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Abstract—The fast growth of Internet and modern tech-
nologies has brought data involving objects of multiple types
that are related to each other, called as Multi-Type Relational
data. Traditional clustering methods for single-type data rarely
work well on them, which calls for new clustering techniques,
called as high-order co-clustering (HOCC), to deal with the
multiple types of data at the same time. A major challenge in
developing HOCC methods is how to effectively make use of
all available information contained in a multi-type relational
data set, including both inter-type and intra-type relationships.
Meanwhile, because many real world data sets are often of
large sizes, clustering methods with computationally efficient
solution algorithms are of great practical interest. In this
paper, we first present a general HOCC framework, named as
Orthogonal Nonnegative Matrix Tri-factorization (O-NMTF),
for simultaneous clustering of multi-type relational data. The
proposed O-NMTF approach employs Nonnegative Matrix Tri-
Factorization (NMTF) to simultaneously cluster different types
of data using the inter-type relationships, and incorporate
intra-type information through manifold regularization, where,
different from existing works, we emphasize the importance
of the orthogonalities of the factor matrices of NMTF. Based
on O-NMTF, we further develop a novel Fast Nonnegative
Matrix Tri-Factorization (F-NMTF) approach to deal with
large-scale data. Instead of constraining the factor matrices
of NMTF to be nonnegative as in existing methods, F-NMTF
constrains them to be cluster indicator matrices, a special type
of nonnegative matrices. As a result, the optimization problem
of the proposed method can be decoupled, which results in
subproblems of much smaller sizes requiring much less matrix
multiplications, such that our new algorithm scales well to real
world data of large sizes. Extensive experimental evaluations
have demonstrated the effectiveness of our new approaches.

Keywords-High-Order Co-Clustering, Multi-Type Relational
Data, Nonnegative Matrix Tri-Factorization, Cluster Indicator
Matrix

I. INTRODUCTION

Most traditional clustering algorithms concentrate on deal-
ing with homogeneous data, in which all the objects of
interest are of one single type. Recently, the rapid progress of
modern technologies, especially for those related to Internet,
has brought new data much richer in structure, involving
objects of multiple types that are related to each other. For
example, in a Web search system as illustrated in Figure 1,
we have four different types of data entities including words,
Web pages, search queries and Web users. Each of these four
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Figure 1. A Web search system is a typical example of multi-type relational
data, involving (1) Inter-type relationships (green solid lines): the relations
between objects in different data types. (2) Intra-type relationships (blue
dashed lines): the relations between different objects in a same data type.

types of data objects has their own attributes. Meanwhile
different types of data are also interrelated to each other in
various ways, e.g., Web pages and words are related via co-
occurrences. Such data sets are often called as Multi-Type
Relational data [1], [2].

Different from traditional homogeneous data of one single
type, multi-type relational data contains more information
with richer structures. Typically, we consider the following
two forms of information of a multi-type relational data set:

∙ Inter-type relationships characterize the relations be-
tween data objects from different types, such as the co-
occurrences between data objects from different types
as illustrated by the green solid lines in Figure 1.

∙ Intra-type relationships characterize the native rela-
tions between objects within one data type, e.g., as illus-
trated by the blue dashed lines in Figure 1, the internet
hyperlinks among Web pages, the pairwise affinities
among users that are induced from user attributes, etc.

The rich structures of multi-type relational data provide
a potential opportunity to improve the clustering accuracy,
which, however, also present a new challenge on how to
effectively use all available information contained in a multi-
type relational data set. Similar to co-clustering for two-type
relational data that makes use of the interrelatedness between
the two types of data, simultaneous clustering of multi-type
relational data aims to exploit both inter-type and intra-
type information, which is called as high-order co-clustering
(HOCC). In this paper, we tackle this new, yet important,
problem, where we also take into account large-scale data
for practical use.

Given the inter-type relationships and the intra-type in-
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formation, we first present a simple but general HOCC
framework, named as Orthogonal Nonnegative Matrix
Tri-factorization (O-NMTF), for simultaneous clustering
on multi-type relational data. In the proposed O-NMTF
approach, we use Nonnegative Matrix Tri-Factorization
(NMTF) [3] to simultaneously cluster different types of
data upon the inter-type relation matrices. Meanwhile, the
optional intra-type information for different types of data in
form of pairwise affinity is incorporated as manifold regu-
larization to NMTF, where, different from existing manifold
regularized NMTF methods, we emphasize the importance
of the orthogonality on the factor matrices.

Because existing solution algorithms to NMTF problems,
as well as ours to the proposed O-NMTF approach, are
usually computationally prohibitive due to involving inten-
sive multiplications on matrices of large sizes, instead of
constraining the factor matrices of NMTF to be nonnegative,
we further propose a novel Fast Nonnegative Matrix Tri-
Factorization (F-NMTF) approach to constrain them to be
cluster indicator matrices, a special type of nonnegative
matrices. With this new constraint, the optimization problem
can be decoupled into a number of subproblems of much
smaller sizes, which require much less matrix multiplica-
tions. Consequently, our new algorithm is computationally
efficient, which makes it of particular use in clustering large-
scale multi-type relational data in real world applications.

We summarize our contributions as following.

1) We present a simple, yet effective, framework to tackle
the complicated problem of high-order co-clustering of
multi-type relational data, which aims to better utilize
both inter-type and intra-type relationships of a multi-
type relational data set.

2) Different from existing manifold regularized Nonnega-
tive Matrix Factorization (NMF) methods [2], [4], [5],
we emphasize the importance of the orthogonalities of
the factor matrices, both theoretically and empirically.

3) Instead of enforcing traditional nonnegative constraints
on the factor matrices of NMTF, we constrain them to
be cluster indicator matrices, a special type of nonneg-
ative matrices. As a result, the optimization problem
of the proposed F-NMTF approach can be decoupled
into subproblems with much smaller sizes, and the
decoupled subproblems involve much less matrix mul-
tiplications. Therefore, our approach is computationally
efficient and scales well to large-scale real world data.
Different from our earlier publication [6] that deals
with asymmetric NMTF on rectangle input matrices, in
this paper we deal with symmetric square input matrix,
which is harder to solve due to the fourth-order term
of the factor matrices in the objective.

Notations. Throughout this paper, we denote matrices as
uppercase characters and vectors as boldface lowercase
characters. The 𝑖-th row and 𝑗-th column of the matrix 𝑀

are denoted as m𝑖⋅ and m⋅𝑗 respectively. We denote the
Frobenius norm and the trace of a matrix as ∥⋅∥ and tr (⋅)
respectively. 𝑀 (𝑖, 𝑗) denotes the (𝑖, 𝑗)-th entry of the matrix
𝑀 , and v (𝑖) denotes the 𝑖-th entry of the vector v.

We denote R as the real number set, R+ as the nonneg-
ative real number set, and Ψ as the cluster indicator matrix
set. An indicator matrix 𝐺 ∈ Ψ𝑛×𝑐 is a special type of
nonnegative matrix: all the entries of g𝑖⋅ (1 ≤ 𝑖 ≤ 𝑛) are
equal to 0 except for one and only one entry equal to 1,
indicating the cluster membership of the corresponding data
point, i.e., g𝑖⋅ ∈ {0, 1}𝑐 and

∑
𝑗 g𝑖⋅ (𝑗) = 1.

II. ORTHOGONAL NONNEGATIVE MATRIX

TRI-FACTORIZATION (O-NMTF) FOR HIGH-ORDER

CO-CLUSTERING

In this section, we first briefly review co-clustering of two-
type relational data using NMTF, from which we gradually
develop the proposed O-NMTF approach for high-order co-
clustering of multi-type relational data. Our goal is to em-
ploy both inter-type relationships and intra-type relationships
of the input data via a compact, yet effective, framework.

