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ABSTRACT

Motivation: Imaging genetic studies typically focus on identifying
single-nucleotide polymorphism (SNP) markers associated with
imaging phenotypes. Few studies perform regression of SNP values
on phenotypic measures for examining how the SNP values change
when phenotypic measures are varied. This alternative approach
may have a potential to help us discover important imaging genetic
associations from a different perspective. In addition, the imaging
markers are often measured over time, and this longitudinal profile
may provide increased power for differentiating genotype groups.
How to identify the longitudinal phenotypic markers associated to
disease sensitive SNPs is an important and challenging research
topic.
Results: Taking into account the temporal structure of the
longitudinal imaging data and the interrelatedness among the SNPs,
we propose a novel ‘task-correlated longitudinal sparse regression’
model to study the association between the phenotypic imaging
markers and the genotypes encoded by SNPs. In our new association
model, we extend the widely used �2,1-norm for matrices to tensors
to jointly select imaging markers that have common effects across
all the regression tasks and time points, and meanwhile impose
the trace-norm regularization onto the unfolded coefficient tensor to
achieve low rank such that the interrelationship among SNPs can be
addressed. The effectiveness of our method is demonstrated by both
clearly improved prediction performance in empirical evaluations and
a compact set of selected imaging predictors relevant to disease
sensitive SNPs.
Availability: Software is publicly available at:
http://ranger.uta.edu/%7eheng/Longitudinal/
Contact: heng@uta.edu or shenli@inpui.edu
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1 INTRODUCTION
Neuroimaging genetics is an emerging research field, where brain
imaging is used as quantitative phenotypes to investigate the role
of genetic variation in brain structure and function. It holds great
promise for a systems biology of the brain to better understand
complex neurobiological systems, from genetic determinants to
cellular processes to the complex interplay of brain structure,
function, behavior and cognition. Disorders of the nervous system
are associated with complex neurobiological changes, which may
lead to profound alterations at all levels of organization.

Genome-wide association studies (GWAS) have been
increasingly performed to correlate high-throughput single-
nucleotide polymorphism (SNP) data to large-scale imaging
data. To facilitate such association analysis, many studies used
a hypothesis-driven approach (Glahn et al., 2007) by making
significant reduction in one or both data types. For example,
some whole-brain studies focused on a small number of genetic
variables (e.g. Brun et al., 2009; Filippini et al., 2009; Hariri et al.,
2006; Nichols and Inkster, 2009), and some whole-genome studies
examined a limited number of imaging variables (e.g. Baranzini et
al., 2008; Potkin et al., 2009; Seshadri et al., 2007). Many SNPs
have been identified as risk factors for Alzheimer’s disease (AD),
see those in the AlzGene database (www.alzgene.org).

So far most studies focus on selecting and associating SNPs to
AD status or imaging phenotypes. Very few studies have been done
to directly examine how the SNP values change when phenotypic
measures are varied, i.e. via regression of SNP values on phenotypic
measures. This alternative approach may have a potential to help us
discover important imaging genetic associations from a different
perspective. In this study, we perform such an initial analysis for
finding phenotypic imaging markers that are related to SNPs from
or proximal to AlzGene candidates.

