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ABSTRACT

Motivation: Recent advances in high-throughput genotyping and
brain imaging techniques enable new approaches to study the
influence of genetic variation on brain structures and functions.
Traditional association studies typically employ independent
and pairwise univariate analysis, which treats single nucleotide
polymorphisms (SNPs) and quantitative traits (QTs) as isolated units
and ignores important underlying interacting relationships between
the units. New methods are proposed here to overcome this
limitation.
Results: Taking into account the interlinked structure within and
between SNPs and imaging QTs, we propose a novel Group-Sparse
Multi-task Regression and Feature Selection (G-SMuRFS) method to
identify quantitative trait loci for multiple disease-relevant QTs and
apply it to a study in mild cognitive impairment and Alzheimer’s
disease. Built upon regression analysis, our model uses a new
form of regularization, group �2,1-norm (G2,1-norm), to incorporate
the biological group structures among SNPs induced from their
genetic arrangement. The new G2,1-norm considers the regression
coefficients of all the SNPs in each group with respect to all
the QTs together and enforces sparsity at the group level. In
addition, an �2,1-norm regularization is utilized to couple feature
selection across multiple tasks to make use of the shared underlying
mechanism among different brain regions. The effectiveness of
the proposed method is demonstrated by both clearly improved
prediction performance in empirical evaluations and a compact set
of selected SNP predictors relevant to the imaging QTs.
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1 INTRODUCTION
Imaging genetics is an emergent transdisciplinary research field,
where the associations between genetic variations and imaging
measures as quantitative traits (QTs) or continuous phenotypes are
evaluated. Compared to case–control status, the QTs have increased
statistical power and are closer to the underlying biological etiology
of the disease making it easier to identify underlying genes (Braskie
et al., 2011; Potkin et al., 2009; Shen et al., 2010; Stein et al.,
2010; Yip and Lange, 2011; Zhan et al., 2011). Genome-wide
association studies (GWAS) have been increasingly performed to
correlate high-throughput single nucleotide polymorphism (SNP)
data to large-scale image data. While many studies employed a
hypothesis-driven approach by making significant reduction in one
or both data types (Glahn et al., 2007), some recent studies examined
these associations at the whole genome entire brain level (Shen
et al., 2010; Stein et al., 2010). Pairwise univariate analysis was
typically used in traditional association studies to quickly provide
important association information between SNPs and QTs. However,
it treated the SNPs and the QTs as independent and isolated units, and
therefore the underlying interacting relationships between the units
might be lost. Multivariate methods to examine joint effect of multi-
locus genotype on a single phenotype were studied in general genetic
association studies (Ballard et al., 2010; Wu et al., 2010) as well as
several recent imaging genetic studies (Bralten et al., 2011; Hibar
et al., 2011). This paradigm did not consider the relationship between
interlinked brain phenotypes and thus still had limited power in
revealing complex imaging genetic associations. In this work, taking
into account the interrelated structure within and between SNPs
and QTs, we propose a new framework for effectively identifying
quantitative trait loci, which addresses the following challenges in
imaging genetics association study.

First, traditional association studies consider all the SNPs evenly
distributed and assess each SNP individually. However, certain SNPs
are naturally connected via different pathways. Multiple SNPs from
one gene often jointly carry out genetic functionalities. Moreover,

© The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 229

 at U
niversity of T

exas at A
rlington on January 19, 2012

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://ranger.uta.edu/%7eheng/imaging-genetics/
heng@uta.edu
shenli@iupui.edu
http://adni.loni.ucla.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://bioinformatics.oxfordjournals.org/


[17:28 20/12/2011 Bioinformatics-btr649.tex] Page: 230 229–237

H.Wang et al.

linkage disequilibrium (LD) (Barrett et al., 2005) describes the non-
random association between alleles at different loci, through which
the SNPs in high LD are linked together in meiosis. Thus, instead
of treating SNPs in an isolated manner, it would be beneficial to
exploit the group structure among SNPs.

Second, because the functionality of the human brain typically
involves more than one cerebral component, investigating each
individual regional brain phenotype separately will inevitably lose
the interacting relationships between them. For example, the brain’s
episodic memory network, including medial temporal lobe (MTL)
structures, medial and lateral parietal, and prefrontal cortical areas,
are normally engaged together during episodic recall (Walhovd
et al., 2010). In addition, accurate prediction of disease status
and progression are typically implicated by multiple brain regions
coupled with other biomarkers (Hinrichs et al., 2011; Zhang et al.,
2011). Therefore, jointly analyzing all the imaging phenotypes via
one single integral regression model is desirable to elucidate the
shared mechanism that may be hidden otherwise.