Problem formalization. Given a data set with 𝐾 types
of data objects 𝒳 = {𝒳1,𝒳2, . . . ,𝒳𝐾}, where 𝒳𝑘 ={
x𝑘
1 ,x

𝑘
2 , . . . ,x

𝑘
𝑛𝑘

}
represents 𝑛𝑘 data objects of the 𝑘-th

type. Suppose that we have a set of inter-type relationship
matrices {𝑅𝑘𝑙 ∈ R𝑛𝑘×𝑛𝑙} between different types of data
objects and 𝑅𝑙𝑘 = 𝑅𝑇

𝑘𝑙, where 𝑅𝑘𝑙 (𝑖, 𝑗) measures how
closely x𝑘

𝑖 is related to x𝑙
𝑗 . Besides, we also have intra-

type information for each type of the data, e.g., for the 𝑘-
th type of data we have pairwise affinities 𝑊𝑘 ∈ R𝑛𝑘×𝑛𝑘

between the the data objects in 𝒳𝑘. Our goal is to learn
from 𝑅𝑘𝑙 (1 ≤ 𝑘, 𝑙 ≤ 𝐾) and 𝑊𝑘 (1 ≤ 𝑘 ≤ 𝐾) a model
that is able to simultaneously partition the data objects in
𝒳1,𝒳2, . . . ,𝒳𝐾 into 𝑐1, 𝑐2, . . . , 𝑐𝐾 disjoint clusters respec-
tively. We denote 𝑛 =

∑
𝑘 𝑛𝑘 and 𝑐 =

∑
𝑘 𝑐𝑘.

A. A Brief Review of Co-Clustering via NMTF

The simplest multi-type relational data involves only two
types of objects, which widely appear in real world applica-
tions, e.g., words and documents in document analysis, users
and items in collaborative filtering, experimental conditions
and genes in microarray data analysis. Instead of being
independent, the clustering tasks of different types of objects
are often closely related. As a result, co-clustering methods
(also called as bi-clustering in some research papers), which
simultaneously cluster the both types of data by leveraging
their interrelatedness, have been proposed [3], [5], [7]–[9].
Among these methods, NMTF based co-clustering methods
have attracted increased attention in recent years due to their
mathematical elegance and promising empirical results.

Motivated by the close connection between NMF and 𝐾-
means clustering [3], [10], Ding et al. [3] proposed to use
NMTF to simultaneously cluster the rows and columns of a
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nonnegative input relationship matrix 𝑅12 by decomposing
it into three nonnegative factor matrices, which minimizes:

𝐽1 =
∥∥𝑅12 −𝐺1𝑆12𝐺

𝑇
2

∥∥2
,

𝑠.𝑡. 𝐺1 ≥ 0, 𝐺2 ≥ 0, 𝑆12 ≥ 0 ,
(1)

where 𝐺1 ∈ R𝑛1×𝑐1
+ and 𝐺2 ∈ R𝑛2×𝑐2

+ are continuous and
act as the “soft” cluster indications [10] for 𝒳1 and 𝒳2

respectively, and 𝑆12 ∈ R𝑐1×𝑐2
+ absorbs the different scales

of 𝑅12, 𝐺1 and 𝐺2. The original NMF problem [11] requires
𝑅12 to be nonnegative. In co-clustering scenarios, however,
this constraint (thereby the nonnegativity constraint on 𝑆12)
can be relaxed [12] to achieve additional flexibility, which
leads to the semi-NMTF problem that minimizes:

𝐽2 = ∥𝑅12 −𝐺1𝑆12𝐺
𝑇
2 ∥2, 𝑠.𝑡. 𝐺1 ≥ 0, 𝐺2 ≥ 0 . (2)

Simultaneous clustering of data objects in 𝒳1 and 𝒳2 is
hence achieved by solving Eq. (2). Because the rows of
the resulted 𝐺𝑘 (𝑘 ∈ {1, 2}) (with normalization) can be
interpreted as the posterior probability for clustering on
𝒳𝑘 (𝑘 ∈ {1, 2}) [10], a possible way to obtain the cluster
label of x𝑘

𝑖 is to use the following rule [3], [10], [12], [13]:

𝑙
(
x𝑘
𝑖

)
= argmax

𝑗
𝐺𝑘 (𝑖, 𝑗) . (3)

B. Objective of O-NMTF

A natural generalization of the co-clustering objective in
Eq. (2) to simultaneously cluster multi-type relational data,
called as high-order co-clustering [1], [14]–[17], is to solve
the following optimization problem [1], [16], [17]:

min 𝐽3 =
∑

0<𝑘<𝑙≤𝐾

∥∥𝑅𝑘𝑙 −𝐺𝑘𝑆𝑘𝑙𝐺
𝑇
𝑙

∥∥2
,

𝑠.𝑡. 𝐺𝑘 ≥ 0, ∀ 0 < 𝑘 ≤ 𝐾 .
(4)

In spite of the clear intuition of the above formulation, the
generalization of existing NMTF algorithms to solve Eq. (4),
however, is not straightforward. Motivated by [7] that deals
with bipartite graphs, we consider to solve an equivalent
Symmetric NMTF (S-NMTF) problem.

We first introduce the following useful lemma.
Lemma 1: The optimization problem in Eq. (2) can be

equivalently solved by the following S-NMTF problem:

min 𝐽4 = ∥𝑅−𝐺𝑆𝐺𝑇 ∥2, 𝑠.𝑡. 𝐺 ≥ 0 , (5)

in which

𝑅 =

[
0𝑛1×𝑛1 𝑅𝑛1×𝑛2

12

𝑅𝑛2×𝑛1
21 0𝑛2×𝑛2

]
, 𝐺 =

[
𝐺𝑛1×𝑐1

1 0𝑛1×𝑐2

0𝑛2×𝑐1 𝐺𝑛2×𝑐2
2

]
,

𝑆 =

[
0𝑐1×𝑐1 𝑆𝑐1×𝑐2

12

𝑆𝑐2×𝑐1
21 0𝑐2×𝑐2

]
, (6)

where the superscripts denote the matrix sizes, and 𝑅21 =
𝑅𝑇

12, 𝑆21 = 𝑆𝑇
12. 0𝑛1×𝑛1 is a matrix with all zero entries.

Proof: Upon the definitions of 𝑅, 𝐺 and 𝑆, we derive:

∥∥∥𝑅−𝐺𝑆𝐺𝑇
∥∥∥2

=

∥∥∥∥∥
[

0 𝑅12

𝑅𝑇
12 0

]
−

[
0 𝐺1𝑆12𝐺

𝑇
2

𝐺2𝑆
𝑇
12𝐺

𝑇
1 0

]∥∥∥∥∥
2

= 2
∥∥∥𝑅12 −𝐺1𝑆12𝐺

𝑇
2

∥∥∥2

,

which proves the lemma.
Based upon Lemma 1, we have the following theorem.
Theorem 1: It is equivalent to solve Eq. (4) and to solve

the following problem:

min 𝐽5 = ∥𝑅−𝐺𝑆𝐺𝑇 ∥, 𝑠.𝑡. 𝐺 ≥ 0 , (7)

in which

𝑅 =

⎡
⎢⎢⎢⎢⎢⎣

0𝑛1×𝑛1 𝑅𝑛1×𝑛2
12 ⋅ ⋅ ⋅ 𝑅𝑛1×𝑛𝐾

1𝐾

𝑅𝑛2×𝑛1
21 0𝑛2×𝑛2 ⋅ ⋅ ⋅ 𝑅𝑛2×𝑛𝐾

2𝐾

...
...

. . .
...

