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Abstract Automatic patient thought record categorization

(TR) is important in cognitive behavior therapy, which is an

useful augmentation of standard clinic treatment for major

depressive disorder. Because both collecting and labeling

TR data are expensive, it is usually cost prohibitive to require

a large amount of TR data, as well as their corresponding

category labels, to train a classification model with high

classification accuracy. Because in practice we only have

very limited amount of labeled and unlabeled training TR

data, traditional semi-supervised learning methods and

transfer learning methods, which are the most commonly

used strategies to deal with the lack of training data in sta-

tistical learning, cannot work well in the task of automatic

TR categorization. To address this challenge, we propose to

tackle the TR categorization problem from a new perspective

via self-taught learning, an emerging technique in machine

learning. Self-taught learning is a special type of transfer

learning. Instead of requiring labeled data from an auxiliary

domain that are relevant to the classification task of interest

as in traditional transfer learning methods, it learns the

inherent structures of the auxiliary data and does not require

their labels. As a result, a classifier achieves decent classi-

fication accuracy using the limited amount of labeled TR

texts, with the assistance from the large amount of text data

obtained from some inexpensive, or even no-cost, resources.

That is, a cost-effective TR categorization system can be

built that may be particularly useful for diagnosis of patients

and training of new therapists. By further taking into account

the discrete nature input text data, instead of using the tra-

ditional Gaussian sparse coding in self-taught learning, we

use exponential family sparse coding to better simulate the

distribution of the input data. We apply the proposed method

to the task of classifying patient homework texts. Experi-

mental results show the effectiveness of the proposed auto-

matic TR classification framework.
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1 Introduction

In the standard clinic treatment for major depressive dis-

order (MDD), pharmacotherapy is usually augmented with

cognitive behavior therapy (CBT) for those patients who

are not responsive to medication alone. CBT is an evi-

dence-based psychotherapy with well-documented efficacy

in clinical trials of MDD and is considered as one of the

standards used in the field for treatment of depression.

H. Wang

Department of Electrical Engineering and Computer Science,

Colorado School of Mines, Golden, CO 80401, USA

e-mail: huawang@mines.edu

H. Huang (&) � F. Makedon

Department of Computer Science and Engineering,

University of Texas at Arlington,

Arlington, TX 76019, USA

e-mail: heng@uta.edu

F. Makedon

e-mail: makedon@uta.edu

M. Basco

Department of Psychology, University of Texas at Arlington,

Arlington, TX 76019, USA

e-mail: basco@uta.edu

M. Lopez

School of Social Work, University of Texas,

Austin, TX 78712, USA

e-mail: mlopez@austin.utexas.edu

123

Pers Ubiquit Comput

DOI 10.1007/s00779-012-0614-2



As shown in Fig. 1, a homework in CBT can be

described as any activity performed by patients outside the

office, which is intended to have a positive effect on

therapy. Each homework is assigned with a label corre-

sponding to one of a set of prescribed thought categories.

Homework aids patients in generalizing what is discussed

during the therapy sessions, promotes learning through

practice, and facilitates development of skills such as rec-

ognizing negative thoughts. The hallmark of the CBT

homework assignment is a thought record (TR). A TR is a

means for patients to document their negative automatic

thoughts, emotional reactions, and coping behaviors in

response to stressful life events. The TR is a critical tool in

the therapy process. This analysis and decision-making

process is challenging, particularly for new therapists,

because it is conducted while the therapist is talking to the

patients and attempting to respond in an empathic and

therapeutic manner. The process of reviewing and ana-

lyzing the TR, however, is very time consuming, which

calls for automatic homework processing techniques to

facilitate the review and analysis.

Machine learning [2], data mining [21], and information

retrieval [16] techniques have provided potential theories

and necessary tools to devise new TR analysis methods that

are able to automatically process homework in CBT. For

example, given the collected homework data in the text as

shown in Fig. 1, as well as their associated ‘‘thinking error

classes’’ manually labeled by a human expert or a statistical

classifier, such as Support Vector Machine (SVM) [3],

Naive Bayes (NB) classifier [7], Logistic Regression (LR)

[8], Neural Network [1], etc., one can build an automatic

system to categorize new coming TRs without additional

human intervention.