By recognizing the interrelated nature of these genotypes and
phenotypes, in this study, we propose a novel Group-Sparse Multi-
task Regression and Feature Selection (G-SMuRFS) method to
identify quantitative trait loci in a mild cognitive impairment (MCI)
and Alzheimer’s disease (AD) study using a few important imaging
QTs relevant to AD. We consider each SNP as a feature and each
QT as a response variable (i.e. a learning task), and formulate a
multitask regression framework including multiple features (SNPs)
and multiple responses (QTs). Our goal is to reveal the relationships
between these genetic features and imaging phenotypes.

The proposed model consists of three major components.
First, it is built upon regression analysis due to the continuous
responses of the imaging phenotypes. As a result, the regression
coefficients assess the relationships between SNPs and QTs.
Second, in order to address the group-wise association among
SNPs, inspired by group Lasso (Yuan and Lin, 2006), we propose a
new form of regularization, called as group �2,1-norm (G2,1-norm)
regularization, in which the coefficients of the SNPs within a
pre-defined group, with respect to all the QTs, are penalized as a
whole via �2-norm, while �1-norm is used to sum up the group-wise
penalties to enforce sparsity between groups (Tibshirani, 1996).
The latter is important because in reality only a small fraction
of genotypes are related to a specific phenotype. Moreover,
with sparsity, outliers and irrelevant associations are inherently
removed. Lastly, through enforcing �2,1-norm regularization,
feature selection becomes an integrated procedure across multiple
learning tasks (Argyriou et al., 2007; Obozinski et al., 2006), such
that the interrelationships among different imaging phenotypes
are leveraged. Note that the proposed G2,1-norm and the enforced
�2,1-norm couple a set of learning tasks together such that the
regression analysis can be carried out jointly across all the QTs,
whereas Lasso (Tibshirani, 1996) and group Lasso (Yuan and Lin,
2006) perform regression analysis separately, one task at a time.

We apply the proposed G-SMuRFS method to the Alzheimer’s
disease neuroimaging initiative (ADNI) cohort (Weiner et al., 2010)
for identifying quantitative trait loci (QTLs) in MCI and AD
using a set of imaging phenotypes known to be relevant to AD.
Our empirical results yield not only clearly improved prediction
performance in all test cases, but also a compact set of SNP
predictors relevant to the imaging genotypes that are in accordance
with prior studies.

2 MATERIALS AND DATA SOURCES
Both SNP and structural magnetic resonance imaging (MRI) data
used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). One goal of ADNI has been to test whether
serial MRI, positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD. For
up-to-date information, see www.adni-info.org. Following a prior
study (Shen et al., 2010), 733 non-Hispanic Caucasian participants
were included in this study.

2.1 SNP genotyping and group information
The SNP data (Saykin et al., 2010), used in this study, were
genotyped using the Human 610-Quad BeadChip (Illumina, Inc.,
San Diego, CA, USA). Among all SNPs, only SNPs, belonging
to the top 40 AD candidate genes listed on the AlzGene database
(www.alzgene.org) as of June 10, 2010, were selected after the
standard quality control (QC) and imputation steps. The QC criteria
for the SNP data include (i) call rate check per subject and per SNP
marker, (ii) gender check, (iii) sibling pair identification, (iv) the
Hardy–Weinberg equilibrium test, (v) marker removal by the minor
allele frequency and (vi) population stratification. As the second pre-
processing step, the quality-controlled SNPs were imputed using the
MaCH software (Li et al., 2010) to estimate the missing genotypes.
After that, the Illumina annotation information based on the Genome
build 36.2 was used to select a subset of SNPs, belonging to the top
40 AD candidate genes (Bertram et al., 2007).

The above procedure yielded 1224 SNPs from 37 genes. For the
remaining three genes, no SNPs were available on the genotyping
chip. The genes and the number of their SNPs are shown in Figure 1.
The ranking of the AlzGene database is based on SNPs instead of
genes. As a result, most of the SNPs from these genes (Fig. 1)
might be irrelevant to AD, while a small fraction of them could be
risk factors for the disease and be associated with our intermediate
imaging traits. Our task is to identify the SNPs in these 37 genes
that predict important imaging QTs.