𝑅𝑛𝐾×𝑛1
𝐾1 𝑅𝑛𝐾×𝑛2

𝐾2 ⋅ ⋅ ⋅ 0𝑛𝐾×𝑛𝐾

⎤
⎥⎥⎥⎥⎥⎦ ,

𝐺 =

⎡
⎢⎢⎢⎢⎢⎣

𝐺𝑛1×𝑐1
1 0𝑛1×𝑐2 ⋅ ⋅ ⋅ 0𝑛1×𝑐𝐾

0𝑛2×𝑐1 𝐺𝑛2×𝑐2
2 ⋅ ⋅ ⋅ 0𝑛2×𝑐𝐾

...
...

. . .
...

0𝑛𝐾×𝑐1 0𝑛𝐾×𝑐2 ⋅ ⋅ ⋅ 𝐺𝑛𝐾×𝑐𝐾
𝐾

⎤
⎥⎥⎥⎥⎥⎦ ,

𝑆 =

⎡
⎢⎢⎢⎢⎢⎣

0𝑐1×𝑐1 𝑆𝑐1×𝑐2
12 ⋅ ⋅ ⋅ 𝑆𝑐1×𝑐𝐾

1𝐾

𝑆𝑐2×𝑐1
21 0𝑐2×𝑐2 ⋅ ⋅ ⋅ 𝑆𝑐2×𝑐𝐾

2𝐾

...
...

. . .
...

𝑆𝑐𝐾×𝑐1
𝐾1 𝑆𝑐𝐾×𝑐2

𝐾2 ⋅ ⋅ ⋅ 0𝑐𝐾×𝑐𝐾

⎤
⎥⎥⎥⎥⎥⎦ ,

(8)

where 𝑅𝑗𝑖 = 𝑅𝑇
𝑖𝑗 and 𝑆𝑖𝑗 = 𝑆𝑇

𝑗𝑖.
The proof of Theorem 1 can be easily obtained by general-
izing the proof of Lemma 1. We skip it due to space limit.

Theorem 1 presents a general framework via S-NMTF for
high-order co-clustering of multi-type relational data using
the inter-type relationship matrices, which can be further
developed to incorporate the intra-type information via the
manifold regularization as following [4], [5]:

min 𝐽6 =
∥∥𝑅−𝐺𝑆𝐺𝑇

∥∥2
+ 𝜆 tr

(
𝐺𝑇𝐿𝐺

)
,

𝑠.𝑡. 𝐺 ≥ 0, 𝐺𝑇𝐷𝐺 = 𝐼 ,
(9)

where 𝜆 > 0 is a tradeoff parameter that balances the relative
importance of the two terms, 𝐿 = 𝐼 − 𝐷−

1
2 𝑊𝐷−

1
2 is the

normalized graph Laplacian and

𝑊 =

⎡
⎢⎢⎢⎢⎢⎣

𝑊𝑛1×𝑛1
1 0𝑛1×𝑛2 ⋅ ⋅ ⋅ 0𝑛1×𝑛𝐾

0𝑛2×𝑛1 𝑊𝑛2×𝑛2
2 ⋅ ⋅ ⋅ 0𝑛2×𝑛𝐾

...
...

. . .
...

0𝑛𝐾×𝑛1 0𝑛𝐾×𝑛2 ⋅ ⋅ ⋅ 𝑊𝑛𝐾×𝑛𝐾
𝐾

⎤
⎥⎥⎥⎥⎥⎦ (10)

and 𝐷 is a diagonal matrix with 𝐷 (𝑖, 𝑖) =
∑

𝑗 𝑊 (𝑖, 𝑗).
Here 𝑊𝑘 ∈ R𝑛𝑘×𝑛𝑘 (1 ≤ 𝑘 ≤ 𝐾) is the pairwise affinity
matrix between the data objects of the 𝑘-th type.
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Through Eq. (9), as one of our contribution, the com-
plicated problem of high-order co-clustering of multi-type
relational data is formulated in a simple form as a regularized
NMTF problem.

C. Importance of the Orthogonality Constraint in Manifold
Regularization

In Eq. (9), we emphasize the orthogonal constraints
𝐺𝑇𝐷𝐺 = 𝐼 on the factor matrix 𝐺, which do not appear in
related works [4], [5], though orthogonality plays an signif-
icant role in NMF [3], [10], [12]. A rigorous orthogonality
among columns of 𝐺, i.e., 𝐺𝑇𝐺 = 𝐼 , enforces sparsity on
𝐺 [10], [12]. Therefore it provides a hard clustering [10],
[12] where each data object belongs to only one cluster
(due to orthogonality and nonnegativity, each row of 𝐺 has
only one nonzero element). Without orthogonality, however,
each row of 𝐺 could have more nonzero elements. Thus
NMF provides a soft clustering [10], [12]. The orthogonality
constraints 𝐺𝑇𝐷𝐺 = 𝐼 in Eq. (9) is functioning similar to
𝐺𝑇𝐺 = 𝐼 yet enjoys additional benefits due to its additional
role in the regularization.

We note that the manifold regularization term in Eq. (9)
indeed is the optimization objective of Laplacian based
spectral clustering such as normalized cut [18] method.
Without the orthogonality constraint 𝐺𝑇𝐷𝐺 = 𝐼 , the
optimal solution 𝐺∗ will contains identical columns. This
can be seen as follows. We first rewrite

tr
[
𝐺𝑇 (𝐷 −𝑊 )𝐺

]
=

∑𝑐
𝑗=1 g⋅𝑗

𝑇 (𝐷 −𝑊 )g⋅𝑗, (11)

where g⋅𝑗 is the 𝑗-th column of 𝐺, and 𝑐 =
∑

𝑘 𝑐𝑘. Without
the orthogonality constraint, different columns become in-
dependent of each other, and thus reach the same minimum
with the same solution, i.e., g⋅1∗ = ⋅ ⋅ ⋅ = g⋅𝑐∗ = e,
where e = [1, . . . , 1]

𝑇 . This degenerate solution of 𝐺 is
equivalent to randomly assigning labels to data objects, thus
the clustering performance is degraded.

We also notice that in the formulation of Eq. (7), the
orthogonality is not necessary: without the orthogonality
constraint, the optimal solution 𝐺∗ will have different
columns. The main reason for this desirable feature [10]
is due to the matrix approximation nature of Eq. (7), as
opposed to the trace minimization of Eq. (9).

To summarize, we have shown that (A) orthogonality
is not a necessary constraint for Eq. (7), whereas (B) it
is an indispensable constraint for the manifold regularized
objectives such as Eq. (9).

D. Algorithm to Solve O-NMTF

The computational algorithm of the proposed O-NMTF
approach is listed in Algorithm 1. Upon solution, the cluster
labels are obtained from the resulted 𝐺𝑘 using Eq. (3).

The main challenge to derive Algorithm 1 is the fourth-
order matrix polynomial incurred by the symmetric usage
of 𝐺 in Eq. (9). Existing works [3], [10], [16], [19] tackle

this difficulty in an intuitive way: solve the problem as a
standard NMF problem with two different factor matrices
and set them as same in the solution. In this paper, we
use a new matrix inequality presented in Lemma 4, which
was proposed in our earlier publication in [2], to tackle this
difficulty in a principled way.

Algorithm 1: Algorithm to solve F-NMTF in Eq. (22)
Data: Relationship matrices: {𝑅𝑖𝑗}1≤𝑖<𝑗≤𝐾

Pairwise affinity matrices: {𝑊𝑘}1≤𝑘≤𝐾

1. Construct 𝑅,𝐺, 𝑆 as in Eq. (8), and 𝑊 as in Eq. (10).
2. Initialize 𝐺 as in [3].
repeat

3. Compute 𝑆 =
(
𝐺𝑇𝐺

)−1
𝐺𝑇𝑅𝐺

(
𝐺𝑇𝐺

)−1.