Neuroimaging measures have been widely studied to predict
disease status and/or cognitive performance (Batmanghelich et al.,
2009; Shen et al., 2010a). However, whether these measures coupled
with their longitudinal profiles have sufficient power to infer relevant
genotype groups is still an under-explored yet important topic in AD
research. A simple strategy typically used in longitudinal studies
(e.g. Risacher et al., 2010) is to analyze a single summarized value
such as average change rate of change or slope. This approach may
be inadequate to distinguish the complete dynamics of cognitive
trajectories and thus become unable to identify the underlying
genetic structure.
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With these observations, in this work, we propose a new task-
correlated longitudinal sparse regression framework to effectively
identify the longitudinal phenotypic markers related to candidate AD
SNPs. Based on the emerging structured sparse learning techniques,
which has been effectively applied in imaging genetics studies
(Wang et al., 2011a, b, 2012a, b), the new combined structured sparse
regularizations are introduced to tackle the longitudinal phenotypic
patterns and biological genotypic correlations. The proposed new
computational biology model consists of three major components.
First, due to the serial measures of the imaging phenotypes over time,
we propose a novel longitudinal regression analysis method. As a
result, the regression coefficients assess the relationships between
longitudinal phenotypes and their genetic makeups. Second, certain
SNPs are naturally correlated via different ways, e.g. multiple
SNPs from one single gene often jointly carry out similar genetic
functionalities, SNPs in high linkage disequilibrium (LD) are
linked together in meiosis. To incorporate such SNP correlations
in our association studies, we propose to use the trace/nuclear
norm regularization (Candès and Recht, 2009; Nie et al., 2012) to
approximately minimize the rank of regression coefficient matrix,
such that the coefficients of phenotypes associated to correlated
SNPs are linearly dependent. Finally, through enforcing the �2,1-
norm regularization, the imaging feature selection across most SNPs
are coupled (Argyriou et al., 2007; Obozinski et al., 2006), so that
the identified imaging phenotypes have common influence on all the
SNPs.

We apply the proposed method to the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) cohort (Mueller et al., 2005) for
identifying longitudinal phenotypes using a set of SNPs based on
the AlzGene database. Our empirical results yield not only clearly
improved prediction performance in all test cases but also a compact
set of associations between phenotypes and genotypes that are in
accordance with prior research findings.

2 MATERIALS AND DATA SOURCES
Both SNP and structural magnetic resonance imaging (MRI) data
used in the preparation of this article were obtained from the ADNI
database (adni.loni.ucla.edu). One goal of ADNI has been to test
whether serial MRI, positron emission tomography (PET), other
biological markers and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive
impairment (MCI) and early AD. For up-to-date information, we
refer interested readers to www.adni-info.org.

2.1 SNP genotypes
The SNP data used in this study (Saykin et al., 2010) were genotyped
using the Human 610-Quad BeadChip (Illumina, Inc., San Diego,
CA, USA). Among all SNPs, only SNPs, belonging to the top 40 AD
candidate genes listed on the AlzGene database (www.alzgene.org)
as of June 10, 2010, were selected after the standard quality control
(QC) and imputation steps. The QC criteria for the SNP data include
(i) call rate check per subject and per SNP marker, (ii) gender check,
(iii) sibling pair identification, (iv) the Hardy–Weinberg equilibrium
test, (v) marker removal by the minor allele frequency and (vi)
population stratification. As the second pre-processing step, the
quality-controlled SNPs were imputed using the MaCH software
(Li et al., 2010) to estimate the missing genotypes. After that, the

Illumina annotation information based on the Genome build 36.2
was used to select a subset of SNPs, belonging to the top 40 AD
candidate genes (Bertram et al., 2007). The above procedure yielded
1224 SNPs from 37 genes. For the remaining three genes, no SNPs
were available on the genotyping chip.

2.2 MRI analysis and extraction of imaging
phenotypes

Two widely used automated MRI analysis techniques were used to
process and extract imaging genotypes across the brain from all
the MRI scans of ADNI participants as previously described (Shen
et al., 2010b). First, voxel-based morphometry (VBM) (Ashburner
and Friston, 2000) was performed to define modulated gray matter
(GM) maps and extract local GM values for target regions. Second,
automated parcellation via FreeSurfer V4 (Fischl et al., 1999, 2002)
was conducted to define volumetric and cortical thickness values for
regions of interest (ROIs) and to extract total intracranial volume
(ICV). Further information is available in (Shen et al., 2010b). The
time points examined in this study for imaging markers included
baseline (BL), Month 6 (M6), Month 12 (M12) and Month 24
(M24). All the participants with no missing BL/M6/M12/M24 MRI
measurements were included in this study. Figure 2 shows the names
of these ROIs in the brain space.All these measures were adjusted for
baseline ICV using the regression weights derived from the healthy
control (HC) participants.