A straightforward observation from Figure 1 shows that the SNPs
are naturally divided into groups upon their belonging genes. This
grouping structure of SNPs, though conveying important biological
information, is seldom utilized in previous association studies that
consider every SNP equally and investigate their genetic effects
on imaging phenotypes separately. In this work, as one of the
contributions, we aim to make use of the grouping information of

Fig. 1. Top 37 AD risk factor genes used in this study and the numbers of
their SNPs.
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SNPs in our learning model so as to achieve more lucid relationships
between SNPs and neuroimaging phenotypes.

Besides grouping SNPs by genes, an alternative method could be
based on LD. Through estimating non-random association of alleles
at different loci (e.g. using pairwise correlation coefficients r2, as
shown in Figure 2), the relationships between SNPs in terms of
genetic linkage are established. For example, the group structure
can be clearly observed in Figure 2, where a group is defined as a
block of SNPs whose pairwise r2 ≥0.2. As a result, we have 185
groups comprising 1029 SNPs, with each of the remaining 195 SNPs
being isolated by itself.

In this study, we consider grouping SNPs by both genes and LD
correlation coefficients r2.

2.2 MRI analysis and extraction of imaging genotypes
Two widely employed automated MRI analysis techniques were
used to process and extract imaging genotypes across the brain
from all baseline scans of ADNI participants as previously described
(Shen et al., 2010). First, voxel-based morphometry (VBM)
(Ashburner and Friston, 2000) was performed to define global gray
matter (GM) density maps and extract local GM density values for

Fig. 2. Pairwise LD correlation coefficients (r2 >0.2 in blue) among the
1224 SNPs used in this study. The SNPs clearly form groups.

target regions. Second, automated parcellation via FreeSurfer V4
(Fischl et al., 2002) was conducted to define volumetric and cortical
thickness values for regions of interest (ROIs) and to extract total
intracranial volume (ICV). Further information is available in (Shen
et al., 2010). While a complete investigation of all VBM and
FreeSurfer measures is an interesting future direction, this study
is focused on a subset of these measures to test the proposed
methods. Ten VBM (GM density) measures and 12 FreeSurfer
measures (thickness/volume), which are known to be related to AD,
are selected as QTs for identifying QTLs. These QTs are extracted
from roughly matching ROIs with VBM and FreeSurfer. Table 1
shows the description of these QTs and Figure 3 maps some of these
ROIs in the brain space. All these measures were adjusted for the
baseline age, gender, education, handedness and baseline ICV using
the regression weights derived from the healthy control participants.

3 METHODS
In this section, we first systematically develop our computational models
to explore the associations between SNPs and imaging phenotypes. As
illustrated in Figure 4, our method mainly addresses the group structure of
genetic markers and joint learning across all the imaging endophenotypes,

Fig. 3. VBM ROIs used in this study are mapped onto a brain.

Table 1. QTs from ‘matching’ ROIs: the volumetric/thickness measures (FreeSurfer) and GM density measures (VBM)

Volume/Thickness (ID and ROI) GM Density (ID and ROI)

LHippVol
Volume of hippocampus

LHippocampus
Hippocampus

RHippVol Rhippocampus

LEntCtx
Thickness of entorhinal cortex and
thickness of parahippocampal gyrus

LParahipp
Parahippocampal gyrus

LParahipp
REntCtx

RParahipp
RParahipp

LPrecuneus
Thickness of precuneus

LPrecuneus
Precuneus

RPrecuneus RPrecuneus

LMeanFront
Mean thickness of caudal midfrontal,
rostral midfrontal, superior frontal,
lateral orbitofrontal, and medial
orbitofrontal gyri and frontal pole

LMeanFrontal
Inferior frontal operculum, inferior orbital frontal gyrus, inferior frontal
triangularis, medial orbital frontal gyrus, middle frontal gyrus, middle
orbital frontal gyrus, superior frontal gyrus, medial superior frontal gyrus,
superior orbital frontal gyrus, rectus gyrus, rolandic operculum and
supplementary motor area

RMeanFront RMeanFrontal

LMeanLatTemp Mean thickness of inferior temporal,
middle temporal, and superior
temporal gyri

LMeanLatTemporal
Inferior temporal gyrus, middle temporal gyrus and superior temporal gyrus

RMeanLatTemp RMeanLatTemporal
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Fig. 4. Illustration of the proposed G-SMuRFS method. We incorporate the
group structural information of the genetic markers through a new group
�2,1-norm regularization (||W||G2,1 ), and enforce �2,1-norm regularization
(||W||2,1) to jointly select prominent SNPs across all endophenotypes.

such that the learned regression model has better prediction performance and
the selected SNPs are more biologically meaningful. After that, we provide
a new efficient algorithm to solve the proposed new multitask regression and
feature selection objective, followed by the rigorous algorithm analysis to
prove its correctness and convergence.