A potential problem in building an effective automatic

TR categorization system is the lack of training data,

including the TR data and their corresponding category

labels. Such a situation prevents one from training an

effective classification model, which usually requires a

large number of labeled TRs. Statistically speaking, the

more labeled training data one can obtain, the more accu-

rate the classification model can be trained. Because the

process of collecting CBT homework results is costly,

thought records are not easy to obtain. Moreover, because

thought records are collected from people coming from a

variety of regions with different languages and habitual

traits, analyzing the data is difficult, requires the expertise

of trained human labelers, and makes the data labeling

process expensive. As a result, cost-effective classification

methods that do not rely on a large amount of (labeled) TR

records are desired, so that data collection costs can be

lowered and human labeling efforts can be reduced. In this

paper, we explore this challenging, yet important, diag-

nostic content analysis problem by approaching it from a

new perspective using self-taught learning, a special type

of transfer learning.

1.1 Self-taught learning for cost-effective classification

A straightforward remedy to deal with the lack of training

data is to exploit unlabeled data by using semi-supervised

(a)

(b)

Fig. 1 Example homework

texts in CBT
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learning algorithms [27]. This assumes that the unlabeled

data are drawn from the same distribution as those labeled

and that their labels are merely unobserved. These

assumptions, however, often cannot be satisfied in real-

world applications. For example, for the task of TR cate-

gorization, a very limited amount of labeled and unlabeled

TR data is available. Any assistive text data that could help

the classification cannot be considered to be homogeneous,

i.e., drawn from the same distribution as the TR text data.

Another broadly used strategy in machine learning and

data mining to tackle the training data deficiency is to

employ transfer learning algorithms [17, 25, 26]. This

strategy is able to discover useful representations from

labeled data coming from different distributions. However,

typical transfer learning methods require labeled data from

a different but related task. This means knowledge is

transfered from one supervised learning task to another.

Thus, transfer learning requires additional labeled data,

rather than unlabeled data, for these other supervised

learning tasks, which of course may be expensive to obtain

in many applications. Because TR categorization is a data

analysis task for very specific cognitive data, very limited

comparable text data can be found from inexpensive

resources.

Although TR data are rare, we have an overwhelming

amount of free texts available from a variety of affordable

resources, such as newspapers, the internet, and many other

sources. As a result, classification techniques that are able

to exploit these inexpensive, or even no-cost, free text data

to boost TR categorization tasks may be of practical use for

diagnosis.

In this work, we ask how unlabeled text data for other

classes—which are much easier to obtain than text data

specifically labeled for some certain classes such as

thinking error classes in CBT—can be used. For example,

given unlimited access to unlabeled and randomly chosen

text data, e.g., those downloaded from the internet (prob-

ably none of which contains information related to the

homework in CBT), can we do better on the given super-

vised automatic TR classification task?

Motivated by the observation [18, 19] that even many

randomly downloaded text will contain the basic semantic

patterns that are similar to those in texts of our interested

think error classes, we consider to learn a succinct and

higher-level feature representation of the inputs using

unlabeled data, which could make the classification task of

interest easier. From machine learning perspective, our

approach belongs to an emerging topic of self-taught

learning [4, 18, 19], a special type of transfer learning.

Because self-taught learning places significantly fewer

restrictions on unlabeled data, it is much easier to apply it

in TR classification than typical semi-supervised learning

or transfer learning methods. For example, it is far easier to

obtain 10,000 paragraphs of free texts from the internet

than to obtain 10,000 paragraphs of TR records, not to

mention 10,000 paragraphs of labeled TR records.

1.2 Self-taught learning via exponential family sparse

coding

An important assumption of traditional sparse coding,

which lies in the core of self-taught learning, is that the

input data are continuous and come from a Gaussian dis-

tribution. The Gaussian distribution is applicable to a large

number of real-world applications. However, due to the

nature of data abstraction of text inputs, where we count

the number of the appearances of a set of keywords, the

input data are discrete (see Sect. 2.2). As a result, the

Gaussian distribution is not able to accurately simulate the

input text data for TR categorization. To tackle this, we

relax the Gaussian assumption on the data distribution by

placing sparse coding under a probabilistic framework [13,

14]. Specifically, we assume the input data come from a

member distribution of the exponential family, which could

fit discrete input data better, such as the binomial distri-

bution or Poisson distribution. Due to the convexity of the

natural parameter function of exponential family distribu-

tions, the optimization objective is convex with respect to

each of its variables, which makes the solution algorithms

computationally tractable. In order to address text input

data for TR categorization, instead of using the original

self-taught learning approach [4, 18, 19], we use self-taught

learning via exponential family sparse coding [13] to

achieve better TR categorization results.

