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Abstract

Multi-instance learning (MIL) considers input as bags of instances, in which la-
bels are assigned to the bags. MIL is useful in many real-world applications. For
example, in image categorization semantic meanings (labels) of an image mostly
arise from its regions (instances) instead of the entire image (bag). Existing MIL
methods typically build their models using theBag-to-Bag (B2B)distance, which
are often computationally expensive and may not truly reflect the semantic sim-
ilarities. To tackle this, in this paper we approach MIL problems from a new
perspective using theClass-to-Bag (C2B)distance, which directly assesses the
relationships between the classes and the bags. Taking intoaccount the two ma-
jor challenges in MIL, high heterogeneity on data and weak label association, we
propose a novel Maximum Margin Multi-Instance Learning (M3I) approach to
parameterize the C2B distance by introducing the class specific distance metrics
and the locally adaptive significance coefficients. We applyour new approach to
the automatic image categorization tasks on three (one single-label and two multi-
label) benchmark data sets. Extensive experiments have demonstrated promising
results that validate the proposed method.

1 Introduction

Traditional image categorization methods usually consider an image as one indiscrete entity, which,
however, neglects an important fact that the semantic meanings (labels) of an image mostly arise
from its constituent regions, but not the entire image. For example, the labels “person” and “car”
associated with the query image in Figure 1 are only characterized by the regions in two bounding
boxes, respectively, rather than the whole image. Therefore, modeling the relationships between la-
bels and regions (instead of the entire image) could potentially reduce the noise in the corresponding
feature space, and the learned semantic models could be moreaccurate.

In recent years, image representation techniques using semi-local, or patch-based, features, such as
SIFT, have demonstrated some of the best performance in image retrieval and object recognition
applications. These algorithms choose a set of patches in animage, and for each patch compute
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Figure 1: Diagram of the proposed M3I approach. Our task is to learn class specific distance met-
rics Mk and significance coefficientswj

k from the training data, with which we compute the C2B
distances from the classes to a query imageX for classification.

a fixed-length feature vector. This gives a set of vectors perimage, where the size of the set can
vary from image to image. Armed with these patch-based features, image categorization is recently
formulated as amulti-instance learning(MIL) task [1–6]. Under the framework of MIL, an image
is viewed as abag, which contains a number ofinstancescorresponding to the regions in the image.
If any of these instances is related to a semantic concept, the image will be associated with the
corresponding label. The goal of MIL is to construct a learner to classify unseen image bags.

1.1 Learning Class-to-Bag (C2B) distance for multi-instance data

In MIL data objects are represented as bags of instances, therefore the distance between the objects
is a set-to-set distance. Compared to traditional single-instance data that use vector distance such as
Euclidean distance, estimating theBag-to-Bag (B2B)distance in MIL is more challenging [7,8]. In
addition, the B2B distances often do not truly reflect the semantic similarities [9]. For example, two
images containing one common object may also have other visually incompatible objects, which
makes these two images less similar in terms of the B2B distance. Therefore, instead of measuring
the similarities between bags, in this paper we approach MILfrom a new perspective using the
Class-to-Bag (C2B)distance, which assesses the relationships between the classes and the bags.

Measuring the distance between images (bags) and classes was first introduced in [9] for object
recognition, which used theBag-to-Class (B2C) distanceinstead of the C2B distance. Given a
triplet constraint(i, p, n) that imagei is more relevant to classp than it is to classn, the C2B
distance formulates this asDpi < Dni, while the B2C distance formulates this asDip < Din. It
seems these two formulations are similar, however, they aredifferent when learning parameterized
distance, the main goal of this paper. To be more specific, forthe C2B distance we only need to
parameterize training instances, which are available during the training phase. In contrast, for the
B2C distance, parameterizing instances in query images hasto be involved, which is not always
feasible because we typically do not know them beforehand. This difference will become more
clear shortly when we mathematically define the C2B distance.

1.2 Challenges and opportunities of MIL

Multi-instance data are different from traditional single-instance data, which bring new opportunities
to improve the classification performance, though togetherwith more challenges. We first explore
these challenges, as well as to find opportunities to enhancethe C2B distance introduced above.