Throughout this article, we write matrices as boldface uppercase letters
and vectors as boldface lowercase letters. Given a matrix M=(

mij
)
, its i-th

row and j-th column are denoted as mi and mj respectively. The Frobenius
norm and �2,1-norm (also called as �1,2-norm) of a matrix are defined as

||M||F =
√∑

i ||mi||22 and ||M||2,1 =∑
i

√∑
j m

2
ij =

∑
i ||mi||2, respectively.

3.1 G-SMuRFS
To explore the associations between SNPs and continuous imaging
phenotypes, the linear (least square) regression (LR) is a standard approach.
To avoid overfitting and increase numerical stability, the ridge regression
(RR) is a better option. Given the SNP data of the ADNI participants
{x1,...,xn}⊆�d and the selected imaging phenotypes {y1,...,yn}⊆�c,
where n is the number of participants (sample size), d is the number of
SNPs (feature dimensionality) and c is the number of imaging phenotypes
(tasks), the RR is designed to solve:

min
W

n∑
i=1

||WT xi −yi||2 +γ

d∑
i=1

||wi||2, (1)

where the entry wij of the weight matrix W measures the relative importance
of the i-th SNP in predicting the response of the j-th imaging phenotype, and
γ>0 is a trade-off parameter.

However, the RR model in Equation (1) suffers from a number of problems
when applied to evaluation of the imaging genetic associations. First, the
weight matrix W is not sparse, therefore all the SNPs are involved in
the prediction of imaging phenotype responses. However, among numerous
SNPs, only a small fraction of them are relevant to specific imaging QTs.
Thus, it is desirable to select only relevant SNPs for more accurate prediction.
Second, similar to LR, the tasks in the RR regression model are decoupled
and each of them can be learned separately. As a result, the information of
underlying interacting relationships between the brain regions are ignored,
which, though, are essential to brain functionalities. Finally, the rows of
W are equally treated in the RR model, which implies that the underlying
structures among these SNPs are overlooked. However, it is generally
believed that many SNPs are genetically linked. In order to tackle these

difficulties, we propose a novel G-SMuRFS method to exploit the interrelated
structures within and between the genotypes and phenotypes.

3.1.1 Group-sparsity for genetic association The objective of RR model
in Equation (1) uses Frobenious norm for regularization, which penalizes
all the coefficients in a flat manner thereby all the SNPs are evenly treated.
However, SNPs on the same chromosome with close distance tend to be
inherited together and correlated with each other. For example, as shown in
Figure 4, the pairwise LD correlation coefficients r2 between ‘rs1476413’,
‘rs1801131’ and ‘rs6541003’ are >0.2, thus they are more homogeneous and
should be considered together when we predict the responses of the imaging
QTs. Motivated by sparse learning, such as Lasso (Tibshirani, 1996) and
group Lasso (Yuan and Lin, 2006), we propose a new form of regularization
as follows:

min
W

n∑
i=1

||WT xi −yi||22 +γ

K∑
k=1

√√√√∑
i∈πk

c∑
j=1

w2
ij, (2)

where the SNPs, i.e. features, are partitioned into K groups �={πk}K
k=1, such

that
{
wi

}mk
i=1 ∈πk are genetically linked, and mk is the number of SNPs in πk .

Two types of genetic links are used here to group SNPs: (i) SNPs are naturally
divided into groups based on their belonging or nearest genes. (ii) SNPs are
grouped by thresholding the pairwise LD correlation coefficients r2, e.g. in
this work, the neighboring SNPs whose r2 ≥0.2 form a group.

