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Abstract

Because manual image annotation is both expensive and
labor intensive, in practice we often do not have sufficient
labeled images to train an effective classifier for the new
image classification tasks. Although multiple labeled im-
age data sets are publicly available for a number of com-
puter vision tasks, a simple mixture of them cannot achieve
good performance due to the heterogeneous properties and
structures between different data sets. In this paper, we
propose a novel nonnegative matrix tri-factorization based
transfer learning framework, called as Dyadic Knowledge
Transfer (DKT) approach, to transfer cross-domain image
knowledge for the new computer vision tasks, such as clas-
sifications. An efficient iterative algorithm to solve the pro-
posed optimization problem is introduced. We perform the
proposed approach on two benchmark image data sets to
simulate the real world cross-domain image classification
tasks. Promising experimental results demonstrate the ef-
fectiveness of the proposed approach.

1. Introduction

Automatically organizing and indexing multimedia con-
tent becomes increasingly important as the online images
and videos continue to be a vital resource in everyday life.
Consequently, devising effective visual category models has
attracted considerable attention in computer vision area in
recent years. When sufficient labeled training images are
available, traditional classification methods usually work
well. However, because image labeling requires expensive
and time-consuming human labors, it is not likely that we
always have enough training data to achieve satisfactory
performance for new computer vision tasks. Therefore, it is
desirable in image classification to leverage labeled images
from previous learning tasks, as well as abundant unlabeled
images from online resources.

Semi-supervised learning methods are able to find struc-
tures in available unlabeled data and use the structures to
improve the performance of a supervised task, e.g., [12,14].

However, these methods assume that both unlabeled data
and labeled data are drawn from a same distribution, and
do not generally exploit knowledge from different distri-
butions, such as the data learned from previous supervised
tasks. A simple mixture of data sets from different tasks
cannot help the new computer vision task. As a result, trans-
fer learning methods that discover useful knowledge from
previous tasks to make a future related learning task possi-
bly only using a small number of samples have been found
useful in many real world applications, such as video con-
cept detection [4, 13], sentiment classification [6], natural
language learning processing [1], and many others [7, 8].

Considering the data of a computer vision task forming a
domain, transfer learning learns the classifiers via a limited
number of available labeled data from the target domain by
taking advantage of a large amount of (labeled) data from
other domains, referred to as source domains (also called as
auxiliary domains in some research papers). The main prob-
lems to utilize transfer learning in image classifications are
what knowledge should be transferred? and how to transfer
them cross-domain?

To address these problems, in this paper, we propose a
novel Nonnegative Matrix Tri-factorization (NMTF) based
transfer learning framework to extract and transfer knowl-
edge by two ways from the source domain to help the clas-
sification in the target domain, i.e., both unsupervised and
supervised ways. As illustrated in Figure 1, we use the un-
supervised way to transfer the native structural information
of the source data to the target data by sharing feature clus-
tering structures. For example in image data, green color
(e.g., tree) and blue color (e.g., sky) could appear together
to characterize outdoor scenes, while the car class could be
abstracted as a combination of several round shapes (fea-
tures) together with two trapezoid shapes (features). Mean-
while, we employ the supervised way to transfer the associ-
ation between feature clusters and semantic labels. Because
the proposed approach uses two different paths to transfer
knowledge, we call it as Dyadic Knowledge Transfer (DKT)
approach. A new unified objective is proposed to combine
both unsupervised and supervised cross-domain knowledge
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Figure 1. Dyadic Knowledge Transfer— bridging domains in two
paths: (left) sharing common feature clustering structures encoded
in 𝐹 ; and (right) sharing the association between feature clusters
and semantic image classes by 𝑆.

transferring. An efficient iterative algorithm to solve the
proposed optimization objective is derived. Promising re-
sults in extensive experiments demonstrate the effectiveness
of our method.

2. NMTF based dyadic knowledge transfer

In this section, we first briefly review NMTF, based on
which we formalize the problem of cross-domain image
classification. Then we will introduce the objective of the
proposed DKT approach, followed by the derivation of a
new efficient algorithm to solve the objective.