Learning class specific distance metrics.Due to the well-known semantic gap between low-level
visual features and high-level semantic concepts [10], choosing an appropriate distance metric plays
an important role in establishing an effective image categorization system, as well as other general
MIL models. Existing metric learning methods [5,6] for multi-instance data only learned one global
metric for an entire data set. However, multi-instance databy nature are highly heterogeneous, thus
a homogeneous distance metric may not suffice to characterize different classes of objects in a same
data set. For example, in Figure 1 the shape and color characterizations of a person are definitely
different from those of a car. To this end, we consider to learn multiple distance metrics, one for each
class, for a multi-instance data set to capture the correlations among the features within each object
category. The metrics are learned simultaneously by forming a maximum margin optimization prob-
lem with the constraints that the C2B distances from the correct classes of an training object to it
should be less than the distances from other classes to it by amargin.
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Figure 2: The learned SCs of the instances in a same image whenthey serve as training samples for
different classes. For example, in Figure 2(a) the SC of the horse instance in class “person” is 0.175,
whereas its SC in class “horse” is 2.861. As a result, the horse instance contributes a lot in the C2B
distance from class “horse” to a query image, while having much less impact in the C2B distance
from class “person” to a query image.

Learning locally adaptive C2B distance.Different from the classification problems for traditional
single-instance data, in MIL the classes are weakly associated to the bags,i.e., a label is assigned
to a bag as long as one of its instance belongs to the class. As aresult, although a bag is associated
with a class, some, or even most, of its instances may not be truly related to the class. For example,
in the query image in Figure 1, the instance in the left bounding box does not contribute to the label
“person”. Intuitively, the instances in a super-bag of a class should not contribute equally in predict-
ing labels for a query image. Instead, they should be properly weighted. With this recognition, we
formulate another maximum margin optimization problem to learn multiple weights for a training
instance, one for each of its labeled classes. The resulted weight reflects the relative importance of
the training instance with respect to a class, which we call asSignificance Coefficient (SC). Ideally,
the SC of an instance with respect to its true belonging classshould be large, whereas its SC with
respect other classes should be small. In Figure 2, we show the learned SCs for the instances in
some images when they serve as training samples for their labeled classes. Because the image in
Figure 2(a) has two labels, this image, thereby its two instances, serves as a training sample for both
class “person” (left) and “horse” (right). Although the learned SC of the horse instance is very low
when it is in the super-bag of “person” (0.175) as in the left panel of Figure 2(a), its SC (2.861) is
relatively high when it is in the super-bag of “horse”, its true belonging class, as in right panel of
Figure 2(a). The same observations can also be seen in the rest examples, which are perfectly in
accordance with our expectations.

With the above two enhancements to C2B distance, the class specific metrics and SCs, the two diffi-
culties in MIL are addressed. Because these two components of the proposed approach are learned
from two maximum margin optimization problems, we call the proposed approach as Maximum
Margin Multi-Instance Learning (M3I) approach, which is schematically illustrated in Figure 1.

2 Learning C2B distance for multi-instance data via M3I approach

In this section, we first briefly formalize the MIL problem andthe C2B distance for a multi-instance
data set, where we provide the notations used in this paper. Then we gradually develop the proposed
M3I approach to incorporate the class specific distance metrics and the locally adaptive SCs into the
C2B distance, together with its learning algorithms.

Problem formalization of MIL. Given a multi-instance data set withK classes andN training
bags, we denote the training set byD = {(Xi,yi)}

N

i=1. EachXi =
{

x1
i , . . . ,x

ni

i

}

is a bag ofni

instances, wherexj
i ∈ R

p is a vector ofp dimensions. The class assignment indicatoryi ∈ {0, 1}K

is a binary vector, withyi (k) = 1 indicating that bagXi belongs to thek-th class andyi (k) = 0

otherwise. We writeY = [y1, . . . ,yN ]
T . If

∑K

k=1 Yik = 1, i.e., each bag belongs to exactly one
class, the data set is a single-label data set; if

∑K

k=1 Yik ≥ 1, i.e., each bag may be associated with
more than one class label, the data set is a multi-label data set [11–14]. In the setting of MIL, we
assume that (I) bagX is assigned to thek-th class⇐⇒ at least one instance ofX belongs to the
k-th class; and (II) bagX is not assigned to thek-th class⇐⇒ no instance ofX belongs to thek-th
class. Our task is to learn fromD a classifier that is able to predict labels for a new query bag.
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For convenience, we denoteP (Xi) as the classes that bagXi belongs to (positive classes), and
N (Xi) as the classes thatXi does not belong to (negative classes).