Without loss of generality, {πk}K
k=1 are ordered and concatenated. Denote

W=
⎡
⎣

W1

···
WK

⎤
⎦, where Wk ∈R

mk×c(1≤k ≤K), we can write Equation (2) as

following:

min
W

n∑
i=1

||WT xi −yi||22 +γ

K∑
k=1

||Wk ||F , (3)

which can be written in matrix form as following:

min
W

||WT X−Y||2F +γ||W||G2,1 , (4)

where X= [x1,...,xn], Y= [y1,...,yn], and ||·||G2,1 is our proposed group
�2,1-norm (G2,1-norm) of a matrix with respect to a partition � and
defined as:

||W||G2,1 =
K∑

k=1

√√√√∑
i∈πk

c∑
j=1

w2
ij =

K∑
k=1

||Wk ||F . (5)

Note that the G2,1-norm defined above is different from the regularization
term in group Lasso. Given a partition of the features, the group Lasso
enforces group-wise sparsity for each learning task separately, whereas the
G2,1-norm defined in Equation (5) penalizes the regression coefficients of
a group of features across all the learning tasks jointly. As a result, the
biological group-level structural information among SNPs are incorporated
into our multi-task learning model.

Moreover, because the �1-norm across all the group-wise penalties are
used in G2,1-norm, similar to Lasso and group Lasso, sparsity is enforced
among biological groups. This is important in identifying relevant genotypes
for specific phenotypes, because only a small fraction of SNPs are related
to certain imaging phenotypes. From the perspective of sparsity learning,
the Lasso and group Lasso have flat sparsity, the �2,1-norm has structured
sparsity, and the G2,1-norm has structured sparsity across feature groups.

3.1.2 Individual structured sparsity for joint feature selection Although
the objective in Equation (4) takes into account the group structure of the
SNP data through the proposed G2,1-norm, the feature selection across
tasks are still not completely addressed, because G2,1-norm penalizes the
coefficients flatly within each group of SNPs. To be more specific, within a
given group, say πk , Frobenious norm ||Wk ||F is used, which is the same as
ridge regression that uses Frobenious norm over the whole projection matrix
W. In an important group, certain features could be irrelevant; on the other
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hand, in a less important group, some features could be significant to tasks.
Thus, we enforce additional structured sparsity to our learning model for
jointly selecting features across multiple tasks via a �2,1-norm regularization
(Argyriou et al., 2007; Lee et al., 2010; Obozinski et al., 2006; Puniyani
et al., 2010):

min
W

n∑
i=1

||WT xi −yi||22 +γ1

K∑
k=1

||Wk ||F +γ2

d∑
i=1

||wi||2, (6)

which can be concisely rewritten in matrix form as:

min
W

n∑
i=1

||WT X−Y||2F +γ1||W||G2,1 +γ2||W||2,1 . (7)

In Equation (7), the first term measures the regression loss. The second term
couples all the regression coefficients of a group of features over all the
c tasks together, which incorporates the grouping information on features
(SNPs) due to the genetic linkage. Finally, the third term penalizes all c
regression coefficient of each individual feature as whole to select features
across multiple learning tasks.

We call Equation (7) as G-SMuRFS method with illustration in Figure 4.

3.2 A new efficient optimization algorithm
Because the number of genetic markers can be very large, we need an efficient
algorithm to solve Equation (7). Existing algorithms usually reformulate
such sparsity problem as a second-order cone programming (SOCP) or
semidefinite programming (SDP) problem, which can be solved by interior
point method or the bundle method. However, solving SOCP or SDP is
computationally very expensive, which limits their use in practice. Here, we
propose an efficient algorithm to solve our objective function in Equation (7).

Taking the derivative with respect to W, and setting the derivative to zero,
we have1

XXT W−XYT +γ1DW+γ2D̃W=0, (8)
where D is a block diagonal matrix with the k-th diagonal block as 1

2‖Wk‖F
Ik ,

Ik is an identity matrix with size of mk , D̃ is a diagonal matrix with the i-th
diagonal element as 1

2‖wi‖2
. Thus we have

W= (XXT +γ1D+γ2D̃)−1XYT , (9)

where W can be efficiently obtained by solving the linear equation (XXT +
γ1D+γ2D̃)W=XYT , and the matrix inversion that is computationally
expensive is not involved.

Note that D and D̃ in Equation (9) depend on W and thus are also unknown
variables. We propose an iterative algorithm to solve this problem, which is
described in Algorithm 1.

3.3 Analysis of the algorithm
Now we prove that Algorithm 1 converges to the global optimum.

Lemma 1. For any matrices M and M0 with the same size, we have ||M||F −
||M||2F

2||M0||F ≤||M0||F − ||M0||2F
2||M0||F .