Review of NMTF. NMTF [2, 3] aims at approximating the
nonnegative data matrix 𝑋 ∈ ℝ

𝑚×𝑛
+ of an image data set

by three nonnegative factor matrices:

min
𝐹≥0,𝑆≥0,𝐺≥0

∥𝑋 − 𝐹𝑆𝐺𝑇 ∥2, (1)

where ∥⋅∥ denotes the Frobenius norm of a matrix, 𝐹 ∈
ℝ

𝑚×𝑘1
+ and 𝐺 ∈ ℝ

𝑛×𝑘2
+ are two side factor matrices and

𝑆 ∈ ℝ
𝑘1×𝑘2
+ absorbs the different scales of the 𝑋 , 𝐹 and

𝐺. The true power of NMTF in statistical learning lies in its
equivalence to simultaneous 𝑘-means clustering of both fea-
tures and data points, called as co-clustering [2, 3]. Specif-
ically, each row of 𝐹 is the soft clustering indication for a
feature (e.g., a codeword), and each row of 𝐺 is the soft
clustering indication for a data point (e.g., image). 𝑆 hence
describes the associations between the feature clusters and
data clusters. In other words, 𝐹 contains the native struc-
tural information of 𝑋 which is unsupervised; and 𝑆 con-
tains supervised information of 𝑋 due to the human annota-
tions on the source data points. In the proposed model, we
transfer knowledge across domains using both 𝐹 and 𝑆.

Due to its mathematical elegance and promising prac-
tical results in statistical learning, NMTF has been further
developed to deal with transfer learning problems [6, 15].
However, these methods are only able to transfer one type
of source knowledge, either unsupervised [6] or supervised
[15]. In order to explore the full potential of the source data,

we design our DKT approach to transfer the both types of
source knowledge to the target data.

Problem Formalization. For a cross-domain image clas-
sification task, we have two image data sets, one in source
domain 𝑋𝑠 =

[
x1
𝑠, . . . ,x

𝑛𝑠
𝑠

] ∈ ℝ
𝑚×𝑛𝑠 and the other in

target domain 𝑋𝑡 =
[
x1
𝑡 , . . . ,x

𝑛𝑡
𝑡

] ∈ ℝ
𝑚×𝑛𝑡 . We assume

that the both data sets use a same codebook with 𝑚 code-
words: if the codebooks differ, we may simply pad zero in
the feature vectors and re-express them under the same uni-
fied codebook such that the indices of the feature vectors
from both data sets correspond to the same codeword.

Typically a number of images in the source domain are
manually labeled to capture the domain specific annota-
tions. The partial annotation information can be described
by an indication matrix 𝑌𝑠 ∈ ℝ

𝑛𝑠×𝑘2 such that 𝑌𝑠(𝑖𝑘) = 1

if x𝑖
𝑠 belongs to the 𝑘-th class, and 𝑌𝑠(𝑖𝑘) = 0 other-

wise. Sometimes, though not always, we also have a limited
amount of image annotations in the target domain. We simi-
larly describe them using 𝑌𝑡 ∈ ℝ

𝑛𝑡×𝑘2 such that 𝑌𝑡(𝑖𝑘) = 1

if x𝑖
𝑡 belongs to the 𝑘-th class, and 𝑌𝑡(𝑖𝑘) = 0 otherwise.

Our goal is to predict labels for the unannotated images in
the target domain.

We assume that the two data sets share a same set of
classes. If not, we may pad the zero columns to 𝑌𝑠 or 𝑌𝑡,
or both, such that the column indices of the both matrices
correspond to the same classes. In addition, we encode the
difference between the two sets of classes by two matrices,
one for the source domain and the other for the target do-
main: 𝑄𝑠 ∈ ℝ

𝑘2×𝑘2 is a diagonal matrix with 𝑄𝑠(𝑖𝑖) = 1 if
the 𝑖-th class comes from the source data set, and 𝑄𝑠(𝑖𝑖) = 0

otherwise; and 𝑄𝑡 ∈ ℝ
𝑘2×𝑘2 is a diagonal matrix with

𝑄𝑠(𝑖𝑖) = 1 if the 𝑖-th class comes from the target data set,
and 𝑄𝑡(𝑖𝑖) = 0 otherwise. Note that, we need the both ma-
trices because one class could appear in the both data sets.