4. Update 𝐺𝑖𝑗 ← 𝐺𝑖𝑗

⎡
⎢⎣ (𝑅𝐺𝑆 + 𝜆𝑊𝐺)𝑖𝑗(

𝐺𝑆𝐺𝑇𝐺𝑆 +𝐷𝐺Λ
)
𝑖𝑗

⎤
⎥⎦

1
4

where

Λ = 𝐺𝑇𝑅𝐺𝑆 −𝐺𝑇𝐺𝑆𝐺𝑇𝐺𝑆 + 𝜆𝐺𝑇𝑊𝐺.
until Converges
Result: Cluster indicator matrices: {𝐺𝑘}1≤𝑘≤𝐾

Correctness of the Algorithm. The following theorem
guarantees the correctness of Algorithm 1.

Theorem 2: If the update rules of 𝐺 and 𝑆 in Algorithm 1
converges, the final solution satisfies the KKT condition.

The proof of Theorem 2 can be obtained following the
same way as in [3], [10], [12]. We skip it due to space.

Convergence of the Algorithm. We use the auxiliary func-
tion approach [11] to prove the convergence of Algorithm 1.

Lemma 2: [11] 𝑍 (ℎ, ℎ′) is an auxiliary function of
𝐹 (ℎ) if the conditions 𝑍 (ℎ, ℎ′) ≥ 𝐹 (ℎ) and 𝑍 (ℎ, ℎ′) =
𝐹 (ℎ) are satisfied. [11] If 𝑍 is an auxiliary function for
𝐹 , then 𝐹 is non-increasing under the update ℎ(𝑡+1) =
argminℎ 𝑍 (ℎ, ℎ′).

Lemma 3: [3] For any matrices 𝐴 ∈ R𝑛×𝑛
+ , 𝐵 ∈ R𝑘×𝑘

+ ,
𝑆 ∈ R𝑛×𝑘

+ and 𝑆′ ∈ R𝑛×𝑘
+ , and 𝐴 and 𝐵 are symmetric,

the following inequality holds:

∑
𝑖𝑝

(𝐴𝑆′𝐵)𝑖𝑝 𝑆2
𝑖𝑝

𝑆′𝑖𝑝
≥ tr

(
𝑆𝑇𝐴𝑆𝐵

)
. (12)

Lemma 4: [2] For any nonnegative symmetric matrices
𝐴 ∈ R𝑘×𝑘

+ and 𝐵 ∈ R𝑘×𝑘
+ , for 𝐻 ∈ R𝑛×𝑘

+ the following
inequality holds:

tr
(
𝐻𝐴𝐻𝑇𝐻𝐵𝐻𝑇

)
≤

∑
𝑖𝑘

(
𝐻′𝐴𝐻′𝑇𝐻′𝐵+𝐻′𝐵𝐻′𝑇 𝐻′𝐴

2

)
𝑖𝑘

𝐻4
𝑖𝑘

𝐻 ′3
𝑖𝑘

.

(13)

Now we prove the convergence of Algorithm 1.
Theorem 3: Let

𝐽 (𝐺) = tr
(
−2𝑅𝐺𝑆𝐺𝑇 +𝐺𝑆𝐺𝑇𝐺𝑆𝐺𝑇 − 2𝜆𝐺𝑇𝑊𝐺+ 2Λ𝐺𝑇𝐷𝐺

)
,
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then the following function

𝑍
(
𝐺,𝐺′

)
=

− 2
∑
𝑖𝑗𝑘𝑙

𝐺′𝑗𝑖𝑆𝑗𝑘𝐺
′
𝑘𝑙𝑅𝑙𝑖

(
1 + log

𝐺𝑗𝑖𝐺𝑘𝑙

𝐺′𝑖𝑗𝐺
′
𝑘𝑙

)
+

∑
𝑖𝑗

(
𝐺′𝑆𝐺′𝑇𝐺′𝑆

)
𝑖𝑗

𝐺4
𝑖𝑗

𝐺′3𝑖𝑗

− 2𝜆
∑
𝑖𝑗𝑘

𝐺′𝑗𝑖𝑊𝑗𝑘𝐺
′
𝑘𝑖

(
1 + log

𝐺𝑗𝑖𝐺𝑘𝑖

𝐺′𝑗𝑖𝐺
′
𝑘𝑖

)
+

∑
𝑖𝑗

(
𝐷𝐺′Λ

)
𝑖𝑗

𝐺4
𝑖𝑗 +𝐺′4𝑖𝑗
𝐺′3𝑖𝑗

is an auxiliary function of 𝐽 (𝐺). Furthermore, it is a convex
function in 𝐺 and its global minimum is

𝐺𝑖𝑘 = 𝐺𝑖𝑘

[
(𝑅𝐺𝑆 + 𝜆𝑊𝐺)𝑖𝑘 /

(
𝐺𝑆𝐺𝑇𝐺𝑆 +𝐷𝐺Λ

)
𝑖𝑘

] 1
4
.

(14)
Proof: By applying Lemma 4, we have

tr
(
𝐺𝑆𝐺𝑇𝐺𝑆𝐺𝑇

) ≤∑
𝑖𝑗

(
𝐺′𝑆𝐺′𝑇𝐺′𝑆

)
𝑖𝑗

𝐺4
𝑖𝑗

𝐺′3𝑖𝑗
.

Because of Lemma 3 and the inequality of 2𝑎𝑏 < 𝑎2 + 𝑏2,
we have

Λ𝐺𝑇𝐷𝐺 ≤
∑
𝑖𝑗

(𝐷𝐺′Λ)𝑖𝑗
𝐺2

𝑖𝑗

𝐺′𝑖𝑗
≤

∑
𝑖𝑗

(𝐷𝐺′Λ)𝑖𝑗
𝐺4

𝑖𝑗 +𝐺′4𝑖𝑗
𝐺′3𝑖𝑗

Because 𝑧 ≤ 1 + log𝑧, ∀ 𝑧 > 0, we have

tr
(
𝑅𝐺𝑆𝐺𝑇

) ≥∑
𝑖𝑗𝑘𝑙

𝐺′𝑗𝑖𝑆𝑗𝑘𝐺
′
𝑘𝑙𝑅𝑙𝑖

(
1 + log

𝐺𝑗𝑖𝐺𝑘𝑙

𝐺′𝑖𝑗𝐺
′
𝑘𝑙

)
.

tr
(
𝐺𝑇𝑊𝐺

) ≥∑
𝑖𝑗𝑘

𝐺′𝑗𝑖𝑊𝑗𝑘𝐺
′
𝑘𝑖

(
1 + log

𝐺𝑗𝑖𝐺𝑘𝑖

𝐺′𝑗𝑖𝐺
′
𝑘𝑖

)
.

Summing over these bounds, we get 𝑍 (𝐺,𝐺′) that clearly
satisfies (1) 𝑍 (𝐺,𝐺′) ≥ 𝐽 (𝐺) and (2) 𝑍 (𝐺,𝐺) = 𝐽 (𝐺).

Following the same derivations as in [3], [5], [12], [16],
we obtain the Hessian matrix of 𝑍 (𝐺,𝐺), which is positive
definite (we skip the derivations due to space limit). Thus
𝑍 (𝐺,𝐺) is a convex function of 𝐺. We obtain the global
minimum of 𝑍 (𝐺,𝐺) by setting ∂𝑍 (𝐺,𝐺) /∂𝐺𝑖𝑗 = 0
and solving for 𝐺, from which we can get Eq. (14). This
completes the proof of Theorem 3.

Theorem 4: Updating 𝐺 and 𝑆 using the rules in Algo-
rithm 1 monotonically decreases 𝐽 (𝐺) in Theorem 3.