Proof : Obviously, −(||M||F −||M0||F )2 ≤M, so we have

−(||M||F −||M0||F )2 ≤M
⇒2||M||F ||M0||F −||M||2F ≤||M0||2F
⇒||M||F − ||M||2F

2||M0||F ≤||M0||F − ||M0||2F
2||M0||F

which completes the proof. �

1When ‖Wk‖F =0, the k-th diagonal block of D can be regularized
as 1

2
√

‖Wk‖2
F +ς

Ik . Similarly, when wi =0, the i-th diagonal element

of D̃ can be regularized as 1

2
√

‖wi‖2
2+ς

. Then the derived algorithm

can be proved to minimize
∑n

i=1 ||WT xi −yi||22 +γ1
∑K

k=1

√
‖Wk‖2

F +ς+
γ2

∑d
i=1

√
‖wi‖2

2 +ς. It is easy to see that this problem is reduced to problem

(6) when ς→0.

Input: X=[x1,x2,··· ,xn]∈R
d×n, Y=[y1,y2,··· ,yn]∈R

c×n

Initialize W1 ∈R
d×c, t =1 ;

while not converge do
1. Calculate the block diagonal matrix Dt , where the k-th
diagonal is 1

2‖Wk
t ‖F

Ik ; Calculate the diagonal matrix D̃t ,

where the i-th diagonal element is 1
2‖wi

t‖2
;

2. Wt+1 = (XXT +γ1Dt +γ2D̃t)−1XYT ;
3. t = t+1 ;

end
Output: Wt ∈R

d×c.

Algorithm 1: Algorithm to solve Equation (7).

Theorem 1. Algorithm 1 decreases the objective value in each iteration.

Proof : In each iteration t, according to Step 2 we have

||WT
t+1X−Y||2F +γ1TrWT

t+1DtWt+1 +γ2TrWT
t+1D̃tWt+1

≤||WT
t X−Y||2F +γ1TrWT

t DtWt +γ2TrWT
t D̃tWt

⇒||WT
t+1X−Y||2F +γ1

K∑
k=1

||Wk
t+1||2F

2||Wk
t ||F

+γ2

d∑
i=1

||wi
t+1||22

2||wi
t ||2

≤||WT
t X−Y||2F +γ1

K∑
k=1

||Wk
t ||2F

2||Wk
t ||F

+γ2

d∑
i=1

||wi
t ||22

2||wi
t ||2

. (10)

Applying Lemma 1 twice to Equation (10), we have the following

||WT
t+1X−Y||2F +γ1

K∑
k=1

||Wk
t+1||F +γ2

d∑
i=1

||wi
t+1||2

≤||WT
t X−Y||2F +γ1

K∑
k=1

||Wk
t ||F +γ2

d∑
i=1

||wi
t ||2. (11)

Thus, Algorithm 1 decreases the objective value in each iteration. �

Algorithm 1 stops when the following criterion is satisfied:

||Wt+1 −Wt ||F /max
(||Wt ||F ,1

)≤Tol, (12)

where Tol=10−4 is empirically selected in our experiments.
Upon convergence, Wt , Dt and D̃t will satisfy Eq. (9). As the problem of

solving Eq. (7) is a convex problem, satisfying the Eq. (9) indicates that Wt

is a global optimum solution to Eq. (7). Therefore, Algorithm 1 converges
to the global optimum of Eq. (7). Since we have a closed form solution in
each iteration, our algorithm converges very fast, which makes our method
suitable for not only candidate SNP, but also GWASs.

4 EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, we evaluate the proposed G-SMuRFS method by
applying it to the data from the ADNI cohort, where a wide range of
SNPs are examined and selected to predict the response of the MRI
imaging phenotypes. The goal is to select a compact set of SNPs
while maintaining high predictive power.

4.1 Improved imaging phenotype prediction
We first evaluate the proposed method in predicting the continuous
responses of candidate neuroimaging phenotypes. Given two sets of
imaging phenotypes, FreeSurfer and VBM, we conduct experiments
on each of them separately.

We compare our method against multivariate linear regression,
RR and multi-task feature learning (MTFL) (Argyriou et al., 2007)
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(b)(a)

Fig. 5. Performance comparison: The mean and SD of the root mean square
errors (RMSEs) obtained from five cross-validation trials in each experiment
are plotted, where each error bar indicates ±1 SD. (a) FreeSurfer imaging
phenotypes; (b) VBM imaging phenotypes.

method. The former two are the most widely used methods in
statistical learning and medical image analysis. The latter one is
a method most related to the proposed method in that it also
selects features (SNPs) across tasks; however, it only uses �2,1-
norm regularization whereby group information is not taken into
account. Therefore, MTFL method can be seen as a special case of
the proposed method by setting γ1 =0 in Equation (7).