Throughout this paper, we denote ℝ as real numbers and
ℝ

+ as positive real numbers. The entry at the 𝑖-th row and
𝑗-th column of a matrix 𝑀 is denoted as 𝑀(𝑖𝑗). Some fre-
quently used notations are summarized in Table 1.

2.1. Objective of the DKT approach

Given the image data 𝑋𝑠 in the source domain and the
corresponding annotations 𝑌𝑠, we formulate the following
optimization problem [5, 6, 15]:

min
𝐹𝑠≥0,𝑆𝑠≥0,𝐺𝑠≥0

∥𝑋𝑠 − 𝐹𝑠𝑆𝑠𝐺
𝑇
𝑠 ∥2 (2)

+ 𝛼 tr
[
𝑄𝑠 (𝐺𝑠 − 𝑌𝑠)

𝑇
𝐶𝑠 (𝐺𝑠 − 𝑌𝑠)

]
,

where tr (⋅) denotes the trace of a matrix. Here, 𝛼 > 0 is
a parameter that determines to which extent we enforce the
prior labeling knowledge in the source domain 𝐺𝑠 ≈ 𝑌𝑠,
𝐶𝑠 ∈ ℝ

𝑛𝑠×𝑛𝑠 is a diagonal matrix whose entry 𝐶𝑠(𝑖𝑖) = 1
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Table 1. Some frequently used notations.

𝑋𝑠 data matrix of the image data set in the source domain
𝑋𝑡 data matrix of the image data set in the target domain
𝑛𝑠 number of images of the source data set
𝑛𝑡 number of images of the target data set
𝐹 codeword cluster indicator matrix
𝑆 the matrix associating codeword clusters and image classes
𝐺𝑠 image class indicator matrix of the source data set
𝐺𝑡 image class indicator matrix of the target data set
𝑌𝑠 label matrix of the source data set
𝑌𝑡 label matrix of the target data set
𝑄𝑠 class sharing indication matrix of the source data set
𝑄𝑡 class sharing indication matrix of the target data set
𝐶𝑠 image annotation indication matrix of the source data set
𝐶𝑡 image annotation indication matrix of the target data set

if image x𝑖
𝑠 is annotated by the 𝑖-th row of 𝑌𝑠, and 𝐶𝑠(𝑖𝑖) =

0 otherwise. Note that, if 𝐶 = 𝐼 , all the images in the
source domain are fully annotated and specified by 𝑌𝑠. 𝑄𝑠

is used to enforce the prior knowledge only for the classes
that belong to the source data set.

Solving Eq. (2), we obtain 𝐹 ∗
𝑠 and 𝑆∗

𝑠 , which contain
the unsupervised and supervised information of source data,
respectively. We hence transfer the knowledge from the
source domain to the target domain by both of them.

Transfer unsupervised knowledge via sharing feature
clusters by 𝐹 ∗

𝑠 . First, we attempt to transfer the unsuper-
vised knowledge in the source domain, which is the native
structural information of the source data set. We achieve
this by solving the following optimization problem in the
target domain:

min
𝑆𝑡≥0,𝐺𝑡≥0

∥𝑋𝑡 − 𝐹 ∗
𝑠 𝑆𝑡𝐺

𝑇
𝑡 ∥2

+ 𝛼 tr
[
𝑄𝑡 (𝐺𝑡 − 𝑌𝑡)

𝑇
𝐶𝑡 (𝐺𝑡 − 𝑌𝑡)

]
.