C2B distance in MIL. In order to compute the C2B distance, we represent every class as a super-
bag,i.e., a set consisting of all the instances in every bag belonging to a class:

Sk =
{

s1k, . . . , s
mk

k

}

=
{

x
j
i | Yik = 1

}

, (1)

wheresjk is an instance ofSk that comes from one of the training bags belonging to thek-th class,
andmk =

∑

{i|Yik=1} ni is the total number of the instances inSk. Note that, in single-label data

where each bag belongs to only one class, we haveSk ∩ Sl = ∅ (∀ k 6= l) and
∑K

k=1 mk =
∑N

i=1 ni. In multi-label data where each bag (thereby each instance)may belong to more than one
class [11–14], we haveSk ∩Sl 6= ∅ (∀ k 6= l) and

∑K

k=1 mk ≥
∑N

i=1 ni, i.e., different super-bags
may overlap and onexj

i may appear in multiple super-bags.

The elementary distance from an instance in a super-bag to a bag is defined as the distance between
this instance and its nearest neighbor instance in the bag:

d
(

s
j
k, Xi

)

=
∥

∥

∥
s
j
k − s̃

j
k

∥

∥

∥

2

M
, (2)

wheres̃jk is the nearest neighbor instance ofs
j
k in Xi.

Then we compute the C2B distance from a super-bagSk to a data bagXi as following:

D (Sk, Xi) =

mk
∑

j=1

d
(

s
j
k, Xi

)

=

mk
∑

j=1

∥

∥

∥
s
j
k − s̃

j
k

∥

∥

∥

2

. (3)

2.1 Parameterized C2B distance of the M3I approach

Because the C2B distance defined in Eq. (3) does not take into account the challenging properties of
multi-instance data as discussed in Section 1.2, we furtherdevelop it in the rest of this subsection.

Class specific distance metrics.The C2B distance defined in Eq. (3) is a Euclidean distance, which
is independent of the input data. In order to capture the second-order statistics of the input data that
could potentially improve the subsequent classification [5, 6], we consider to use the Mahalanobis
distance with an appropriate distance metric. With the recognition of the high heterogeneity in multi-
instance data, instead of learning a global distance metricas in existing works [5, 6], we propose to
learnK different class specific distance metrics{Mk}

K

k=1 ⊂ R
p×p, one for each class. Note that,

using class specific distance metrics is only feasible with the distance between classes and bags
(either C2B or B2C distance), because we are only concerned with intra-class distances. In contrast,
traditional B2B distance needs to compute the distances between bags belonging to different classes
involving inter-class distance metrics, which inevitablycomplicates the problem.

Specifically, instead of using Eq. (3), we compute C2B distance using the Mahalanobis distance as:

D (Sk, Xi) =

mk
∑

j=1

[

(

s
j
k − s̃

j
k

)T

Mk

(

s
j
k − s̃

j
k

)

]

. (4)

Locally adaptive C2B distance. Now we further develop the C2B distance defined in Eq. (4) to
address the labeling ambiguity in multi-instance scenarios. We propose a locally adaptive C2B
distance by weighting the instances in a super-bag upon their relevance to the corresponding class.

