss of generality, suppose the data

points within each cluster are adjacent.

The multi-way graph Ratio Cut clustering is to min-

imize Tr(QTLQ) under the constraint that qk =

(0, · · · , 0,

nk
︷ ︸︸ ︷

1√
nk

, · · · , 1√
nk

, 0, · · · , 0)T , while the multi-

way graph Normalized Cut clustering is to minimize the

same term Tr(QTLQ) under a different constraint that

qk = (0, · · · , 0,

nk
︷ ︸︸ ︷

1
√

qTk Dqk

, · · · , 1
√

qTk Dqk

, 0, · · · , 0)T .

It is known that minimizing Tr(QTLQ) under such con-

straints of Q is NP hard [1, 7]. Traditional method solve the

following relaxed problem for the Ratio Cut clustering:

min
QTQ=I

Tr(QTLQ), (1)

and solve the following relaxed problem for the Normalized

Cut clustering:

min
QTDQ=I

Tr(QTLQ). (2)

The solution Q of the relaxed problems can not be directly

used as clustering results, further clustering algorithm such

as K-means has to be used on Q to obtain the final cluster-

ing results.

2.2. A New ℓ1­Norm Graph Model

The Normalized Cut clustering has been shown the state-

of-the-art performance, thus we focus on the Normalized

Cut clustering in this paper. The problem (2) in Normalized

Cut clustering can be rewritten as:

min
QTDQ=I

n∑

i,j=1

Wij

∥
∥qi − qj

∥
∥
2

2
. (3)

An ideal solution Q for clustering is that qi = qj if

xi and xj belong to the same cluster, which means many

rows of Q are equal and thus has strong clustering structure.

Therefore, it is desired that
∥
∥qi − qj

∥
∥
2
= 0 for many pairs

of (i, j). To this end, we propose to solve the following

ℓ1-norm spectral embedding problem for clustering:

min
QTDQ=I

n∑

i,j=1

Wij ||qi − qj ||2. (4)

Denote a n2-dimensional vector by p, where the ((i−1)∗
n + j)-th element of p is Wij ||qi − qj ||2, we can re-write

the above problem as:

min
QTDQ=I

‖p‖
1
, (5)

where ||p||1 is the ℓ1-norm of p. It is widely recognized

in the compressed sensing community [3] that minimizing

an ℓ1-norm of p usually produces the sparse solutions, i.e.,

many elements of p are zeros (for matrix data, either ℓ1-

norm or R1-norm [2] can be applied for different purposes).

Thus, the proposed problem (4) will provide a more ideal

solution of Q as clustering results.

Although the motivation of Eq. (4) is clear and consistent

with the ideal clustering intuition, it is a non-smooth objec-

tive and difficult to be solved efficiently. Thus, in the next

subsection, we will introduce an iterative algorithm to solve

the problem (4). We will show that the original weight ma-

trix W would be adaptively re-weighted to capture clearer

cluster structures after each iteration.

2.3. Proposed Algorithm

The Lagrangian function of the problem (4) is

L(Q) =

n∑

i,j=1

Wij ||qi − qj ||2 − Tr(Λ(QTDQ− I)). (6)

Denote a Laplacian matrix L̃ = D̃ − W̃ , where W̃ is a

re-weighted weight matrix defined by

W̃ij =
Wij

2||qi − qj ||2
, (7)

D̃ is a diagonal matrix with the i-th diagonal element as
∑

j W̃ij . Taking the derivative of L(Q) w.r.t Q, and setting

the derivative to zero, we have:

∂L(Q)

∂Q
= L̃Q−DQΛ = 0, (8)

which indicates that the solution Q is the eigenvectors of

D−1L̃. Note that D−1L̃ is dependent on Q, we propose an

iterative algorithm to obtain the solution Q such that Eq. (8)

is satisfied. The algorithm is guaranteed to converge to a

local optimum, which will be proved in the next subsection.

The algorithm is described in Algorithm 1. In each iter-

ation, L̃ is calculated with the current solution Q, then the

solution Q is updated according to the current calculated L̃.

The iteration procedure is repeated until converges. From

the algorithm we can see, the original weight matrix W is

adaptively re-weighted to minimize the objective in Eq. (4)

during the iteration. As can be seen in the experiments,

the converged re-weighted matrix W̃ will demonstrate more

clear cluster structure than the original weight matrix W .