(3)

The second term in Eq. (3) acts same as that in Eq. (2),
which enforces label information in the target domain if it
is available. Here, 𝐶𝑡 ∈ ℝ

𝑛𝑡×𝑛𝑡 is a diagonal matrix whose
entry 𝐶𝑡(𝑖𝑖) = 1 if image x𝑖

𝑡 is annotated by the 𝑖-th row of
𝑌𝑡, and 𝐶𝑡(𝑖𝑖) = 0 otherwise. When image labels in the tar-
get data set are not available, 𝐶𝑡 = 0𝑛𝑡×𝑛𝑡 is a zero matrix.
The key part the first term, where we force the feature clus-
tering indication of the target data set to be same as that of
the source data set. As a result, the unsupervised structural
information of the source data 𝑋𝑠 is transferred to the label
assignments 𝐺𝑡 of the target data 𝑋𝑡 via the feature cluster
indications 𝐹 ∗

𝑠 , which is schematically shown in Figure 2(a)
(the image features can be color moment, SIFT, etc).

Transfer supervised knowledge via sharing the associa-
tion between the feature clusters and image classes by
𝑆∗. Compared to feature clusters, the associations between

feature clusters and image classes are more reliable to con-
vey semantic relationships across different domains [15].
Formally, we solve the following optimization problem on
the target data set:

min
𝐹𝑡≥0,𝐺𝑡≥0

∥𝑋𝑡 − 𝐹𝑡𝑆
∗
𝑠𝐺

𝑇
𝑡 ∥2 . (4)

As a result, 𝑆∗
𝑠 , learned from source data set, is used as su-

pervision to classify target data. Namely, 𝑆∗
𝑠 bridges the

source domain and the target domain so that the prior la-
beling (supervised) knowledge can be transferred from the
former to the latter. Figure 2(b) illustrates an example to la-
bel a new image using the transferred associations of classes
and features.

Our optimization objective. Finally, instead of solving the
three optimization problems in Eqs. (2–4) separately, we
propose to solve the following joint optimization problem:

min
𝐹≥0,𝑆≥0,
𝐺𝑠≥0,𝐺𝑡≥0

𝐽 = ∥𝑋𝑠 − 𝐹𝑆𝐺𝑇
𝑠 ∥2

+ ∥𝑋𝑡 − 𝐹𝑆𝐺𝑇
𝑡 ∥2

+ 𝛼 tr
[
𝑄𝑠 (𝐺𝑠 − 𝑌𝑠)

𝑇
𝐶𝑠 (𝐺𝑠 − 𝑌𝑠)

+ 𝑄𝑡 (𝐺𝑡 − 𝑌𝑡)
𝑇
𝐶𝑡 (𝐺𝑡 − 𝑌𝑡)

]
.

(5)

In this formulation, both 𝐹 and 𝑆 are shared in the two ma-
trix factorizations for both the source data and the target
one. The former connects the two domains to transfer un-
supervised knowledge, while the latter is used as a bridge
for supervised knowledge transformation from the source
domain to the target domain.

Note that, when the source data set and the target data set
do not share any features, the first term in Eq. (3) for ma-
trix factorization will be decoupled into two subproblems,
one for each of the two data sets. Consequently, the results
of the subproblem for the source domain will have no effect
on the target data set, and no unsupervised knowledge trans-
fer will be performed. Similarly, if the source data set and
target data set do not share common classes, there will be
no supervised knowledge transformation in the optimiza-
tion problem Eq. (4), because it is decoupled into two in-
dependent subproblems, one for source image data and the
other for target image data. However, these two cases rarely
happen at the same time, such that we can always transfer
knowledge by Eq. (5) through sharing either feature clus-
ters or the the association between feature clusters and im-
age classes, or both. Because Eq. (5) transfers knowledge
across domains by two different paths, we call it as the pro-
posed Dyadic Knowledge Transfer (DKT) approach.

Solving Eq. (5), we may classify the unlabeled data
points x𝑖

𝑡 in the target data set. If the target data set is
a single-label data set where each data point belongs to
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Figure 2. Transfer knowledge by two different paths for both unsupervised information as in Figure 2(a) and supervised information as in
Figure 2(b).

only one class, we assign label using the following rule [3]
𝑙
(
x𝑖
𝑡

)
= argmax𝑘 𝐺𝑡(𝑖𝑘). If the target data set is a multi-

label data set, we classify x𝑖
𝑡 using the correlative threshold

method introduced in [11].