1.3 Our classification model via self-taught learning

Under the framework of transfer learning, we have two

separate data sets, one from the auxiliary domain (also

called as source domain in some research papers) where we

have easy access to abundant, affordable, or even no-cost

text data, and the other from the target domain in which the

(labeled) text are expensive to obtain. In the scenario of

automatic TR categorization, the former corresponds to a

resource, such as the internet, where we can obtain

unlimited free texts, and the latter corresponds to the TR

records collected for diagnosis. Our goal is to build a

classifier that is able to accurately classify the text data in

the target domain, with the assistance from the texts in the

auxiliary domain. Because both the collection and labeling

of TR texts are costly, instead of requiring a large of

amount expensive labeled TR data as for traditional sta-

tistical classification models, we aim to learn a classifier

using a small amount of TR data with the help of a large

amount of free text data, so that the training cost of our

model is comparably lower. We therefore call our TR
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classification model a cost-effective patient TR categori-

zation system.

We consider to use self-taught learning, an emerging

technique of transfer learning, where we do not require the

data in the auxiliary domain to be labeled. In the settings of

self-taught learning, we first gather a collection of texts

with a sufficiently large size from some free resources,

such as newswires that are publicly available through the

internet, from which we learn a set of semantic prototypes.

Because the size of the collected free text is sufficiently

large, the variances captured by the learned prototypes are

rich enough to cover most, if not all, semantic traits of a

certain human language. Then we represent the TR texts to

be categorized in the target domain in a new way with

respect to the learned semantic prototype set. Because the

learned semantic prototypes are learned from a huge col-

lection of texts, the new representation of the target texts is

more semantically meaningful than its original counterpart

in the form of raw human language representations. As a

result, although the data, as well as their labeling infor-

mation, in the target domain are limited, the learned clas-

sifier achieves satisfactory accuracy by leveraging the vast

amount of information from general human semantic rep-

resentations. Namely, the training cost of an effective

automatic TR categorization system is decreased. The

whole TR categorization system via self-taught learning is

schematically shown in Fig. 2. We will detail each com-

ponent of the proposed system in the next section.

This work expands our previous conference publication

[24]. In this manuscript, instead of assuming the input data

to be continuous and drawn from a Gaussian distribution,

we allow the input data to be discrete, which is closer to the

results of the data abstraction model for text inputs.

Specifically, when we compute the high-level data repre-

sentations in self-taught learning, we perform sparse cod-

ing using the member distributions in the exponential

family other than the Gaussian distribution. Because the

data fits better, the classification accuracy in TR categori-

zation is improved.

2 Self-taught learning for TR categorization

In this section, we first formulate the problem of self-taught

learning in the scenario of automatic TR categorization and

introduce frequently used notation. We then describe the

components of the proposed TR classification system one

by one in detail.

2.1 Problem formalization of self-taught learning

In self-taught learning [18, 19], a labeled training set {(xi
l,

yi
l)}i=1

n is given, drawn independently and identically dis-

tributed (i.i.d.) from some distribution D. Each xl
i 2 R

p is

an input feature vector, and yl
i 2 f0; 1g

K
is its binary label

indication vector for the K concerned classes such that

yi
l(k) = 1 if xi

l belongs to the kth class, and 0 otherwise. A

set of m unlabeled texts fxu
i 2 R

pgm
i¼1 is also given. We do

not assume that the unlabeled texts xi
u (1 B i B m) were

drawn from the same distribution as the labeled data, nor

do we assume that they can be associated with the same

class labels as the labeled data. Our goal is to learn from

the labeled data set {xi
l, yi

l}i=1
n as well as the unlabeled data

set {xi
u}i=1

m a function that is able to predict labels of an

unseen TR record x under the distribution of D.

Classificati
on by SVM

Construct
target data

matrix from TR
records

Raw depression
homework texts

Constructed
target data matrix

0035.0

26.0023.0

18.011.00

tX

Major thinking
error categories

MISPERCEPTIONS

ABSOLUTES

TUNNEL VISION

MAKING
GUESSES

Construct
auxiliary data
matrix from

free text data
Constructed

auxiliary data matrix

058.00

36.0068.0

59.023.00

aX
Extracted
Semantic

prototypes

Sparse
representation
of target data

Dictionary
learning

Huge amount of
free text obtained
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resources

(Exponential family)
Sparse coding

Auxiliary domain

Construct
target data

matrix from TR
records

Raw depression
homework texts
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target data matrix

0035.0

26.0023.0

18.011.00

tXt

Target domain

Knowledge
Transfer

Fig. 2 Diagram of the proposed automatic cost-effective patient thought record categorization system via self-taught learning method
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Throughout this paper, we write matrices as bold

uppercase letters and vectors as bold lowercase letters.