We group SNPs using two methods: (i) SNPs annotated with the
same gene are grouped together; (ii) SNPs within the same LD block
are grouped together, where r2 ≥0.2 is used in this work. For each
test case, we conduct standard 5-fold cross-validation and report
the average results. For each of the five trials, within the training
data, an internal 5-fold cross-validation is performed to fine tune

the parameters in the range of
{

10−5,10−4,...,104,105
}

for RR,

MTFL method and our method. For each trial, from the learned
coefficient matrix we sum the absolute values of the coefficients
of a single SNP over all the tasks as the SNP weight, from which
we pick up the top {10,20,...,100} SNPs to predict the regression
responses for the test data. The performance of each trial is assessed
by RMSE, a widely used measurement for regression analysis.
For each experiment, the mean and standard deviation (SD) of the
RMSEs obtained from the five trials are reported in Figure 5, where
each error bar indicates ±1 SD. Detailed RMSE results of each fold
in cross-validation are available in the Supplementary Material at
http://ranger.uta.edu/%7eheng/imaging-genetics/.

The proposed G-SMuRFS methods consistently outperform three
competing methods in both FreeSurfer and VBM cases (Fig. 5),
while the cross-validation trials in each experiment perform very
similarly to one another (see the error bars in Fig. 5). For a
formal comparison, t-test is performed and the resulting P-values
are reported in Table 2, from which we can see that our methods
are significantly better than three competing methods. Moreover,
the predictive performances of our methods are considerably stable,
whereas those of the other methods are sensitive to experimental
conditions. These results clearly demonstrate the advantage of the
proposed G-SMuRFS method in predicting phenotypic responses.

A more careful observation shows that the regression performance
of our method when using r2 >0.2 to group SNPs is better than that
of our method when grouping SNPs by genes. While gene is the most
natural way to group SNPs, different segments within the same gene
may have different functions (e.g. bases for different isoforms) and

Table 2. The results (P-values) of t-tests for performance comparison
between our methods and three competing methods

FreeSurfer biomarkers VBM biomarkers

Group by Group by Group by Group by
gene r2 >0.2 gene r2 >0.2

MLR 7.08×10−5 3.13×10−5 9.28×10−6 3.96×10−6

RR 1.31×10−2 2.21×10−3 2.12×10−2 1.85×10−3

MTFL 6.57×10−7 2.41×10−7 5.82×10−7 2.63×10−7

mixing them together may perturb the prediction. Grouping by LD
blocks using r2 yields more homogeneous groups and has a potential
to boost the prediction power.

Figure 6 shows heat maps of prediction errors on each QT.
While all these QTs are AD-relevant, Figure 6 indicates that they
are affected in different degrees by genetic factors. QTs that are
better predicted by SNPs include GM density measures of the
parahippocampal gyrus and frontal region in VBM analyses and
thickness measures of the frontal region, lateral temporal region
and precuneus in FreeSurfer analyses. The VBM and FreeSurfer
measures of a certain region yield similar results in some cases
(e.g. frontal region), but may provide different information in other
cases (e.g. parahippocampal gyrus). Thus, performing both VBM
and FreeSurfer analyses can help identify useful imaging phenotypes
and guide further investigation to better elucidate the underlying
disease mechanism, from gene, to brain structure and function, and
to symptoms.

4.2 Genetic marker selection
Shown in Figure 7 are the regression coefficients for top 10
selected SNPs. First, these SNPs are either AlzGene candidates or
proximal to the candidates; however, little is known about their
underlying mechanisms in relation to AD. The results shown in
Figure 7 can help identify relevant QTs for each SNP and has a
potential to gain biological insights from gene to brain to symptoms.
Second, as expected, the APOE SNP rs429358 shows the strongest
association with all QTs in each experiment; and the hippocampal
measures exhibit the strongest association with the APOE SNP.
Clearly, the proposed approach is able to identify the most important
AD genetic risk factor via imaging QTs as well as the best-
known neurodegenerative marker. Third, besides confirming the
prior findings, our method also yielded new discoveries such as
the associations between APOE and other eminent AD markers
including entorhinal cortex and parahippocampal gyrus. These
associations were not identified in our prior massive univariate
analyses on the same data (Shen et al., 2010), indicating that
the proposed multilocus method has increased power to discover
interesting imaging QTs. In sum, the above evidence demonstrates
not only the effectiveness of the proposed method, but also the
strength of using imaging QTs in genetic association study.