2.2. Optimization algorithm

In the rest of this section, we will derive the solution to
Eq. (5) via an alternating scheme to optimize the objective.
Specifically, we will optimize one variable while fixing the
rest variables. The procedure repeats until convergence.

First, we expand the objective in Eq. (5) as follows:

𝐽 (𝐹, 𝑆,𝐺𝑠, 𝐺𝑡) =

tr
[−2𝑋𝑇

𝑠 𝐹𝑆𝐺𝑇
𝑠 +𝐺𝑠𝑆

𝑇𝐹𝑇𝐹𝑆𝐺𝑇
𝑠

− 2𝑋𝑇
𝑡 𝐹𝑆𝐺𝑇

𝑡 +𝐺𝑡𝑆
𝑇𝐹𝑇𝐹𝑆𝐺𝑇

𝑡

+ 𝛼
(
𝑄𝑠𝐺

𝑇
𝑠 𝐶𝑠𝐺𝑠 − 2𝑄𝑠𝐺

𝑇
𝑠 𝐶𝑠𝑌𝑠

+𝑄𝑡𝐺
𝑇
𝑡 𝐶𝑡𝐺𝑡 − 2𝑄𝑡𝐺

𝑇
𝑡 𝐶𝑡𝑌𝑡

)]
,

(6)

where constant terms are discarded.

Computation of 𝐹 . For the constraint 𝐹 ≥ 0, following
standard theory of constrained optimization, we introduce
the Lagrangian multiplier 𝑈 ∈ ℝ

𝑚×𝑘1 , thus the Lagrangian
function is

𝐿 (𝐹 ) = 𝐽 − tr
(
𝑈𝐹𝑇

)
. (7)

Setting ∂𝐿 (𝐹𝑠) /∂𝐹𝑠 = 0, we obtain

𝑈 = −2𝑋𝑠𝐺𝑠𝑆
𝑇 + 2𝐹𝑆𝐺𝑇

𝑠 𝐺𝑠𝑆
𝑇

− 2𝑋𝑡𝐺𝑡𝑆
𝑇 + 2𝐹𝑆𝐺𝑇

𝑡 𝐺𝑡𝑆
𝑇 .

(8)

Using Karush-Kuhn-Tucker (KKT) condition we have
𝑈(𝑖𝑗)𝐹(𝑖𝑗) = 0, which is

(−2𝑋𝑠𝐺𝑠𝑆
𝑇 + 2𝐹𝑆𝐺𝑇

𝑠 𝐺𝑠𝑆
𝑇

− 2𝑋𝑡𝐺𝑡𝑆
𝑇 + 2𝐹𝑆𝐺𝑇

𝑡 𝐺𝑡𝑆
𝑇
)
(𝑖𝑗)

𝐹(𝑖𝑗) = 0,
(9)

which leads to the following updating formula:

𝐹(𝑖𝑗) ← 𝐹(𝑖𝑗)

√
(𝑋𝑠𝐺𝑠𝑆𝑇 +𝑋𝑡𝐺𝑡𝑆𝑇 )(𝑖𝑗)

(𝐹𝑆𝐺𝑇
𝑠 𝐺𝑠𝑆𝑇 + 𝐹𝑆𝐺𝑇

𝑡 𝐺𝑡𝑆𝑇 )(𝑖𝑗)
. (10)

Computation of 𝑆, 𝐺𝑠 and 𝐺𝑡. Following the same deriva-
tions as in Eqs. (7–10), we obtain the updating rules for the
rest variables of 𝐽 as following:

𝑆(𝑖𝑗) ← 𝑆(𝑖𝑗)

√
(𝐹𝑇𝑋𝑠𝐺𝑠 + 𝐹𝑇𝑋𝑡𝐺𝑡)(𝑖𝑗)