Proof: According to Lemma 2 and Theorem 3, we can
get that 𝐽

(
𝐺0

)
= 𝑍

(
𝐺0, 𝐺0

) ≥ 𝑍
(
𝐺1, 𝐺0

) ≥ 𝐽
(
𝐺1

)
. . . .

Thus 𝐽 (𝐺) is monotonically decreasing.
Because 𝐽 (𝐺) in Eq. (22) is obviously lower bounded by

0, Theorem 3–4 guarantee the convergence of Algorithm 1.
Now the remainder is to determine the Lagrangian mul-

tiplier Λ. From the KKT condition, summing over 𝑖, we
obtain Λ𝑘𝑘 =

(
𝐺𝑇𝑅𝐺𝑆 −𝐺𝑇𝐺𝑆𝐺𝑇𝐺𝑆 + 𝜆𝐺𝑇𝑊𝐺

)
𝑘𝑘

.
This gives the Lagrangian multipliers the value on the
diagonal. For non-diagonal elements, we use the Lagrangian
without nonnegativity constraints [3]. Thus, we get

Λ = 𝐺𝑇𝑅𝐺𝑆 −𝐺𝑇𝐺𝑆𝐺𝑇𝐺𝑆 + 𝜆𝐺𝑇𝑊𝐺 . (15)

III. FAST NONNEGATIVE MATRIX TRI-FACTORIZATION

Despite its mathematical elegance, 𝐽6 in Eq. (9) suffers
from two problems that impede its practical use. First,
instead of being cluster indicator matrix, 𝐺 is relaxed to be
continuous, which makes the immediate outputs of Eq. (9)
are not cluster labels. Thus, an additional post-processing
step (e.g., using Eq. (3)) is required, which could lead to non-
unique solutions [3]. Second, and more important, same as in
existing works [3], [5], [10], [12], Algorithm 1 employs the
alternately iterative method, in each iteration step of which
intensive matrix multiplications are involved. As a result,
it is infeasible to apply such algorithms to large-scale real
world data due to the expensive computational cost.

In order to tackle these difficulties to work with large-
scale data, instead of solving the relaxed clustering problems
in Eq. (9), we solve the original clustering problem. Specifi-
cally, we constrain the factor matrices of NMTF to be cluster
indicator matrices and minimize the following objective:

min 𝐽7 =
∥∥∥𝑅−𝐺𝑆𝐺𝑇

∥∥∥2

+𝜆 tr
(
𝐺𝑇𝐿𝐺

)
, 𝑠.𝑡. 𝐺 ∈ Ψ , (16)

where 𝑅, 𝐺, 𝑆 are defined as in Eq. (8), and 𝑊 is defined
as in Eq. (10). We call Eq. (16) as the proposed Fast
Nonnegative Matrix Tri-Factorization (F-NMTF) approach.

Note that, the orthogonal constraints on 𝐺 are removed in
Eq. (16), because their purposes (unique solution and label-
ing approximation) are automatically accomplished by the
new constraints. Surprisingly, with the new constraint on the
factor matrix 𝐺 to be cluster indicator matrix, though more
stringent, as shown theoretically shortly in the rest of this
section and empirically later in Section V, the computational
speed of our new approach can be significantly improved.

A. An Efficient Algorithm to Solve the F-NMTF Problem

Although the solution to the optimization problem in
Eq. (9), where 𝐺 is continuous, is well studied in literature,
minimizing 𝐽7 in Eq. (16) that uses cluster indicator matrices
is hard to solve in general, because it is a combinatorial
optimization problem. In our earlier publication [6], we have
discussed how to use clustering indicator matrix to imple-
ment fast NMTF, which, however, only considers rectangle
NMTF involving only quadratic terms of the factor matrices
in the objective. For NMTF objective for symmetric matrix
as in Eq. (16), where the first term involves a fourth-order
term of the variable 𝐺, it is not trivial to decouple Eq. (16) by
taking advantage of the nature of cluster indicator matrices
as did in [6]. Thus we first simplify the problem.

Simplification of the first term of 𝐽7. Because 𝑅 by
definition is symmetric, we denote its eigen-decomposition1

as 𝑅 = 𝑃𝑅Σ𝑅𝑃𝑇
𝑅 , where Σ𝑅 ∈ R𝑟×𝑟 is a diagonal matrix

with diagonal elements as the 𝑟 leading eigenvalues of 𝑅,

1In most practical cases, 𝑅 is also semi-definite positive, which makes
the eigen-decomposition feasible.
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and 𝑃𝑅 is the corresponding eigenvector matrix. Then we
have 𝑅 = 𝐴𝑅𝑄𝑅 (𝐴𝑅𝑄𝑅)

𝑇 , where 𝐴𝑅 = 𝑃𝑅Σ
1
2

𝑅 ∈ R𝑛×𝑟,
and 𝑄𝑅 ∈ R𝑟×𝑟 is an arbitrary orthonormal matrix such
that 𝑄𝑇

𝑅𝑄𝑅 = 𝐼 .
Similarly, given the eigen-decomposition 𝑆 = 𝑃𝑆Σ𝑆𝑃

𝑇
𝑆 ,

we denote 𝐴𝑆 = 𝑃𝑆Σ
1
2

𝑆 . Then we have 𝑆 = 𝐴𝑆𝐴
𝑇
𝑆 . Thus

minimizing the first term of 𝐽7 can be written as

min
∥∥∥𝐴𝑅𝑄𝑅 (𝐴𝑅𝑄𝑅)

𝑇 −𝐺𝐴𝑆 (𝐺𝐴𝑆)
𝑇
∥∥∥2

,

𝑠.𝑡. 𝐺 ∈ Ψ, 𝑄𝑇
𝑅𝑄𝑅 = 𝐼 .

(17)

If matrix 𝐺𝐴𝑆 approximates matrix 𝐴𝑅𝑄𝑅, then matrix
𝐺𝐴𝑆 (𝐺𝐴𝑆)

𝑇 approximates matrix 𝐴𝑅𝑄𝑅 (𝐴𝑅𝑄𝑅)
𝑇 . Thus

solving the problem in Eq. (17) can be reasonably trans-
formed to solve the following problem:

min ∥𝐺𝐴𝑆 −𝐴𝑅𝑄𝑅∥2 𝑠.𝑡. 𝐺 ∈ Ψ, 𝑄𝑇
𝑅𝑄𝑅 = 𝐼 . (18)

Simplification of the second term of 𝐽7. Because
tr

(
𝐺𝑇𝐺

)
= 𝑛 is a constant, minimizing the second term

of 𝐽7 is equivalent to the following problem:

max tr
(
𝐺𝑇𝑊𝐺

)
𝑠.𝑡. 𝐺 ∈ Ψ , (19)

where 𝑊 = 𝐷−
1
2 𝑊𝐷−

1
2 . Eq. (19) is further equivalent to

min
∥∥∥𝐺𝐺𝑇 −𝑊

∥∥∥2

𝑠.𝑡. 𝐺 ∈ Ψ . (20)

Again, because 𝑊 is symmetric, we denote its eigen-
decomposition as 𝑊 = 𝑃𝑊Σ𝑊𝑃𝑇

𝑊 . Thus, we have 𝑊 =

𝐴𝑊𝑄𝑊 (𝐴𝑊𝑄𝑊 )
𝑇 , where 𝐴𝑊 = 𝑃𝑊Σ

1
2

𝑊 and 𝑄𝑊 is an
arbitrary orthonormal matrix. Following the same idea as
above, we can reasonably transform Eq. (20) as:

min ∥𝐺−𝐴𝑊𝑄𝑊 ∥2 𝑠.𝑡. 𝐺 ∈ Ψ, 𝑄𝑇
𝑊𝑄𝑊 = 𝐼 . (21)

Combining Eq. (18) and Eq. (21), the original F-NMTF
problem in Eq. (16) is transformed to the following problem:

min 𝐽8 (𝐺,𝐴𝑆 , 𝑄𝑅, 𝑄𝑊 ) =

∥𝐺𝐴𝑆 −𝐴𝑅𝑄𝑅∥2 + 𝜆 ∥𝐺−𝐴𝑊𝑄𝑊 ∥2
𝑠.𝑡. 𝐺 ∈ Ψ, 𝑄𝑇

𝑅𝑄𝑅 = 𝐼, 𝑄𝑇
𝑊𝑄𝑊 = 𝐼 .