2.2 Construction of input data

Given the raw text data in both the auxiliary domain and

the target domain, we first need to abstract them into

mathematical forms that can be readily fed into the clas-

sification models. Because each depression homework in

CBT appears as a short passage of text, we employ the bag-

of-word (BOW) model [16], a broadly used model in text

mining and information retrieval, to construct input data.

This consists of two major steps, the dictionary construc-

tion and the data representation.

First, we construct a dictionary in which each element

(term) is used as a feature in the subsequent data represen-

tation process. Specifically, given a collection of homework

texts, we use all the involved words as terms of the dictio-

nary, from which standard English stop words1 are removed.

Second, given the constructed dictionary, we represent

each homework text using a tf-idf weight (term frequency-

inverse document frequency) [16]. To be more concise, we

assign to each term t a weight with respect to each homework

d as the number nt,d of the occurrences of t in d. Taking into

account the varied length of the homework texts, we nor-

malize nt,d by the total number of words appearing in the

homework d and define its term frequency (tf) as:

tf t;d ¼
nt;dP
t nt;d

: ð1Þ

The raw term frequency defined in Eq. (1) suffers from a

critical problem in that all terms are considered equally

important. However, certain terms have little or no

discriminating power in determining relevance, e.g., a

term appearing in all the homework texts. To address this

problem, we introduce a mechanism for attenuating the

effect of terms that occur too often in the collection to be

meaningful for relevance determination. We define the

document frequency dft as the number of documents in the

collection that contain a term t [16]. Given the total number

N of documents in a collection, we define the inverse

document frequency (idf) as follows:

idf t ¼ log
N

df t
: ð2Þ

Finally, each entry xij of the input data X 2 R
d � n for the

n homework texts for the d terms (dimensions) of the

dictionary is computed as

xij ¼ tf i;j � idf i: ð3Þ

2.3 Self-taught learning to represent TR records

with enriched semantic prototypes

Given the abstracted data in the auxiliary domain {xi
u}i=1

m

and those in the target domain {xi
l, yi

l}i=1
n , we aim to learn a

semantical meaningful and discriminative representation of

the target data.

In self-taught learning [19], a set of r basis vectors,

fdj 2 R
pgr

j¼1, is first learned that form a semantic proto-

type set D ¼ ½d1; . . .; dr� 2 R
p�r (allowing r [ p to make

the prototype set overcomplete), from unlabeled data by

minimizing the following objective:

JuðD; au
i Þ ¼

Xm

i¼1

kxu
i � Dau

i k
2
2 þ kkau

i k1

� �
;

s:t: kdjk2� 1; 8 1� j� r;

ð4Þ

where k[ 0 is a parameter and au
i 2 R

r is the

representation coefficient vector of xi
u with respect to

dictionary D. Here the constraints on dj are used to avoid a

degenerate solution—the reconstruction errors in the first

term of Ju are invariant to scaling simultaneously D by a

scalar and ai
u by its inverse. Because of the ‘1-norm

regularization on ai
u, it is sparse with very few non-zero

entries [22]. dj(1 B j B r) are usually considered as high-

level feature prototypes of the unlabeled data and convey

more semantic information [15, 19]. Here, we solve the

optimization problem in Eq. (4) using the software package

published in [12].2 Then, we represent the labeled TR

records, as well as the unseen TR records, with respect to

the learned semantic prototype set D by minimizing the

following optimization objective:

Jlðal
iÞ ¼ kxl

i � Dal
ik

2
2 þ kkal

ik1; 8 1� i� n ð5Þ

where al
i 2 R

r is the new representation of xi
l with respect

to D. Again, ai
l is sparse due to the ‘1-norm regularization.

We use the same software package as before to solve the

optimization problem in Eq. (5).

2.4 Classification of unseen TR records

Given the learned new representations of the labeled TR

records {ai
l}i=1

n , we learn a SVM [19] to classify unseen TR

records under the same distribution D from which {xi
l}i=1

n

were drawn, where the unseen TR records are also repre-

sented with respect to the learned semantic prototype set

following the same way as {ai
l}i=1

n by solving Eq. (5).

In the task of TR categorization, we consider each type

of thinking error as a class and conduct classification on the

1 http://www.textfixer.com/resources/common-english-words.txt.

2

http://www.eecs.umich.edu/honglak/softwares/nips06-

sparsecoding.html.
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participants. Specifically, we consider the four categories

of major thinking error listed in Table 1 as four different

classification tasks.