2.4. Convergence Analysis

To prove the convergence of the Algorithm 1, we need

the following lemma [5]:

Lemma 1 For any nonzero vectors q, qt ∈ R
c, the follow-

ing inequality holds:

||q||2 − ||q||22/2||qt||2 ≤ ||qt||2 − ||qt||22/2||qt||2. (9)
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Input: The original weight matrix W ∈ R
n×n. D is a

diagonal matrix with the i-th diagonal element

as
∑

j Wij .

t = 1. Initialize Qt ∈ R
n×c such that QT

t DQt = I ;

while not converge do

1. Calculate L̃t = D̃t − W̃t, where

(W̃t)ij =
Wij

2‖qit−q
j
t‖2

, D̃t is a diagonal matrix with

the i-th diagonal element as
∑

j(W̃t)ij ;

2. Calculate Qt+1 = [(q1t )
T , (q2t )

T , · · · , (qnt )T ]T ,

where the columns of Qt+1 are the first c
eigenvectors of D−1L̃t corresponding to the first c
smallest eigenvalues ;

3. t = t+ 1 ;

end

Output: W̃t ∈ R
n×n, Qt ∈ R

n×c.

Algorithm 1: The algorithm to solve the problem (4).

As a result, we have the following theorem:

Theorem 1 The Algorithm 1 will monotonically decrease

the objective of the problem (4) in each iteration, and con-

verge to a local optimum of the problem.

Proof: According to the step 2 in the Algorithm 1, we know

that

Qt+1 = arg min
QTDQ=I

n∑

i,j=1

(W̃t)ij
∥
∥qi − qj

∥
∥
2

2
. (10)

Note that (W̃t)ij =
Wij

2‖qit−q
j
t‖2

, so we have

n∑

i,j=1

Wij

∥
∥
∥qit+1 − qjt+1

∥
∥
∥

2

2

2
∥
∥
∥qit − qjt

∥
∥
∥
2

≤
n∑

i,j=1

Wij

∥
∥
∥qit − qjt

∥
∥
∥

2

2

2
∥
∥
∥qit − qjt

∥
∥
∥
2

. (11)

According to Lemma 1, we have

n∑

i,j=1

Wij

(∥
∥
∥qit+1 − qjt+1

∥
∥
∥
2

− ‖qit+1−q
j

t+1‖2

2

2‖qit−q
j
t‖2

)

≤
n∑

i,j=1

Wij

(∥
∥
∥qit − qjt

∥
∥
∥
2

− ‖qit−q
j
t‖2

2

2‖qit−q
j
t‖2

) (12)

Summing Eq. (11) and Eq. (12) in the two sides, we arrive

at

n∑

i,j=1

Wij

∥
∥
∥qit+1 − qjt+1

∥
∥
∥
2

≤
n∑

i,j=1

Wij

∥
∥
∥qit − qjt

∥
∥
∥
2

. (13)

Thus the Algorithm 1 will monotonically decrease the ob-

jective of the problem (4) in each iteration t until the al-

gorithm converges. In the convergence, the equality in

Eq. (13) holds, thus Qt and L̃t will satisfy Eq. (8), the KKT

condition of problem (4). Therefore, the Algorithm 1 will

converge to a local optimum of the problem (4). �

3. Semi-Supervised Classification Using ℓ1-

Norm Graph

3.1. Problem Formulation and Motivation

Denote Y = [(y1)T , (y2)T , · · · , (yn)T ] ∈ R
n×c as the

initial label matrix. If xi is the unlabeled data, then yi = 0.

If xi is labeled as class k, then the k-th element of yi is 1

and the other elements of yi is 0.

Traditional graph based semi-supervised learning usu-

ally solve the following problem [9, 8]:

min
Q

Tr(QTLQ) + Tr(Q − Y )TU(Q− Y ), (14)

where L is the Laplacian matrix defined as before, U is a

diagonal matrix with the i-th diagonal element to control

the impact of the initial label yi of xi, Q ∈ R
n×c is the

label matrix to be solved.

Similarly, problem (14) can be rewritten as:

min
Q

n∑

i,j=1

Wij ||qi − qj ||22 +Tr(Q−Y )TU(Q− Y ). (15)

To obtain a more ideal solution Q, we propose to solve the

following problem for semi-supervised classification:

min
Q

n∑

i,j=1

Wij ||qi − qj ||2 + Tr(Q− Y )TU(Q− Y ) (16)

3.2. Proposed Algorithm

Taking the derivative of Eq. (16) w.r.t Q, and setting the

derivative to zero, we have:

L̃Q+ U(Q− Y ) = 0 ⇒ Q = (L̃ + U)−1UY. (17)

Note that L̃ is dependent onQ, we propose an iterative algo-

rithm to obtain the solution Q such that Eq. (17) is satisfied.