3 TASK-CORRELATED LONGITUDINAL SPARSE
REGRESSION

For the association study of longitudinal imaging phenotypes to the
genotypes, the input imaging features are a set of matrices X =
{X1,X2,...,XT }∈R

d×n×T corresponding to the measurements at
T consecutive time points, where Xt is the imaging measurements
for a certain type of imaging markers, such as VBM or FreeSurfer
markers used in this study, at time t

(
1≤ t ≤T

)
. Obviously, X is a

tensor data with d imaging features, n subject samples and T time
points. The output genetic variations described by c SNPs for the n

subject samples forms a matrix Y =[
y1,...,yn

]T ∈R
n×c, where the

yi ∈R
c is the SNP values of the ith subject sample. Our goal is to

learn from {X ,Y} a model that can reveal the associations between
the longitudinal imaging phenotypes X and the genotypes Y .

A straightforward method for relating imaging phenotypes and
SNPs is to perform regression at each time point separately,
which, though, does not take into account the valuable information
conveyed by the longitudinal patterns of the phenotypic inputs. To
overcome this limitation, different from previous studies that learned
the regression coefficient matrix for each time point individually,
we aim to learn a unified longitudinal regression model to find
the genetic features that are associated to the longitudinal imaging
patterns over all the measurement time points. To this end, we
expect to learn a coefficient tensor (a stack of coefficient matrices)
B={B1,··· ,BT }∈R

d×c×T to reveal the temporal changes of the
coefficient matrices. In this article, we propose to use the low-rank
structured sparse regularizations to explore the temporal patterns
and the interrelatedness between SNPs in a new task-correlated
longitudinal sparse regression model.
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3.1 Task-correlated longitudinal sparse regression
using low-rank structured sparse regularizations

The simplest model to associate the the phenotypic markers to the
genotypes is the multivariate regression model, which solves the
following optimization problem:

min
B

J0 =L
(
B

)+γ ||B||22 =L
(
B

)+γ

T∑
t=1

d∑
k=1

||bk
t ||22, (1)

where bk
t denotes the kth row of coefficient matrix Bt at time t, and

L
(
B

)
is the proposed longitudinal loss and defined as

L
(
B

)=||B⊗1 X T −Y ||2F =
T∑

t=1

||XT
t Bt −Y ||2F . (2)

Because the objective J0 in Equation (1) can be decoupled for
each individual time point and does not consider the longitudinal
correlations between the imaging features and the SNPs, it is
not suitable for longitudinal data analysis and feature selection.
Because the selected imaging markers with temporal changes are
desired to connect all the SNPs, the T groups of regression tasks
at different time points should not be decoupled and have to
be performed simultaneously. Thus, we introduce the structured
sparse regularization (Argyriou et al., 2007; Nie et al., 2010;
Obozinski et al., 2006) into the longitudinal data regression and
feature selection model as following:

min
B

J1 =L
(
B

)+γ

d∑
k=1

√√√√ T∑
t=1

||bk
t ||22. (3)

Apparently, J1 in Equation (3) can no longer be decoupled over
time dimension. Upon solution, the imaging features with common
influences to all the SNPs across all the time points will be identified
out due to the second term in Equation (3), which essentially is a
tensor extension of the widely used �2,1-norm for matrices.

To further take into account that many SNPs are interrelated
together and their effects on brain structure or disease progression
could overlap, we expect to further develop J1 in Equation (3) to
leverage the useful information conveyed by the SNP correlations.
Mathematically speaking, due to the interrelatedness among the
SNPs, the learning vector

(
bt

)
j should have certain correlations,

where
(
bt

)
j denotes the jth column of Bt . Namely, the coefficient

matrices Bt
(
1≤ t ≤T

)
should be of low rank. Given a general

n-mode tensor T ∈R
I1×I2×···×In , we denote unfoldk

(
T

)=T(
k
) ∈

R
Ik×

(
I1...Ik−1Ik+1...In

)
as the unfolding operation along its kth mode.