(22)

Optimization algorithm to minimize 𝐽8. We first present
the following useful theorem.

Theorem 5: [6] Given a general optimization problem:

min ∥𝐵 −𝐴𝑄∥2 , 𝑠.𝑡. 𝑄𝑇𝑄 = 𝐼 , (23)

when 𝐴 and 𝐵 are fixed, the optimum 𝑄 is given by
𝑄 = 𝑈𝑉 𝑇 , where 𝐻 = 𝐴𝑇𝐵 and the Singular Value
Decomposition (SVD) of 𝐻 is given by 𝐻 = 𝑈Λ𝑉 𝑇 .

Now we alternatively optimize the four variables of 𝐽8.
First, when 𝐺 is fixed, the problem in Eq. (22) is decou-

pled to the following two problems:

min ∥𝐺𝐴𝑆 −𝐴𝑅𝑄𝑅∥2 𝑠.𝑡. 𝑄𝑇
𝑅𝑄𝑅 = 𝐼 , (24)

min ∥𝐺−𝐴𝑊𝑄𝑊 ∥2 𝑠.𝑡. 𝑄𝑇
𝑊𝑄𝑊 = 𝐼 . (25)

When 𝐴𝑆 is fixed, applying Theorem 5 to Eq. (24), 𝑄𝑅 =
𝑈𝑅𝑉𝑅 where 𝑈𝑅 and 𝑉𝑅 are obtained by SVD on 𝐴𝑇

𝑅𝐺𝐴𝑆 .
When 𝑄𝑅 are fixed, 𝐴𝑆 can be obtained by solving the
linear equation 𝐺𝐴𝑆 = 𝐴𝑅𝑄𝑅, which has been well studied
in literature and can be efficiently solved.

Following the same way above, applying Theorem 5 to
Eq. (25), we obtain 𝑄𝑊 = 𝑈𝑊𝑉𝑊 where 𝑈𝑊 and 𝑉𝑊 are
obtained by SVD on 𝐴𝑇

𝑊𝐺.
Now that 𝐴𝑆 , 𝑄𝑅, 𝑄𝑊 are solved, we fix them to solve

𝐺. Because 𝐺 is a cluster indicator matrix, let 𝐶𝑇 = 𝐴𝑆𝑄𝑆 ,
𝐷𝑇 = 𝐴𝑅𝑄𝑅 and 𝐸 = 𝐴𝑊𝑄𝑊 , Eq. (22) is decoupled to
the following simpler problem for each 𝑖 (1 ≤ 𝑖 ≤ 𝑛):

min
∥∥d⋅𝑖 − 𝐶g𝑇

𝑖⋅
∥∥2

+𝜆 ∥g𝑖⋅ − e𝑖⋅∥2 𝑠.𝑡. 𝐺 ∈ Ψ . (26)

Suppose g𝑖⋅ corresponds to the data point of the 𝑘-th type.
The solution of 𝐺 is obtained by:

𝐺 (𝑖, 𝑗) =

{
1 𝑗 = 𝑗∗ ,

0 otherwise ,
(27)

where

𝑗∗ = argmin
(
∑𝑘−1

𝑘′=1
𝑐𝑘′)+1≤�̂�≤(

∑𝑘
𝑘′=1

𝑐𝑘′)

(
∥d⋅𝑖 − c⋅�̂�∥2 − 2𝜆𝐸

(
𝑖, 𝑘

))
.

(28)
The above procedures are summarized in Algorithm 2.

Due to the nature of alternating optimization, Algorithm 2
is guaranteed to converge to a local minima. A careful
look at Algorithm 2 show that the sizes of the matrices
on which we need to perform SVD are small, which is
the pre-specified low matrix ranks. Thus step 3 and 5 can
be efficiently computed. In addition, step 4 solves a linear
equation, and step 6 enumerates vector norms which is
definitely faster than matrix multiplication. In summary, as
long as the pre-specified ranks of 𝐴𝑅, 𝐴𝑆 and 𝐴𝑊 are not
high, the computation speed of the algorithm will be fast.

Algorithm 2: Algorithm to solve Eq. (22).
Input: The inter-type relationship matrix 𝑅 defined in Eq. (8) and the

intra-type affinity matrix 𝑊 defined in Eq. (10).
1. Initialize 𝐺 ∈ Ψ𝑛×𝑐 with arbitrary cluster indicator matrix.
2. Compute 𝐴𝑅 and 𝐴𝑊 from 𝑅 and 𝑊 respectively.
repeat

3. Compute 𝑄𝑅 = 𝑈𝑅𝑉𝑅 where 𝑈𝑅 and 𝑉𝑅 are obtained by
SVD on 𝐴𝑇

𝑅𝐺𝐴𝑆 .
4. Compute 𝐴𝑆 by solving the linear equation 𝐺𝐴𝑆 = 𝐴𝑅𝑄𝑅.
5. Compute 𝑄𝑊 = 𝑈𝑊𝑉𝑊 where 𝑈𝑊 and 𝑉𝑊 are obtained by
SVD on 𝐴𝑇

𝑊𝐺.
6. Compute 𝐺 by Eq. (27).

until Converges
Output: Cluster indicator matrix 𝐺.

IV. RELATED WORKS

In this section, we review a few related works, and
examine their connections to the proposed approaches.
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Co-clustering of two-type relational data. Co-clustering
has received increased attention in recent years due to the
ubiquity of two-type relational real world data. The original
NMF method decomposes a nonnegative input matrix into
two nonnegative factor matrices, which is shown to be
closely related to simultaneous clustering on the rows and
columns of the input matrix [10]. However, due to the strin-
gent constraints and limited freedom, NMF can only work
with nonnegative input data, typically with unsatisfactory
performance. Ding et al. [3] investigated tri-factorization
to introduce an additional factor matrix 𝑆 to absorb the
different scales among the input data matrix and the two
side factor matrices. They [12] also relaxed the nonnegativity
constraints on the input matrix, thereby expanded the appli-
cability of NMF methods. Lately, manifold regularization
is leveraged to incorporate pairwise affinity among data
objects [4], [5], which, however, dropped the orthogonality
constraints on factor matrices. As one of our contribution, we
impose them into our objectives as in Eq. (9) and emphasize
their importance, theoretically and empirically.

Besides, there also exist many co-clustering using mech-
anisms other than NMF, such as [7], [8].

High-order co-clustering of multi-type relational data.
Due to the progress of modern technologies, especially for
those related to Internet, multi-type relational data have ap-
peared in many real world applications, which arouses con-
siderable research interests for simultaneous clustering on
them. Latent semantic analysis [14] and spectral clustering
[1] that deal with homogenous data were extended to handle
multi-type relational data, which, however, only employ
inter-type relationships. Two recent works used NMF to deal
with multi-type relational data. Wang et al. [16] incorporated
weakly supervised constraints into NMF objective to exploit
human labeling information in clustering. Chen et al. [17]
further developed NMF to deal with star-structured multi-
type relational data, which, however, is not able to work
with general multi-type relational data like the proposed
approaches.