Due to the weak association between the instances and the baglabels, not every instance in a super-
bag of a class truly characterizes the corresponding semantic concept. For example, in Figure 2(a)
the region for the horse object is in the super-bag of “person” class, because the entire image is
labeled with both “person” and “horse”. As a result, intuitively, we should give a smaller, or even
no, weight to the horse instance when determining whether toassign “person” label to a query
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image; and give it a higher weight when deciding “horse” label. To be more precise, letwj
k be the

weight associated withsjk, we wish to learn the C2B distance as following:

D (Sk, Xi) =

mk
∑

j=1

[

wj
k

(

s
j
k − s̃

j
k

)T

Mk

(

s
j
k − s̃

j
k

)

]

. (5)

Becausewj
k reflects the relative importance of instances

j
k when determining the label for thek-th

class, we call it as the “Significance Coefficient (SC)” ofs
j
k.

2.2 Procedures to learnMk andwj
k

Given the parameterized C2B distance defined in Eq. (5) for a multi-instance data set, our learning
objects are the two sets of variablesMk andwj

k. Motivated by metric learning from relative compar-
isons [15–17], we learnMk andwj

k by constraining that the C2B distances from the true belonging
classes of bagXi to it are smaller than the distances from any other classes toit by a margin:

∀ p ∈ P (Xi) , n ∈ N (Xi) : D (Sn, Xi)−D (Sp, Xi) ≥ 1− ξipn, (6)

whereξipn is a slack variable because the constraints usually can not be completely satisfied in real
world data. Therefore,ξipn measures the deviation from the strict constraint for the triplet (i, p, n).
In the following, we formulate two maximum margin optimization problems to learn the two sets of
target variablesMk andwj

k, one for each of them.

Optimizing Mk. First we fixwj
k to optimizeMk. To avoid over-fitting, as in support vector machine

(SVM), we minimize the overall C2B distances fromXi’s associated classes to itself and the total
amount of slack. Specifically, we solve the following convexoptimization problem:

min
M1,...,MK

∑

i, p∈P(Xi),

D (Sp, Xi) + C
∑

i, p∈P(Xi), n∈N (Xi)

ξipn,

s.t. ∀ p ∈ P (Xi) , n ∈ N (Xi) : ξipn ≥ 0, D (Sn, Xi)−D (Sp, Xi) ≥ 1− ξipn,

∀ k :Mk � 0,

(7)

whereC is a trade-off parameter, acting same as in SVM. The optimization problem in Eq. (7) is a
semi-definite programming (SDP) problem, which can be solved by standard SDP solvers. However,
standard SDP solvers are computationally expensive. Therefore, we use the gradient descent SDP
solver introduced in [18] to solve the problem.

Optimizing wj
k. Then we fixMk to optimizewj

k. Let dM
(

s
j
k, Xi

)

=
(

s
j
k − s̃

j
k

)T

Mk

(

s
j
k − s̃

j
k

)

,

we denotedki =
[

dM
(

s1k, Xi

)

, . . . , dM (smk

k , Xi)
]T

. Let wk =
[

w1
k, . . . , w

mk

k

]T
, by the defini-

tion in Eq. (5) we rewrite Eq. (6) as following:

wT
ndni −wT

p dpi ≥ 1− ξipn, ∀ p ∈ P (Xi) , n ∈ N (Xi) . (8)

In order to make use of the standard large-margin classification framework and simplify our deriva-

tion, following [17] we expand our notations. Letw =
[

wT
1 , . . . ,w

T
K

]T
, which is the concate-

nation of the class-specific weight vectorswk. Thus, each class-specific weight vectorwk corre-
sponds a subrange ofw. Similarly, we expand the distance vectors and letdipn be a vector of
the same length asw, such that all its entries are 0 except the subranges corresponding to classp
and classn, which are set to be−dpi anddni respectively. It is straightforward to to verify that
wT

ndni −wT
p dpi = wTdipn. Thus Eq. (8) becomes:

wTdipn ≥ 1− ξipn, ∀ p ∈ P (Xi) , n ∈ N (Xi) . (9)

Following the standard soft-margin SVM framework, we minimize the cumulative deviation over all
triplet constraints(i, p, n) and imposeℓ2-norm regularization onw as following:

min
w, ξipn

1

2
‖w −w(0)‖2 + C

∑

i,p∈P(Xi),n∈N (Xi)

ξipn

s.t. ∀ i, p ∈ P (Xi) , n ∈ N (Xi) : ξipn ≥ 0, wTdipn ≥ 1− ξipn,

∀ j : w (j) > 0,

(10)
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whereC controls the tradeoff between the loss and regularization terms. The positivity constraint
on the elements ofw is due to the fact that our goal is to define a distance functionwhich, by
definition, is a positive definite operator. In addition, we also enforce a prior weight vectorw(0) in
the objective. In standard SVM, all the entries ofw are set as 0 as default. In our objective, however,
we set all its entries to be 1, because we think all the instances are equally important if we have no
prior training knowledge.