The algorithm is also guaranteed to converge to a local op-

timum, which will be proved in the next subsection.

The algorithm is described in Algorithm 2. In each it-

eration, L̃ is calculated with the current solution Q, then

the solution Q is updated according to the current calcu-

lated L̃. The iteration procedure is repeated until converges.

From the algorithm we can see, the original weight matrix

W is adaptively re-weighted to minimize the objective in

Eq. (16) during the iteration. Similarly, in the convergence,

the re-weighted matrix W̃ will demonstrate more clear clus-

ter structure than the original weight matrix W . It is worth

noting that the step 2 in Algorithm 2 can be efficiently solve

by a sparse linear equation system instead of computing the

inverse.

3.3. Convergence Analysis

The following theorem guarantees that the Algorithm 2

will converge to the global optimum of the problem (16):
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Input: The original weight matrix W ∈ R
n×n. D is a

diagonal matrix with the i-th diagonal element

as
∑

j Wij . The initial label matrix Y ∈ R
n×c.

t = 1. Initialize Qt ∈ R
n×c such that QT

t DQt = I ;

while not converge do

1. Calculate L̃t = D̃t − W̃t, where

(W̃t)ij =
Wij

2||qit−q
j
t ||2

, D̃t is a diagonal matrix with

the i-th diagonal element as
∑

j(W̃t)ij ;

2. Calculate Qt+1 = (L̃t + U)−1UY ;

3. t = t+ 1 ;

end

Output: W̃t ∈ R
n×n, Qt ∈ R

n×c.

Algorithm 2: The algorithm to solve the problem (16).

Theorem 2 The Algorithm 2 will monotonically decrease

the objective of the problem (16) in each iteration, and con-

verge to the global optimum of the problem.

Proof: Denote f(Q) = Tr(Q−Y )TU(Q−Y ). According

to the step 2 in the algorithm 2, we know that

Qt+1 = argmin
Q

n∑

i,j=1

(W̃t)ij ||qi − qj ||22 + f(Q). (18)

Note that (W̃t)ij =
Wij

2||qit−q
j
t ||2

, so we have

n∑

i,j=1

Wij ||q
i
t+1−q

j

t+1
||22

2||qit−q
j
t ||2

+ f(Qt+1)

≤
n∑

i,j=1

Wij ||q
i
t−q

j
t ||

2
2

2||qit−q
j
t ||2

+ f(Qt)
(19)

Summing Eq. (19) and Eq. (12) on both sides, we have

n∑

i,j=1

Wij ||qit+1 − qjt+1||2 + f(Qt+1)

≤
n∑

i,j=1

Wij ||qit − qjt ||2 + f(Qt).
(20)

Thus the Algorithm 2 will monotonically decrease the ob-

jective of the problem (16) in each iteration t. In the con-

vergence, Qt and L̃t will satisfy the Eq. (17). As the prob-

lem (16) is a convex problem, satisfying the Eq. (17) indi-

cates that Qt is the global optimum solution to the prob-

lem (16). Therefore, the Algorithm 2 will converge to the

global optimum of the problem (16). �

4. Experiments

We present experiments on synthetic data and real data

to validate the effectiveness of the proposed method, and

compare the performance with the traditional spectral clus-

tering (i.e., Normalized Cut) method [4] and the commonly

used label propagation method [9].

We use Gaussian function to construct the origi-

nal weight matrix W . The weight Wij is defined as

exp(− ||xi−xj ||
2

σ2 ), xi and xj are neighbors; 0, otherwise. The

number of neighbors and the parameter σ should be prede-

fined by user. In the experiments, we set the number of

neighbors to be 4 in all data sets, and set the σ according

the distances of neighbors as suggested in [6].

4.1. Synthetic Data

In this experiment, two synthetic data are used for eval-

uation. The first synthetic data include data points dis-

tributed on two half-moon shapes with noise, and the sec-

ond synthetic data include data points distributed on three

ring shapes with noise.

Figs. 1 and 2 show the re-weighted weights between data

points during the iteration by Algorithm 1. In the figures,

we use the line width to represent the weight between two

data points, bigger width indicates larger weight. Zoom

in the figures will give better visualization. The results

show that the algorithm converges fast and usually within

10 iterations. During the iterations, the weights between

data points with different clusters are gradually suppressed,

while the weights between data points within the same clus-

ter are gradually strengthened. Therefore, the cluster struc-

ture is more and more clear during the iterations, which val-

idates the effectiveness of the proposed method.