The standard SVM algorithm deals with a binary clas-

sification problem that comprises only two classes, the

positive class and the negative class. The label indicator is

yi = {-1, ?1}n, such that yi = ?1 if data point xi belongs

to the positive class, and -1 otherwise. The standard SVM

algorithm optimizes a linear classifier w so that the margin

between the data points of the two classes is maximized

[3]. The learning problem can thus be interpreted as the

problem of solving a quadratic constrained optimization

problem whose primal form is

min
w;n;b

1
2

wT wþ C
Pn

i¼1

ni;

s:t: yðiÞ wT/ xið Þ þ bð Þ� 1� ni;
ni� 0; 1� i� n;

ð6Þ

and whose dual form is

max
P

i

ai � 1
2

P

i;j

aiajyiyjK xi; xj

� �
;

s:t: 0� ai�C;P

i

aiyi ¼ 0; 1� i� n;
ð7Þ

where b is a threshold, the ni are slack variables necessary

for the case when the training data points are not linearly

separable, and C is the error penalty. Kðxi; xjÞ ¼
h/ðxiÞ;/ðxiÞi is a kernel function, by which a data point

xi is mapped into a higher (maybe infinite) dimensional

space by the mapping function /. Thus, the class

membership assigned to an unseen data point x is given by

sign f ðxÞ ¼
Xn

i¼1

yiaiK xi; xð Þ þ b

 !

; ð8Þ

where f(x) is the decision function of the SVM.

Extending SVM classification to multi-class classifica-

tion has been well studied and many approaches have been

devised [5], among which the ‘‘one-against-one’’ approach

[11] is widely used because of its advantages [9]. In this

approach, K(K - 1)/2 classifiers are constructed and one

for each pair of two different classes. After that, a voting

strategy is used: each binary classification is considered to

be a voting, and a data point is finally designated to be in

the class with a maximum number of votes.

3 Self-taught learning via exponential family sparse

coding for discrete inputs

In this section, following Lee et al. [13], we first analyze

sparse coding from a probabilistic perspective. We derive

the method of ‘‘exponential family sparse coding’’ for self-

taught learning, which is suitable for discrete input data,

such as the text data used for TR categorization.

3.1 A probabilistic interpretation of sparse coding

As in the first term of Eqs. (4) and (5), self-taught learning

essentially learns a set of high-level semantic patterns

D and represents the input data in the target domain, as

well as those in the source domain, by the linear combi-

nations of the learned semantic patterns. Specifically, given

a data point xi from either the auxiliary domain or the

target domain,3 we approximate it as

xi �
X

j

dj½j�aij; ð9Þ

where aij is the jth entry of ai. Hence {ai} are called as

activations corresponding to xi. Due to the imposed ‘1-norm

penalty on ai in the second term of Eqs. (4) and (5), ai is

encouraged to be sparse [22], i.e., each xi is represented by a

small number of basis vectors in the learned dictionary D.

In traditional sparse coding [13], the input data vectors

are assumed to be continuous and generated from a

Gaussian distribution with mean

g ¼
X

j

djaij ð10Þ

and (known) covariance matrix r2 I [13, 14]. In addition,

the activation vector ai ¼ ½ai1; . . .; air� is assumed to follow

a Laplacian prior

PðaiÞ /
Y

j

expð�bjaijjÞ ð11Þ

for some constant b [6, 13, 20]. Then, given the input data

{xi}i=1
m , the maximum-a-posteriori (MAP) estimate of the

corresponding activations {ai}i=1
m can be obtained by

solving [13]:

Table 1 Thinking error classes used in this paper

Category Detailed description

MISPERCEPTIONS Seeing things as much greater or much smaller

than they really are

MAKING

GUESSES

Making guesses or jumping to conclusions

that are overly negative

TUNNEL VISION Seeing only the things that confirm your

negative view while ignoring positive

experiences

ABSOLUTES Overly harsh, perfectionistic, or strict ideas

or statements about how things are or ought

to be

3 Here we drop the superscript ‘‘l’’ and ‘‘u’’ for brevity, as there is no

difference between auxiliary data and target data when discussing

sparse coding.
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max
fdig;faig

Y

i

Pðxijfdig; faigÞPfaig: ð12Þ

Taking the negative logarithm of Eq. (12), we can recover

Eq. (4), where constraints on dj are added to avoid a

degenerate solution, as suggested by Lee et al. [12].

An important insight is revealed by Eq. (12), which lies

in the Gaussian distribution assumption on input data of the

traditional sparse coding method. Although the Gaussian

distribution is the most widely used probabilistic model in

statistically learning, it is not universally applicable to any

input data in real applications, especially for discrete input

data such as text data used in TR categorization.