Then we can achieve our goal by minimizing the rank of B(
1/ =

[B1,B2,...,BT ]∈R
d×(

c×T/ induced from B, which leads to the
following optimization problem:

min
B

J2 =L
(
B

)+γ1

d∑
k=1

√√√√ T∑
t=1

||bk
t ||22 +γ2‖B‖∗ , (4)

where ‖‖∗ denotes the trace-norm of a matrix, and without ambiguity
we drop the subscript of the matrix B(

1/ for notation brevity. Given

a matrix M ∈R
n×m and its singular values σi

(
1≤ i≤min

(
n,m

))
, the

trace-norm of M is defined as ‖M‖∗ =∑min
(
n,m/

i=1 σi =Tr
(
MMT ) 1

2 .

It has been shown that (Candes and Tao, 2010; Candès and
Recht, 2009) the trace-norm is the best convex approximation of
the rank-norm. Therefore, the third term of J2 in Equation (4)
indeed minimizes the rank of the unfolded learning model B, such
that the correlations among the SNPs are captured. Due to its
both capabilities for imaging marker selection and task correlation
integration, we call J2 defined in Equation (4) as the proposed
‘task-correlated longitudinal sparse regression model’.

3.2 A new optimization algorithm and its global
convergence

Because our new objective J2 is non-smooth, the problem in
Equation (4) is difficult to solve in general. Some existing methods,
such as LARS (Efron et al., 2004), linear gradient search (Liu et al.,
2009), proximal (Beck and Teboulle., 2009) methods, can solve it,
but not efficiently. Thus, in this subsection we derive a new efficient
algorithm to solve J2 with rigorous proof of its global convergence.

Taking the derivative of J2 w.r.t Bt and set it to zeros, we have:

2XtX
T
t Bt −2XtY +2γ1DBt +2γ2D̄Bt =0, (5)

where D is a diagonal matrix with D(k,k)= 1

2
√∑T

t=1 ||bk
t ||22

and D̄=
(
BBT )−1/2

/2. Thus, we can derive

Bt = (XtX
T
t +γ1D+γ2D̄)−1XtY . (6)

When the time t changes from 1 to T , we can compute Bt
(
1≤ t ≤T

)
by Equation (6). Because D and D̄ depend on B and can be seen
as latent variables, we propose an iterative algorithm to obtain the
global optimum solutions of B in Algorithm 1.

Algorithm 1: A new algorithm to minimize J2 in Equation (4).

Data: X ∈R
d×n×T , Y ∈R

n×c.
1. Initialize B(0) ∈R

d×c×T using the regression results at each
individual time point.;
repeat

2. Calculate the diagonal matrix D, where the k-th diagonal
element is computed as 1

2
√∑T

t=1 ||bk
t ||22

.;

3. Calculate D̄= 1
2

(
BBT

)− 1
2 .;

4. Update Bt by Bt = (XtXT
t +γ1D+γ2D̄)−1XtY .;

until Converges;
Result: B={B1,B2,...,BT }∈R

d×c×T .

We summarize the convergence of Algorithm 1 as following.

Theorem 1. Algorithm 1 monotonically decreases J2 in Equation
(4) in each iteration, and converges to the globally optimal solution.

Proof : In Algorithm 1, in each iteration we denote the updated
Bt as B̃t and the updated L as L̃. From step 4 we know that:

L̃+γ1

T∑
t=1

Tr(B̃T
t DB̃t)+γ2

T∑
t=1

Tr(B̃T
t D̄B̃t)≤

L+γ1

T∑
t=1

Tr(BT
t DBt)+γ2

T∑
t=1

Tr(BT
t D̄Bt).

(7)
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In each iteration, denote the updated B as B̃ and the updated bk
t

as b̃k
t , according to the definitions of D and D̄, we can write

L̃+γ1

2

d∑
k=1

||∑T
t=1 b̃k

t ||22√∑T
t=1 ||bk

t ||22
+ γ2

2
Tr

(
B̃B̃T

(
BBT

)− 1
2

)
≤

L+γ1

2

d∑
k=1

||∑T
t=1bk

t ||22√∑T
t=1 ||bk

t ||22
+ γ2

2
Tr

(
BBT

(
BBT

)− 1
2

)
. (8)

Following (Nie et al., 2010, 2012), it can be verified that√√√√ T∑
t=1

||b̃k
t ||22 −

∑T
t=1 ||b̃k

t ||22
2
√∑T

t=1 ||bk
t ||22

≤

√√√√ T∑
t=1

||bk
t ||22 −

∑T
t=1 ||bk

t ||22
2
√∑T

t=1 ||bk
t ||22

.