We solve Eq. (10) using the solver introduced in [17], which solves the dual problem by an accel-
erated iterative method. Upon solution, we obtainw, which can be decomposed into the expected
instance weightswj

k for every instance with respect to its labeled classes.

2.3 Label prediction using C2B distance

Solving the optimization problems in Eq. (7) and Eq. (10) foran input multi-instance data setD, we
obtain the learned class specific distance metricsMk (1 ≤ k ≤ K) and the significance coefficients
wj

k (1 ≤ k ≤ K, 1 ≤ j ≤ mk). Given a query bagX , upon the learnedMk andwj
k we can compute

the parameterized C2B distancesD (Sk, X) (1 ≤ k ≤ K) from all the classes to the query bag using
Eq. (5). SortingD (Sk, X), we can easily assign labels to the query bag.

For single-label multi-instance data, in which each bag belongs to one and only one class, we assign
X to the class with the minimum C2B distance,i.e., l (X) = argmink D (Sk, X).

For multi-label multi-instance data, in which one bag can beassociated with more than one class
label, we need a threshold to make prediction. For every class, we learn a threshold from the training
data asbk =

∑N

i=1 YikD (Sk, Xi) /
∑K

i=1 Yik, which is the average of the C2B distances from the
k-th class to all its training bags. Then we determine the class membership forX using the following
rule: assignX to thek-th class ifD (Sk, X) < bk, and not otherwise.

3 Related works

Learning B2C distance.Due to the unsatisfactory performance and high computational complexity
of machine vision models using B2B distance, a new perspective to compute B2C distance was
presented in [9]. This non-parametric model does not involve training process. Though simple, it
achieved promising results in object recognition. However, this method heavily relies on the large
number of local features in the training and testing set. To address this, Wanget al. [18] further
developed this method by introducing distance metrics, to achieve better results with a small amount
of training. However, as discussed earlier in Section 1.1, B2C distance is hard to parameterize in
may real world applications. To tackle this, we propose to use C2B distance for multi-instance data.

Learning distance metric for MIL. As demonstrated in literature [5,6], learning a distance metric
from training data to maintain class information is beneficial for MIL. However, existing methods
[5, 6] learned only one global metric for a multi-instance data set, which is insufficient because the
objects in multi-instance data by nature are highly heterogeneous. Recognizing this, we propose to
learn multiple distance metrics, one for each class. [18] took a same perspective as us, though it does
not clearly formalize image classification as a MIL task.

Learning locally adaptive distance. Due to the weak label association in MIL, instead of consid-
ering all the instance equally important, we assign locallyadaptive SCs to every instance in training
data. Locally adaptive distance was first introduced in [16,17] for B2B distance. Compared to it,
the proposed C2B distance is more advantageous. First, C2B distance measures the relevance be-
tween a class and a bag, hence label prediction can be naturally made upon the resulted distance,
whereas an additional classification step [16] or transformation [17] is required when B2B distance
is used. Second, C2B distance directly assesses the relations between semantic concepts and image
regions, hence it could narrow the gap between high-level semantic concepts and low-level visual
features. Last, but not least, our C2B distance requires significantly less computation. Specifically,
the triplet constraints used in C2B model are constructed between classes and bags whose number
isO

(

NK2
)

, while those used in B2B model [16,17] are constructed between bags with number of
O
(

N3
)

. AsN (bag number) is typically much larger thanK (class number), our approach is much
more computationally efficient. Indeed, a constraint selection step was involved in [16,17].
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Table 1: Performance comparison
on Object Recognition data set.