All above mentioned NMF based (high-order) co-
clustering methods use the traditional nonnegative con-
straints on the factor matrices, which, as discussed earlier,
lead to solution algorithms with intensive multiplications of
large matrices. In contrast, the proposed F-NMTF method
using cluster indicator matrix could decouple the original
optimization problem into a number of smaller subproblems
requiring much less matrix multiplications, which make it
more suitable for practical use.

V. EMPIRICAL STUDIES

In this section we experimentally evaluate the proposed
O-NMTF and F-NMTF approaches. Because our approaches
present a general clustering framework applicable to a va-
riety of data types with different conditions, we evaluate it

Table I
DATA SETS USED IN SECTION V-A AND SECTION V-B.

AT&T Yale Newsgroup4 WebKB4 WebKB4 RCV

# data 400 165 3970 8280 2340 193844
# classes 40 15 4 7 20 1979

in (simultaneous) clustering tasks for single-type, two-type,
and multi-type relational data with different experimental
settings.

The two proposed approaches have a tradeoff parameter
𝜆 in Eq. (9) and Eq. (22). We will investigate it with some
details in Section V-A. In F-NMTF approach, we have an
additional parameter, i.e., the pre-specified ranks for low-
rank matrix approximations of SVDs in steps 3 and 5 of
Algorithm 2. We set it as min (𝑐, rank (𝑀)), where 𝑐 =∑𝐾

𝑘=1 𝑐𝑘 as defined before and 𝑀 is the input matrix of
SVD in steps 3 and 5 of Algorithm 2.

In order to exploit as much information as possible and
make performance comparison more reasonable, we also in-
corporate weakly supervised labeling information, including
both must-links and cannot-links for a give type of data, into
the pairwise affinity matrix 𝑊 in Eq. (16) following [20].

To evaluate the clustering performance, we adopt two
standard measures widely used in literature [4]: clustering
accuracy and normalized mutual information (NMI).

A. Study on Regularization Parameter

In Section II-B, we theoretically point out the importance
of the orthogonal constraints on the factor matrices when
NMF objective involves manifold regularization, such as our
objective in Eq. (9). Therefore we first evaluate its impact
on the regularization parameter 𝜆 in Eq. (9).

We use AT&T and Yale face databases in our experiments.
The data are summarized in Table I. Following standard
experimental conventions using face data, we resize all the
face images to 32× 32.

Experimental settings. In unsupervised clustering on ho-
mogeneous data, we need two inputs from a data set: data
features and pairwise affinities. The former is obtained using

𝑅 =

[
0 𝑋

𝑋𝑇 0

]
from the feature matrix of the testing data

sets. The latter are computed by constructing neighborhood
graphs following [5], where the neighborhood size is set 10,
same as [5]. The cluster numbers of the data sets are set as
the ground truth.

We compare our O-NMTF approach against two related
clustering methods that combine NMF and Laplacian regu-
larization: (1) graph regularized NMF (GNMF) [4] method
and (2) dual regularized co-clustering (DRCC) [5] method.
These two methods are largely same, except that the former
uses two-factor factorization and imposes Laplacian regu-
larization on one side factor, while the latter uses the three-
factor factorization and imposes Laplacian regularizations
on the both side factors. Following [5], two graphs are built
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(a) AT&T data set.
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(b) Yale data set.

Figure 2. Clustering accuracy of compared methods on homogenous data
with respect to the regularization parameter 𝜆.

on both feature side and data point side for DRCC method,
and its parameters are set as 𝜆 = 𝜇 which is same as in
[5]. Note that, when using Laplacian regularization, neither
of these two methods considers the orthogonalities on the
factor matrices, which, however, as analyzed in Section II-B,
plays a significant role in NMF based optimization objective
involving manifold regularization.

Experimental results. For each clustering method with each
different value of 𝜆, we repeat the experiment for 100 times
with randomly initialized 𝐺. The average clustering accuracy
over the 100 trials are reported. Figure 2 shows the results of
the three compared methods on AT&T and Yale data set. It
can be seen that, all the three methods performs reasonably
well at small 𝜆 = 0.01, and our O-NMTF approach is
slightly better. As 𝜆 increases gradually to 𝜆 = 1, the
clustering performances of both GNMF and DRCC methods
drop very quickly, while the performance of our O-NMTF
approach still remains stably. This is because the Laplacian
term becomes dominant when 𝜆 is big. For the two non-
orthogonal methods, in the solution of 𝐺∗, different columns
become very similar — they are close to the degenerate
solution of the Laplacian: 𝐺∗ ≈ [e, . . . , e], because e is
the eigenvector corresponding to smallest eigenvalue of the
Laplacian. Thus the cluster assignment at this case is rather
random, resulting low accuracy.

A general picture of the importance of the orthogonal
constraints is as the following. When 𝜆 is small (𝜆 ≃ 0.01),
the solution and performance of the orthogonal NMF for-
mulation like our approach is similar to its non-orthogonal
counterpart as GNMF and DRCC. When 𝜆 is medium
or large (𝜆 ≃ 1), the solution to orthogonal formulation
gives better and more stable accuracy; in this case, different
columns of the optimal 𝐺∗ of its non-orthogonal counterpart
are very similar as explained above.

Upon the above results, we set 𝜆 = 0.01 in the sequel.

B. Co-Clustering of Two-Type Related Data

Because two-type relational data is the most fundamental
multi-type relational data, we evaluate the proposed methods
in co-clustering tasks. Following [5], we use the four bench-
mark data sets as summarized in Table I. The RCV1 data set
has very big sample size and feature size [21]. In order to
run the experiments on contemporary computers, following
previous studies [21], we remove the keywords (features)

appearing less than 100 times in the corpus, which results
in 1979 (out of 47236) keywords in our experiments.

Experimental settings. In semi-supervised clustering of
two-type relational data, we need three inputs from a data
set: the relationship matrix between the two types of data,
the pairwise affinity matrices for each type of data, and the
weakly supervised constraints. We obtain the relationship
matrices directly from the testing data sets. We construct
neighborhood graphs from the both sides of the relationship
matrix following [5] to obtain the pairwise affinity matri-
ces, where the neighborhood size is set as 10. Instead of
constraining the data from both data point side and feature
side, we only pick up constraints from the data point side,
same as in most real world applications. Following [16], we
generate the weakly supervised constraints as follows: for
each constraint, we randomly pick up one pair of data points
from the input data sets (the labels of which are available
for evaluation purpose but unavailable for clustering). If
the labels of this pair of points are the same, we generate
a must-link. If the labels are different, a cannot-link is
generated. We pick up 50 constraints for each data set. In
all the experiments, the results are averaged over 100 trials
to eliminate the difference caused by constraints and the
perturbation caused by initialization.

We compare the proposed approaches against two related
clustering methods: (1) graph regularized NMF (GNMF)
[4] method and (2) dual regularized co-clustering (DRCC)
[5] method. Note that, these two methods only incorporate
unsupervised pairwise affinity into NMF, but do not involve
supervision information. Therefore, we also compare our
approach against the following two methods: (3) penalized
matrix factorization (PMF) [16] method and (4) constrained
𝐾-means (CKmeans) [22] method. Both of them conduct
clustering upon inter-type relationships and weakly super-
vised constraints.

Experimental results. The clustering performance compar-
isons on the four experimental data sets are reported in
Table II. The two proposed approaches consistently out-
performs the other methods, sometimes very significantly,
which confirms their effectiveness in co-clustering of two-
type relational data. In addition, the proposed O-NMTF
approach is generally better than F-NMTF approach, which
is consistent with their mathematical formulations in that the
factor matrices in the former are continuous and have better
data representation power.

We also report the run time of the compared methods. All
our experiments are performed on a Dell PowerEdge 2900
server, which has two quad-core Intel Xeon 5300 sequence
CPU processors at 3.0 GHz and 48G bytes memory. From
the results in Table III we can see that the F-NMTF method
is only slower than CKMeans method, which, however, has
much worse clustering performance. These results demon-
strate that F-NMTF method is not only better in terms of
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Table II
CLUSTERING ACCURACY AND NMI COMPARISONS ON THE FOUR

TWO-TYPE RELATIONAL DATA SETS.