In the simplest bag-of-words model for text abstraction,

each text is described as a fixed length binary vector, in

which ‘‘1’’ indicates the presence of a corresponding

keyword, while ‘‘0’’ indicates the absence. Traditional

Gaussian sparse coding assumes each entry of the input

vector is continuous and decomposes the input data and

approximates it by ~xi ¼
P

j dj½j�aij. This leads to the

unconstrained sum
P

jdj[j]aij, which is obviously a poor

simulation of binary data. Instead, if one could find an

approximation of the form ~xi ¼ rð
P

j dj½j�aijÞ, where

rðvÞ ¼ 1
1þe�v1

; 1
1þe�v2

; . . .
h i

represents the element-wise

logistic function for a vector v. Because the logistic func-

tion always lies in (0, 1), this new approximation may

better fit the input data. As a result, one can replace the

Gaussian assumption on the input data by the binomial

assumption to use logistic loss in sparse coding to get better

data representations. To be more general, one can use any

probabilistic model in sparse coding model in Eq. (12)

upon the prior knowledge of the input data, such as inputs

consisting of nonnegative integer counts of keywords in the

form of xi ¼ ½0; 1; 2; . . .�k. Due to the convexity property of

the natural parameter function, the exponential family

distributions have demonstrated the best utility in sparse

coding, as well as self-taught learning [13].

The remainder of this section will introduce ‘‘expo-

nential family sparse coding’’ and apply it to TR catego-

rization, which was originally proposed by Lee et al. [13].

3.2 Exponential family sparse coding for discrete

inputs

The exponential family is a widely used class of distribu-

tions in statistics, which can be written in its most general

form as [13]:

PðxijgÞ ¼ hðxiÞ expðgT TðxiÞ � aðgÞÞ; ð13Þ

where g is the natural parameter for the model, and the

functions h, T and a together define a particular member

of the family. It can be verified that the multivariate

Gaussian distribution used in traditional sparse coding can

written in the form of Eq. (13) with hðxiÞ ¼
e�
kxik2

2 =ð2pÞk=2; TðxiÞ ¼ xi and a(g) = gTg.

By allowing the input data to be from any exponential

family distribution [13]:

PðxijgÞ ¼ hðxiÞ expðgT TðxiÞ � aðgÞÞ; g ¼
X

j

dj½j�aij;

ð14Þ

where we use the basis vectors dj[j] and activations aij to

construct the natural parameter, following Lee et al. [13],

we can get exponential family sparse coding.

Given the unlabeled data {xi
u}i=1

n in the auxiliary domain,

following Eq. (12), the dictionary and activations are

learned by solving the following optimization problem [13]:

min
D;fajg

P

i

�log hðxiÞ � aT
i DT TðxiÞ þ aðDaiÞ þ k

P

ij

aij

s:t: kdjk� 1; 8 1� j� r ð15Þ

Because the exponential family distributions guarantee

the convexity of -log P(xi|g) with respect to g, it can be

verified that the optimization objective in Eq. (15) is

convex with respect to D for fixed {ai}, and with respect to

ai for fixed D. Thus, we can use an alternative

minimization method to solve Eq. (15). In this work, we

use the algorithm introduced by Lee et al. [13].

Once the dictionary is learned by solving Eq. (15), new

representations for the data vectors in the target domain can

be learned by solving Eq. (5), from which classification is

conducted as in Sect. 2.4.

4 Experimental results

In this section, we evaluate the proposed automatic TR record

categorization system via self-taught learning by classifying

the real depression homework data. We implement the self-

taught learning model by using both traditional Gaussian

sparse coding and exponential family sparse coding.

Data description The depression data contains 36

homework texts. Upon the content, these homeworks are

manually divided into the four major thinking error cate-

gories as described in Table 2.

Table 2 Data distribution

Category Number of homework texts

MISPERCEPTIONS 2

MAKING GUESSES 20

TUNNEL VISION 3

ABSOLUTES 11
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In addition, we also use a large collection of free text as

auxiliary data. In our experiments, we use the Yahoo data

set, which was described in [23] coming from the

‘‘yahoo.com’’ domain. We use the ‘‘science’’ topic, which

contains 6345 web pages.

4.1 Improved data representation via self-taught

learning for TR categorization

We first evaluated the effectiveness of the learned data

representation by self-taught learning in TR categorization.

We compared the results of the self-taught learning method

against the results of the traditional SVM approach using

the original data representation directly abstracted from

raw texts, i.e., using {xi
l}i=1

n . A large amount of text data in

the auxiliary domain was not used by our SVM. We

implemented the self-taught learning method using tradi-

tional Gaussian sparse coding as well as exponential family

sparse coding by assuming that the data came from a

Poisson distribution following the approach by Lee et al.