Figs. 3 and 4 show the embedded results by Algorithm 1

(denoted by L1 un) and by traditional spectral clustering

(denoted by SC). From the results we can see, the embed-

ded results by Algorithm 1 demonstrate much more clear

cluster structure than that by traditional spectral cluster-

ing method. Therefore, our method can perform clustering

task directly by using the embedded result, while traditional

spectral clustering need additional clustering algorithm on

the embedded result to obtain the final clustering result.

We also perform the experiment of the semi-supervised

method by Algorithm 2 on two synthetic data, the results are

similar to the unsupervised case, thus are not reported here.

The label matrix Q obtained by Algorithm 2 is very close

to the ideal label matrix, i.e., one and only one element of

each row of Q is 1 and the other elements are all 0.

4.2. Evaluations Using Image Benchmark Data Sets

In this experiment, we present experimental results on

five real image data sets, including four face data Jaffe,

Yale, Umist and MSRA, and one object data Coil20. Ta-

ble 1 give a brief description of the five image data sets.

We compare the performance of Algorithm 1 (denoted

by L1 un) with the traditional spectral clustering (i.e., Nor-

malized Cut) method (denoted by SC) and compare the per-

formance of Algorithm 2 (denoted by L1 semi) with tra-

ditional label propagation method [9] (denoted by LP). The
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(f) Re-weighted weights, t = 12

Figure 1. On the two-half-moon synthetic data, the re-weighted weights between data points during the iteration by Algorithm 1, bigger

width indicates larger weight. Zoom in the figures will give better visualization.
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(f) Re-weighted weights, t = 12

Figure 2. On the three-ring synthetic data, the re-weighted weights between data points during the iteration by Algorithm 1, bigger width

indicates larger weight. Zoom in the figures will give better visualization.

Normalized Cut and accuracy are reported in the experiment

to measure the performance of compared methods.

In the unsupervised setting, additional clustering algo-

rithm K-means is used to obtain the final clustering results

for SC. Since K-means depends on the initialization, we

independently repeat K-means for 50 times with random

initialization, and then report the results corresponding to

the best objective values. In the semi-supervised setting, in

each image data set, 10 images in each class are randomly

selected as the labeled data, and the rest images are as the

unlabeled data. The experiment run 20 times independently

and the averaged results are recorded.

The results are shown in Tables 2 and 3. From the re-

sults we can see that the proposed methods outperform tra-

ditional methods in many real applications. Meanwhile, in

all experiments, the Algorithms 1 and 2 converge within 10

iterations.

5. Conclusions

We propose a novel unsupervised and semi-supervised

learning with ℓ1-norm graph. Different from minimizing

an ℓ2-norm in traditional graph based learning methods, we

propose to minimize the ℓ1-norm. Minimizing the ℓ1-norm

results in a sparse solution which demonstrates more clear
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(d) Clustering result by L1 un

Figure 3. The embedded results and the clustering results by SC

and L1 un, respectively.
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Figure 4. The embedded results and the clustering results by SC

and L1 un, respectively.

Table 1. Dataset Descriptions

Data set Size Dimensions Classes

Jaffe 213 1024 10

Yale 165 3456 15

Umist 575 644 20

MSRA 1799 1024 12

Coil20 1440 1024 20

cluster structure, and thus is more suitable for clustering or

classification. Efficient iterative algorithms are proposed to

solve the ℓ1-norm minimization problem both in the unsu-

pervised and in the semi-supervised cases, and the conver-

Table 2. The Normalized Cut and the accuracy results obtained by

SC and L1 un.

Data set Normalized Cut Accuracy

SC L1 un SC L1 un

Jaffe 0.02 0.00 82.16% 84.04%

Yale 0.54 0.35 61.21% 64.85%

Umist 0.66 0.02 64.35% 72.35%

MSRA 0.17 0.00 47.08% 48.75%

Coil20 0.45 0.01 85.28% 87.29%

Table 3. The Normalized Cut and the accuracy results obtained by

LP and L1 semi, respectively.

Data set Normalized Cut Accuracy

LP L1 semi LP L1 semi

Jaffe 0.00 0.00 99.38% 99.51%

Yale 2.87 2.85 70.13% 71.33%

Umist 0.15 0.13 98.29% 98.65%

MSRA 0.15 0.09 87.16% 87.83%

Coil20 0.13 0.08 98.29% 99.21%

gence is guaranteed with theoretical analysis. In essence,

the iterative algorithms adaptively re-weight the original

weights of graph to discover clearer cluster structure. Ex-

perimental results on synthetic data and real data validate

that the proposed method is effective and attractive.
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