Methods Accuracy

DD 0.676 ± 0.074
DD-SVM 0.754 ± 0.054
MIMLBoost 0.793 ± 0.033
MIMLSVM 0.796 ± 0.042
B2C 0.672 ± 0.013
B2C-M 0.715 ± 0.032

C2B 0.797 ± 0.015
C2B-M 0.815 ± 0.026
C2B-SC 0.820 ± 0.031
M3I 0.832± 0.029

Table 2: Performance comparison on Corel5K data set.
Methods Hamming

loss↓
One-error

↓
Coverage

↓
Rank loss

↓
Avg. prec.

↑

MIMLBoost 0.282 0.584 5.974 0.281 0.467
MIMLSVM 0.271 0.581 5.993 0.289 0.472
DM 0.243 0.575 5.512 0.236 0.541
MildML 0.238 0.569 5.107 0.233 0.554
B2C 0.275 0.580 5.823 0.283 0.470
B2C-M 0.270 0.562 5.675 0.241 0.493

C2B 0.224 0.545 5.032 0.229 0.565
C2B-M 0.216 0.538 4.912 0.218 0.572
C2B-SC 0.211 0.527 4.903 0.213 0.580
M3I 0.207 0.512 4.760 0.209 0.593

4 Experimental results

In this section, we experimentally evaluate the proposed M3I approach in image categorization tasks
on three benchmark data sets: Object Recognition data set [2] which is a single-label image data set;
and Corel5K data set [19] and PASCAL2010 data set [20] which are multi-label data sets.

4.1 Classification on single-label image data

Because the proposed M3I approach comprises two components, class specific metricsand signifi-
cant coefficients, we implement four versions of our approach and evaluate their performances: (1)
the simplest C2B distance, denoted as “C2B”, computed by Eq.(3), in which no learning is involved;
(2) C2B distance with class specific metrics, denoted as “C2B-M”, computed by Eq. (4); (3) C2B
distance with SCs, denoted as “C2B-SC” by Eq. (5) and setMk = I; and (4) the C2B distance
computed by proposed M3I approach using Eq. (5). We compare our methods against the follow-
ing established MIL algorithms including (A) Diversity Density (DD) method [1], (B) DD-SVM
method [2], (C) MIMLBoost method [3] and (D) MIMLSVM method [3]. We also compare our
method to the two related methods,i.e., (E) B2C method [9] and (F) B2C-M method [18]. These
two methods are not MIL methods, therefore we consider each instance as an image descriptor fol-
lowing [9, 18]. We implement these methods following the original papers. The parameters of DD
and DD-SVM are set according to the settings that resulted inthe best performance [1,2]. The boost-
ing rounds for MIMLBoost is set to 25 and for MIMLSVM we setγ = 0.2, which are same as in
the experimental settings in [3]. For MIMLBoost and MIMLSVM, the top ranked class is regarded
as the single-label prediction as in [3].

The classification accuracy is employed to measure the performance of the compared methods. Stan-
dard 5-fold cross-validation is performed and the classification accuracies averaged over all the 20
categories by the compared methods are presented in Table 1,where the means and standard devi-
ations of the results in the 5 trials are reported and the bestperformances are bolded. The results
in Table 1 show that the proposed M3I method clearly outperforms all other compared methods,
which demonstrate the effectiveness of our method in single-label classification. Moreover, our M3I
method is always better than its simplified versions, which confirms the usefulness of class specific
metrics and SCs in MIL.

4.2 Classification on multi-label image data

Multi-label data refers to data sets in which an image can be associated with more than one semantic
concept, which is more challenging but closer to real world applications than single-label data [21].
Thus, we evaluate the proposed method in multi-label image categorization tasks.