Methods Newsgroup4 WebKB4 WebACE RCV1

Accuracy

GNMF 0.889 0.731 0.513 0.202
DRCC 0.931 0.738 0.568 0.210
PMF 0.923 0.727 0.566 0.214
CKMeans 0.643 0.594 0.477 0.185
O-NMTF 0.949 0.781 0.615 0.251
F-NMTF 0.933 0.751 0.591 0.247

NMI

GNMF 0.716 0.462 0.618 0.313
DRCC 0.782 0.491 0.629 0.316
PMF 0.758 0.488 0.602 0.309
CKMeans 0.612 0.375 0.491 0.268
O-NMTF 0.801 0.557 0.652 0.339
F-NMTF 0.785 0.521 0.630 0.327

Table III
RUN TIME (IN SECONDS) OF THE COMPARED METHODS.

Methods Newsgroup4 WebKB4 WebACE RCV1

GNMF 1.07× 104 4.41× 104 5.36× 103 1.48× 106

DRCC 1.81× 104 6.33× 104 8.61× 103 2.18× 106

PMF 2.15× 104 7.53× 104 1.13× 104 2.96× 106

CKMeans 6.57× 103 2.06× 104 2.15× 103 8.51× 105

O-NMTF 1.51× 104 4.52× 104 6.01× 104 1.68× 106

F-NMTF 7.64× 103 2.76× 104 3.78× 103 1.04× 106

clustering performance measured by accuracy and NMI, but
also faster than state-of-the-art (co-)clustering methods.

In summary, the proposed F-NMTF approach has com-
petitive clustering performance to the proposed O-NMTF
approach, but with much faster computational speed. Both
of the two proposed approaches have satisfactory clustering
performance on all the four benchmark data sets.

C. High-Order Co-Clustering of Multi-Type Related Data

Finally, we evaluate the proposed approaches for simul-
taneous clustering of multi-related data by using both inter-
type and intra-type information, which is the ultimate goal
of this work.

Data set. We use a data set sampled from the Bulletin Board
Systems (BBS) in [23]. In a BBS system, the users first
register IDs. Using their IDs, the users can read messages
published by other users and leave their own messages. The
whole system consists of many discussion fields, each of
which contains many boards with similar themes. The boards
are named to reflect the contents of the articles in them
[23]. Once an ID posts a new article (initial article) on one
board, the others can show their opinions by replying the
initial article using reply articles. The initial article and reply
articles constitute a topic. Each board contains many topics.
Each topic connects several IDs through articles.

We use two subsets of the BBS data in [23]. In each
data set, several boards are sampled from several discussion
fields. In each board, 80 topics are sampled randomly. The
names of the fields and boards that we use are listed in
Table IV. The user IDs related to these topics and boards
are found out. Then the tensor is constructed by the co-
occurrence of these three data types.

Table IV
TWO SUBSETS OF DATA SAMPLED FROM A BBS DATA SET [23].

Data set 1 Data set 2

Field name Board name Field name Board name

Comp. Sci. C++ Builder Comp. Sci. Virus
Comp. Sci. Delphi Comp. Sci. Unix
Comp. Sci. Database Entertainment Music

Sports Basketball Entertainment Dance
Sports Volleyball Society Law
Sports Badminton Society Commerce

Experimental settings. In the experiments, there exist three
data types: topics (𝒳1), user IDs (𝒳2) and boards (𝒳3). The
topic-user matrix (𝑅12) is constructed with the number of
articles each user posted in each topics with TF-IDF normal-
ization. The topic-board matrix (𝑅13) is constructed such
that if a topic belongs to a board, then the corresponding
entry of 𝑅13 is 1. 𝑅23 is constructed such that if the user
had posted any articles on that board, then the corresponding
element of 𝑅23 is set to 1. Finally the elements of 𝑅23 are
also normalized using TF-IDF scheme.

We only use the pairwise affinity matrices 𝑊1 and 𝑊2

for 𝒳1 and 𝒳2, which are constructed using 𝑅12 in a same
way as in Section V-B. We set 𝑊3 = 𝐼 to emulate the
case in real applications when the unsupervised intra-type
information of a given type, i.e., pairwise affinities between
data objects of 𝒳3 in the current case, is not available.

Following the settings in [16], we randomly generate 500
constraints on 𝒳2 based upon their registered profiles, 100
constraints on 𝒳1 based upon the boards they belong to, and
10 constraints on 𝒳3 based upon their corresponding fields.

Besides our approach, the results the Spectral relational
Clustering (SRC) [1] method, Multiple Latent Semantic
Analysis (MLSA) [14] method and PMF method are also
included for comparison. All these three methods were
devised for simultaneous clustering of multi-related data.
However, none of them uses the intra-type information as we
do. The evaluation metric used in the current experiments
is the F1 score computed using the clustering results on
topics, the ground truth of which is set to be the classes
corresponding to the field names they belong to.

Experimental results. We repeat the experiments for both
PMF method and our approaches for 100 times with ran-
domly initialized 𝐺, and average F1 scores are reported.
The experimental results are shown in Table V, in which
the value of 𝑑 represent different number of clusters. From
the table we can see the clear advantages of the proposed
approaches, which again demonstrate the usefulness of the
proposed method in the tasks of simultaneous clustering of
multi-type relational data.

We also report the run time of the compared methods
on the same machine as that used in Section V-B. The
results in Table VI show that our F-NMTF method again
is much faster the compared methods, which demonstrate
its computational efficiency and adds to its practical values.
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Table V
THE F1 MEASURE OF THE FOUR COMPARED ALGORITHMS ON THE

TESTING DATA SET 1 (TOP) AND TESTING DATA SET 2 (BOTTOM).

MLSA SRC PMF O-NMTF F-NMTF

𝑑 = 3 0.712 0.731 0.795 0.847 0.821
𝑑 = 5 0.756 0.634 0.815 0.844 0.830
𝑑 = 7 0.711 0.621 0.780 0.819 0.811
𝑑 = 9 0.699 0.482 0.734 0.767 0.747

𝑑 = 3 0.761 0.763 0.795 0.828 0.819
𝑑 = 5 0.761 0.730 0.796 0.821 0.813
𝑑 = 7 0.729 0.701 0.794 0.824 0.820
𝑑 = 9 0.683 0.660 0.792 0.819 0.809

Table VI
THE RUN TIME (IN SECONDS) OF THE FOUR COMPARED ALGORITHMS

ON THE TWO TESTING DATA SETS, WHERE THE CLUSTER NUMBER IS

𝑑 = 9.

MLSA SRC PMF O-NMTF F-NMTF

Data set 1 174.3 161.4 232.1 415.2 115.1
Data set 2 184.5 169.2 241.6 469.0 132.3

VI. CONCLUSIONS

In this paper, we presented a general O-NMTF framework
for high-order co-clustering of multi-type relational data.
Our approach simultaneously clusters different types of
data using the inter-type relationships by transforming the
original NMTF problem into a symmetric NMTF problem,
into which we can also optionally incorporate the intra-type
information. Instead of constraining the factor matrices of
NMTF to be nonnegative as in existing methods, we further
proposed a novel F-NMTF approach to constrain them to
be cluster indicator matrices. As a result, the optimization
problem of the proposed method can be decoupled into a
number of subproblems of smaller sizes requiring much less
matrix multiplications, which makes our new algorithm of
particular use for large-scale real world data. Extensive em-
pirical studies evaluated various aspects of our approach, and
demonstrated the usefulness of the proposed approaches.
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