[13]. For exponential family sparse coding, instead of tf-idf

vectors, we used the word count method to construct the

data vector, in which each entry is a count of the number of

appearances of the corresponding keyword. This yields a

discrete representation of each TR, which is definitely

simpler and less expensive for data pre-processing.

For our SVM implementation, we chose three types of

kernels, the linear, polynomial, and Gaussian kernels. For

the polynomial kernel, we fine-tuned the polynomial order

of the polynomial kernel by searching the grid of

f1; 2; . . .; 10g; for the Gaussian kernel, i.e.,

Kðxi; xjÞ ¼ e�ckxi�xjk2

, we fine-tuned the parameter c by

searching the grid of f10�5; 10�4; . . .; 1; . . .; 104; 105g. We

set the tradeoff C in Eq. (6) to be 1. In addition, we report

the classification results by the (k-NN) method as a baseline.

Experimental results We performed standard twofold

cross-validation to evaluate the classification performance

of the proposed method. Each experiment was repeated 50

times. The average classification accuracies of the com-

pared methods are reported in Fig. 3.

A first glance at the results shows that the classifications

of the enriched semantic representation by various self-

taught learning methods outperform those on the original

data representation. This observation is consistent with our

theoretical analysis in that our new method exploits the

information from the texts in the auxiliary domain, which

are beneficial to the classification of the texts in the target

domain. Our results suggest that the proposed automatic

patient TR categorization system is not only cost-effective

but may also be useful for diagnosis of patients and training

of new therapists.

A more careful analysis on the results suggests that the

data representations obtained from exponential family

(Poisson distribution) sparse coding have better classifica-

tion results than from traditional Gaussian sparse coding.

This clearly demonstrates the usefulness of the non-

Gaussian distribution assumption about the input data

made based on the nature of text data.

4.2 Improved TR categorization via self-taught

learning

Because the main goal of self-taught learning is to exploit

the large amount auxiliary data when target data are very

expensive to obtain, in this subsection we evaluate its

effectiveness to make use of additional text data which can

be obtained with very low, or even no, cost. We compare it

to two conventional machine learning schemes including

semi-supervised learning and transfer learning. For the

former, we implement the Transductive SVM (TSVM) [10]

method; for the latter, we implement the dyadic knowledge

transfer (DKT) [26] method. Again, we evaluate the

compared methods by twofold cross-validation, for which

we report the average classification accuracies in Table 3.

First, from Table 3 we can see that self-taught learning

method and DKT method clearly outperform the TSVM

method. This observation is consistent with the theoretical

Fig. 3 Classification accuracies

by the compared methods

Table 3 Comparison of self-taught learning against semi-supervised

learning (TSVM) and transfer learning (DKT) for TR categorization

Method Accuracy

TSVM 0.541

DKT 0.621

Self-taught learning 0.669

Bold value indicates the best result of all methods
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formulations of these methods in that the former two

methods are transfer learning methods while the latter one

is a semi-supervised learning method. Because semi-

supervised learning method requires the additional unla-

beled data to be from the same distribution as the labeled

one, which, however, cannot be generally satisfied in a lot

of real-world applications, it is not a suitable learning

scheme for cost-effective TR categorization. Second, we

also notice that self-taught learning is better than DKT

method. This is because DKT method transfers knowledge

across different domains via nonnegative matrix factor-

izations, which implicitly assume that the input data are

drawn from a Gaussian distribution. In contrast, exponen-

tial family (poisson distributed) self-taught learning

method relaxes the assumption and is able to better simu-

late the text data, which thereby can achieve improved

classification results. In summary, self-taught learning with

exponential family sparse coding is an effective method to

simultaneously improve the TR categorization perfor-

mance and reduce the training cost.

5 Conclusions

In this paper, we presented a general framework using self-

taught learning to represent the TR text in a new domain

with respect to a content rich and discriminative semantic

prototype sets learned from a huge amount of text obtained

from cheap resources, such as those from Internet. The

proposed method addressed the lack of the training data,

including the data themselves and their associated labels.

Through incorporating the useful information contained in

the auxiliary domains, the classification performance in the

target domain, i.e., the TR records we wish to categorize, is

improved. Because the training of the proposed model does

not require a large amount of labeled data in the domain of

interest to achieve decent classification accuracy, our new

system is cost effective. By further considering the discrete

nature input data, instead of using traditional Gaussian

sparse coding in self-taught learning, we use the expo-

nential family sparse coding to better simulate the distri-

bution of input data. Promising experimental results in the

empirical studies demonstrate the effectiveness of the

proposed method.