Experimental settings.We compare our approach to the following most recent MIML classification
methods. (1) MIMLBoost method [3] and (2) MIMLSVM method [3]are designed for MIML
classification, though they can also work with single-labelmulti-instance data as in last subsection.
(3) Distance metric (DM) method [5] and (4) MildML method [6]learn a global distance metric
from multi-instance data to compute B2B distances, therefore an additional classification step is
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Table 3: Classification performance of comparison on PASCALVOC 2010 data.
Methods Hamming loss↓ One-error↓ Coverage↓ Rank loss↓ Average precision↑

MIMLBoost 0.183 ± 0.020 0.346 ± 0.034 1.034 ± 0.075 0.189 ± 0.016 0.472 ± 0.023
MIMLSVM 0.180 ± 0.018 0.349 ± 0.029 1.064 ± 0.084 0.181 ± 0.014 0.479 ± 0.026
DM 0.146 ± 0.012 0.307 ± 0.024 0.942 ± 0.064 0.167 ± 0.013 0.501 ± 0.031
MildML 0.139 ± 0.011 0.308 ± 0.022 0.951 ± 0.058 0.162 ± 0.011 0.504 ± 0.029
B2C 0.180 ± 0.013 0.343 ± 0.020 1.052 ± 0.050 0.148 ± 0.023 0.469 ± 0.019
B2C-M 0.177 ± 0.010 0.332 ± 0.022 0.993 ± 0.049 0.177 ± 0.019 0.502 ± 0.023

C2B 0.176 ± 0.017 0.326 ± 0.027 0.979 ± 0.051 0.168 ± 0.020 0.513 ± 0.021
C2B-M 0.145 ± 0.014 0.301 ± 0.020 0.966 ± 0.046 0.160 ± 0.024 0.509 ± 0.026
C2B-SC 0.137 ± 0.010 0.297 ± 0.019 0.925 ± 0.035 0.150 ± 0.017 0.527 ± 0.016
M3I 0.119± 0.009 0.275± 0.018 0.843± 0.013 0.141± 0.010 0.548± 0.032

required. Following [5], we use citation-KNN [22] algorithm for classification, whose parameters
are set asR = 20 andC = 20 as in [5]. We implement these method following their original works.

Corel5K data set has already been split into training set andtest set, thus we train the compared
methods using the 4500 training images and classify the 500 test images. We run 5-fold cross-
validation on PASCAL VOC 2010 data set and report the “mean+std” performance over the 5 trails.

Experimental results. Because the two data sets used in our experiments are multi-label data sets,
we measure the classification performances of the compared methods using five widely used multi-
label evaluation metrics, as shown in Table 2 to 3, where “↓” indicates “the small the better” while
“↑” indicates “the bigger the better”. Details of these evaluation metrics can be found in [5,23].

From Table 2 and 3, we can see that the proposed M3I method consistently outperforms the other
methods, sometimes very significantly. Moreover, it is always better than its simplified versions.

Finally, we study the locally adaptive SCs learned for the training instances. In Figure 2, we show
the SCs for several images in PASCAL VOC 2010 data set when they serve as training images.
From the figures we can see that, a same object has different SCs when it is in different super-bags.
For example, the instance of the person in the inner boundingbox of the image in Figure 2(b) has
comparably higher SC than the car instance in the outer bounding box when considering “person”
class. In contrast, when it is in the super-bag of “car”, its SC is lower than that of the car instance.
These observations are consistent with our intuitions and theoretical analysis, because the person
instance contribute considerably large in characterizingthe “person” concept, whereas it contributes
much less, or even possibly harmful, in characterizing the “car” concept. The same observations
can also be seen on almost all the training images, which are not shown due to space limit. These
interesting results provide concrete evidences to supportthe proposed M3I method’s capability in
revealing the semantic insight of a multi-instance image data set.

5 Conclusions

In this paper, we proposed a novel Maximum Margin Multi-Instance Learning (M3I) method, which,
instead of using the B2B distance as in many existing methods, approached MIL from a new per-
spective using the C2B distance to directly assess the relevance between classes and bags. More-
over, taking into account the two challenging properties ofmulti-instance data, high heterogeneity
and weak label association, we further developed the C2B distance by introducing class specific
distance metrics and locally adaptive SCs, which are learned by solving two convex maximum mar-
gin optimization problems. We applied the proposed M3I method in image categorization tasks
on three benchmark data sets, one for single-label classification and two for multi-label classifica-
tion. Encouraging experimental results by comparing our method to state-of-the-art MIL algorithms
demonstrated its effectiveness.
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