(𝐹𝑇𝐹𝑆𝐺𝑇
𝑠 𝐺𝑠 + 𝐹𝑇𝐺𝑆𝐺𝑇

𝑡 𝐺𝑡)(𝑖𝑗)
(11)

𝐺𝑠(𝑖𝑗) ← 𝐺𝑠(𝑖𝑗)

√
(𝑋𝑇

𝑠 𝐹𝑆 + 𝛼𝐶𝑠𝑌𝑠𝑄𝑠)(𝑖𝑗)
(𝐺𝑠𝑆𝑇𝐹𝑇𝐹𝑆 + 𝛼𝐶𝑠𝐺𝑠𝑄𝑠)(𝑖𝑗)

(12)

𝐺𝑡(𝑖𝑗) ← 𝐺𝑡(𝑖𝑗)

√√√⎷ (𝑋𝑇
𝑡 𝐹𝑆 + 𝛼𝐶𝑡𝑌𝑡𝑄𝑡)(𝑖𝑗)

(𝐺𝑡𝑆𝑇𝐹𝑇𝐹𝑆 + 𝛼𝐶𝑡𝐺𝑡𝑄𝑡)(𝑖𝑗)
(13)

The above iterative updating procedures to optimize
Eq. (5) are summarized in Algorithm 1, whose convergence
can be proved by following the similar way to [2, 3, 5, 15].

3. Experimental Results

In this section, we experimentally evaluate the proposed
DKT approach in cross-domain image classification tasks.

3.1. Data preparation

We experiment with the following two image data sets,
which are broadly used in computer vision studies.

TRECVID 2005 data set1 contains 61901 video sub-
shots labeled with 39 LSCOM-Lite concepts.

MSRC data set2 is provided by the computer vision
group at Microsoft Research Cambridge, which contains
591 images annotated by 23 classes.

1http://www-nlpir.nist.gov/projects/trecvid/
2http://research.microsoft.com/en-us/projects/objectclassrecognition
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Algorithm 1: Procedures to optimize Eq. (5).

Data: 1. Data matrix 𝑋𝑠 of the source image data set,
2. Data matrix 𝑋𝑡 of the target image data set,
3. Ground truth annotation 𝑌𝑠 in source domain,
4. Optional ground truth annotation 𝑌𝑡 in target
domain,
5. Trade-off parameters 𝛼.
Result: Labels assigned to the unannotated images x𝑖

𝑡

in target data set.
1. Initialize 𝐹 , 𝑆, 𝐺𝑠, and 𝐺𝑡 following [15];
repeat

2. Update 𝐹 using Eq. (10),
3. Update 𝑆 using Eq. (11),
4. Update 𝐺𝑠 using Eq. (12),
5. Update 𝐺𝑡 using Eq. (13),

until converges
6. Predict labels for x𝑖

𝑡 using 𝑙
(
x𝑖
𝑡

)
= argmax𝑘 𝐺𝑡(𝑖𝑘)

for single-label data or the correlative threshold method
introduced in [11] for multi-label data.

These two data sets are considered to come from dif-
ferent domains, because the former is from video broad-
casts while the latter is from digital photos in daily life.
They share the following 10 semantic classes: “build-
ing”, “sky”, “mountain”, “airplane (aeroplane)”, “water-
front waterscape (water)”, “face”, “car”, “road”, “person
(body)”, “boat ship”.

We extract dense SIFT (DSIFT) [9] features for the im-
ages in these two data sets. Following [10], we resize the
images to 256 × 256 and extract features with grid size of
5 pixels. As a result, 2601 DSIFT features of are exacted
for every image. Our method can also be applied to other
image features. We use DSIFT features for demonstration.