References

1. Arbib M (2003) The handbook of brain theory and neural net-

works. The MIT Press, Cambridge

2. Bishop C, service SO (2006) Pattern recognition and machine

learning, vol 4. Springer, New York

3. Cristianini N, Shawe-Taylor J (2000) An introduction to support

vector machines: and other kernel-based learning methods.

Cambridge University Press, Cambridge

4. Dai W, Yang Q, Xue G, Yu Y (2008) Self-taught clustering. In:

ICML

5. Duan K, Keerthi S (2005) Which is the best multiclass SVM

method? An empirical study. Multiple Classif Syst 3541:278–285

6. Goodman J (2004) Exponential priors for maximum entropy

models. In: Proceedings of the HLT-NAACL, pp 305–312

7. Hand D, Yu K (2001) Idiot’s BayesNot So Stupid After All? Int

Stat Rev 69(3):385–398

8. Hilbe J (2009) Logistic regression models. CRC Press, New York

9. Hsu C, Lin C (2002) A comparison of methods for multiclass

support vector machines. IEEE Trans Neural Netw 13(2):

415–425

10. Joachims T (1999) Transductive inference for text classification

using support vector machines. In: International conference on

machine learning, pp 200–209

11. Kressel U (1999) Pairwise classification and support vector

machines. Advances in kernel methods: support vector learning,

pp 255–268

12. Lee H, Battle A, Raina R, Ng A (2007) Efficient sparse coding

algorithms. In: NIPS

13. Lee H, Raina R, Teichman A, Ng A (2009) Exponential family

sparse coding with applications to self-taught learning. IJ-

CAI09, pp 1113–1119

14. Liu J, Ji S, Ye J (2009) Multi-task feature learning via efficient

‘2,1-norm minimization. In: Proceedings of the twenty-fifth con-

ference on uncertainty in artificial intelligence, AUAI Press,

Arlington, pp 339–348

15. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A (2009)

Supervised dictionary learning. In: NIPS, pp 1033–1040

16. Manning C, Raghavan P, Schütze H, Corporation E (2008)

Introduction to information retrieval, vol 1. Cambridge Univer-

sity Press, Cambridge

17. Pan S, Yang Q (2009) A survey on transfer learning. IEEE TKDE

18. Raina R (2009) Self-taught learning. PhD thesis of Stanford

University

19. Raina R, Battle A, Lee H, Packer B, Ng A (2007) Self-taught

learning: transfer learning from unlabeled data. In: ICML

20. Seeger M (2008) Bayesian inference and optimal design for the

sparse linear model. The Journal of Machine Learning Research

9:759–813

21. Sumathi S, Sivanandam S (2006) Introduction to data mining and

its applications. Springer, New York

22. Tibshirani R (1996) Regression shrinkage and selection via the

lasso. J R Stat Soc B 58(1):267–288

23. Ueda N, Saito K (2002) Single-shot detection of multiple cate-

gories of text using parametric mixture models. In: Proceedings

of SIGKDD, pp 626–631

24. Wang H, Huang H, Basco M, Lopez M, Makedon F (2011) Cost

effective depression patient thought record categorization via

self-taught learning. In: Proceedings of the 4th international

conference on pervasive technologies related to assistive envi-

ronments (PETRA 2011), p 41. ACM, New York

25. Wang H, Huang H, Nie F, Ding C (2011) Cross-language web

page classification via dual knowledge transfer using nonnegative

matrix tri-factorization. In: Proceedings of the 34th international

ACM SIGIR conference on research and development in Infor-

mation, pp 933–942. ACM, New York

26. Wang H, Nie F, Huang H, Ding C (2011) Dyadic transfer

learning for cross-domain image classification. In: IEEE inter-

national conference on computer vision (ICCV), pp 551–556

27. Zhu X (2006) Semi-supervised learning literature survey. Tech-

nical report, University of Wisconsin-Madison

Pers Ubiquit Comput

123


	Self-taught learning via exponential family sparse coding for cost-effective patient thought record categorization
	Abstract
	Introduction
	Self-taught learning for cost-effective classification
	Self-taught learning via exponential family sparse coding
	Our classification model via self-taught learning

	Self-taught learning for TR categorization
	Problem formalization of self-taught learning
	Construction of input data
	Self-taught learning to represent TR records with enriched semantic prototypes
	Classification of unseen TR records

	Self-taught learning via exponential family sparse coding for discrete inputs
	A probabilistic interpretation of sparse coding
	Exponential family sparse coding for discrete inputs

	Experimental results
	Improved data representation via self-taught learning for TR categorization
	Improved TR categorization via self-taught learning

	Conclusions
	References