Quite a few SNPs from the SORCS1 gene are selected as the
top 10 hits in each experiment; however, the large size of the
gene (Fig. 1) may play a role. Figure 8 shows an LD plot with
location maps for a group of 46 SORCS1 SNPs, where two top
hits (red spikes) are highlighted for each of the FreeSurfer and
VBM experiments. Although SORCS1 has been associated with
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(b)(a)

(c)

Fig. 6. (a and b) Show the heat maps of RMSEs for predicting VBM (a) and FreeSurfer (b) measures using LR, RR, our G-SMuRFS method with SNPs
grouped by gene and G-SMuRFS with SNPs grouped by r2 >0.2, where top 10 SNPs were used in our G-SMuRFS methods. In (c), RMSEs for predicting
VBM measures using four methods are mapped onto the brain volume.

Fig. 7. Regression coefficients are visualized for top 10 selected SNPs in
each of the four experiments (from top to bottom): (i) group by r2 >0.2,
regression on VBM measures; (ii) group by gene, regression on VBM
measures; (iii) group by r2 >0.2, regression on FreeSurfer measures; and
(iv) group by gene, regression on FreeSurfer measures.

diabetes and AD (Lane et al., 2010), the top ranked SORCS1 SNPs
in Figure 7 have not been reported in prior association studies. Thus,
this gene together with its SNPs warrants further investigation in
independent cohorts. Due to the nature of our method, an epistasis
analysis on these top hits would be appropriate for investigation in
future studies.

Fig. 8. Pair-wise LD in a group of 46 SNPs proximal to SORCS1. Numerical
values r2 of the LD maps are determined by Haploview and visualized with
WGAViewer. The top panel is the ideogram of the chromosome and the
vertical red line represents the relative location of the locus of interest. In
the second panel, regression coefficients*100 is plotted for each SNP for
the FreeSurfer data, where two top hits rs765651 and rs1931600 are labeled
with red lines. In the third panel, regression coefficients*100 is plotted for
each SNP for the VBM data, where two top hits rs1931600 and rs1936488
are labeled with red lines. The fourth panel shows the recent selection score
(Voight et al., 2006). The bottom figure demonstrates the LD pattern among
46 SNPs.
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5 CONCLUSIONS
In this article, we have proposed a novel G-SMuRFS method to
perform both regression analysis for predicting continuous responses
of brain imaging measures and selecting relevant SNPs in an
MCI/AD study. Different from traditional regression methods that
ignore the interrelated structures within genotyping and imaging
data, our method studies the associations between SNPs and
imaging phenotypes within a single regression framework and
shared common subspace. Through enforcing a new form of
regularization using G2,1-norm that takes into account both group-
level structural information inside SNP data and sparsity among SNP
groups, our learning model is able to exploit additional information
to achieve both enhanced predictive performance and improved
feature (SNP) selection capability. Besides, �2,1-norm regularization
is used in our model to jointly select SNPs relevant to important
imaging phenotypes. An efficient algorithm to solve the proposed
objective is presented with rigorous proof of its correctness and
convergence. Our experiments using the SNP and MRI data from
the ADNI cohort yielded the following promising results: (i) the
prediction performance of G-SMuRFS method was consistently
better than conventional multi-variate linear regression and ridge
regression; (ii) a compact set of SNP predictors were identified
in each test case, warranting further investigation in independent
cohorts for confirmation; and (3) these selected SNPs could predict
the responses of multiple imaging phenotypes at the same time and
had a potential to serve as useful genetic risk factors for AD. These
promising results were consistent with our theoretical foundation
and in accordance with some prior studies, which demonstrated the
effectiveness of the proposed method.

One important future direction of this work could be to explore
the possibility of simultaneously employing multiple SNP grouping
schemes or more generally adopting a pre-defined network/pathway
strategy and see whether these approaches can further improve the
prediction performance. Other potential future directions include
(i) application of G-SMuRFS method to additional imaging
phenotypes (e.g. PET, fMRI data); and (ii) building a principled
sparse learning framework to reveal complex relationships among
multiple data sources available in the ADNI database, including
genetic, cerebrospinal fluid, plasma, imaging and cognitive datasets
to study AD at a system biology level.
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