Using these two image data sets, we construct the fol-
lowing test data set to simulate real world cross-domain
image classification tasks, in which the source and tar-
get data sets share classes and use a same codebook. We
use all the classes of the two data sets, and end up with
23+39−10 = 42 classes. For TRECVID 2005 data set, fol-
lowing [11], we randomly select 100 images for each of its
classes. For MSRC data set, we use all its images. Follow-
ing [10], a unified 240-dimensional codebook is created for
all the images selected from both of the two data sets, where
𝑘-means clustering is used to find the codewords from the
corresponding DSIFT descriptors. Then feature vector of
each image is constructed using the histogram of its DSIFT
descriptors based upon the computed codebook [10]. We
should also notice that if we directly perform the typical
classification methods on the mixed data sets, it is equiva-
lent to do classifications on the simple mixture data without
transferring knowledge.

3.2. Effectiveness of knowledge transfer in cross-
domain image classification

Because the main purpose of the proposed DKT ap-
proach is to transfer knowledge from a source domain to
another target domain that does not have sufficient labeled
images, we evaluate the knowledge transfer capability of
the proposed approach. We compare the proposed DKT ap-
proach against its degenerate version as following:

min
𝐹𝑡≥0,𝑆𝑡≥0,𝐺𝑡≥0

𝐽 = ∥𝑋𝑡 − 𝐹𝑡𝑆𝑡𝐺
𝑇
𝑡 ∥2 (14)

+ tr
[
𝛼𝑄𝑡 (𝐺𝑡 − 𝑌𝑡)

𝑇
𝐶𝑡 (𝐺𝑡 − 𝑌𝑡)

]
,

where the knowledge transfer terms in Eq. (5) are removed.
Therefore, Eq. (14) is a semi-supervised learning method
performed on the target data, whose similar form was ever
proposed in [5].

We perform the evaluation on the constructed test data
set, where we use TRECVID 2005 data set as source data
and MSRC data set as target data. Because in real applica-
tions not all the images in source domain are annotated, for
the source data set we randomly pick up 70% images from
each class as labeled data, and use the rest as unlabeled data.
On the other hand, because in real applications the images in
target domain are mostly not annotated, we randomly pick-
ing up 20% images from each class of the target data and
set them as labeled image. Our task is to predict labels for
the rest 80% unannotated images in the target image data
set. We repeat the experiments for 50 times. The average
classification performance measured by precision for each
class is reported in Figure 3(a).

From the results we can see that our approach us-
ing knowledge transfer outperforms its degenerate version
without using knowledge transfer in all the classes. By a
more careful analysis on the results, we can see that the im-
provements due to knowledge transfer (computed by “(Pre-
cision with knowledge transfer - Precision without knowl-
edge transfer) / Precision without knowledge transfer”) for
the shared classes between the two data sets (shown as blue
color in Figure 3(b)) are much greater than those of un-
shared classes (shown as red color in Figure 3(b)) in gen-
eral. These observations concretely demonstrate the use-
fulness of knowledge transfer in the task of cross-domain
image classification.

In order to evaluate the detailed impact of training in-
formation in source data on the classification performance
on target data, we vary the amount of labeled images in the
source data set and examine the corresponding classification
performance on the target data set of our approach. The av-
erage precisions over all the classes for different amount of
labeled source images are reported in Figure 4, which show
that the more labeled data we have in the source data set,
the better classification performance we can achieve on the
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(a) Performance comparison of the proposed approach (Eq. (5))
and its degenerate version (Eq. (14)).
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(b) Performance improvement due to knowledge transfer.

Figure 3. The effectiveness of the proposed DKT approach.
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Figure 4. Average precisions over all the classes on the target data
set when the amount of labeled images in the source data set varies.

target data set. This is consistent with the theoretical analy-
sis, and again confirms the effectiveness of our approach to
transfer knowledge in cross-domain image classification.

4. Conclusions

In this paper, we proposed a novel NMTF based trans-
fer learning approach for cross-domain image classification.
Our new approach is flexible to make use of either unla-
beled source images by sharing feature cluster structures or
labeled source images via the associations between feature
clusters and classes, or the both. In addition, labeled im-
ages in the target data set, though often unavailable, can
also be exploited. We introduced an efficient algorithm to
solve the proposed objective. Extensive empirical studies

have demonstrated promising results that validate our new
approach.
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