(9)

Tr
(

B̃B̃T
) 1

2 −TrB̃B̃T
(

BBT
)− 1

2 ≤

Tr
(

BBT
) 1

2 −TrBBT
(

BBT
)− 1

2
.

(10)

Adding the both sides of Equations (8–10) together, we obtain

L̃+γ1

d∑
k=1

√√√√ T∑
t=1

||b̃k
t ||22 +γ2Tr

(
B̃B̃T

) 1
2 ≤

L+γ1

d∑
k=1

√√√√ T∑
t=1

||bk
t ||22 +γ2Tr

(
BBT

) 1
2
.

(11)

Thus, our algorithm decreases the objective value of Equation (4)
in each iteration. When the objective value keeps unchange,
Equation (5) is satisfied, i.e. the KKT condition of the objective is
satisfied. Our algorithm reaches one of the optimal solution. Because
our objective in Equation (4) is a convex problem, our Algorithm 1
will converge to one of the globally optimal solution. �

Computational analysis. In the iteration loop of Algorithm 1,
Step 2 is computationally trivial. Step 3 solves a singular value
decomposition (SVD) problem, and Step 4 solves a system of linear
equations, both of which, thereby the whole algorithm, are well
studied in literature and can be solved very efficiently by existing
numerical packages.

4 EXPERIMENTAL RESULTS AND DISCUSSIONS
In this section, we evaluate the proposed method by applying it to
the ADNI cohort, where a wide range of imaging markers measured
over a period of 2 years are examined and associated to SNPs that are
relevant to AD. The goal is to discover a compact set of phenotypic
imaging markers that are closely related to AD-sensitive genotypes
encoded by SNPs.

4.1 Improved prediction of SNPs from longitudinal
phenotypic imaging markers

We first evaluate the proposed method by applying it to the ADNI
cohort to predict the SNPs of the participants from each of their

Table 1. Numbers of participants in the experiments using two different
types of imaging markers

Imaging phenotypes # Total # AD # MCI # HC

VBM 424 86 194 144
FreeSurfer 474 100 216 158

two types of imaging phenotypes, i.e. VBM markers and FreeSurfer
markers, tracked over four different time points, including BL
and M06/M12/M24. Because some subjects of the ADNI cohort
do not have complete imaging marker measurements over all the
four time points, in our experiments we use the subject samples
that have both SNPs data and complete imaging measurements.
As a result, two subsets of ADNI subjects are included in our
experiments, one for each type of imaging phenotypes, as detailed in
Table 1.

We compare the proposed method against its three close
counterparts including multivariate linear regression (LR) method,
ridge regression (RR) method and least absolute shrinkage and
selection operator (Lasso) (Tibshirani, 1996) method. LR method
is the most broadly used association model in both statistical
learning and imaging genetics. RR method is the regularized
version of LR model to avoid over-fitting. Lasso method replaces
the squared �2-norm regularization in RR method by the �1-
norm regularization, from which sparse results can be achieved
(Tibshirani, 1996). Different to these compared methods, our
new association model imposes structured sparsity via the tensor
�2,1-norm regularization for phenotypic marker selection and the
trace-norm regularization for capturing the interrelationships among
different SNPs. We implement two versions of the proposed method
as follows. First, we implement our method by only imposing the
trace-norm regularization, denoted as ‘Ours (Trace-norm only)’,
which only makes use of the SNPs’ correlations, but does not
select longitudinal imaging markers. Second, we implement the
full version of the proposed method, denoted as ‘Ours’, which
solves the problem in Equation (4). For measuring the regression
performance of the five compared association models, we use a 5-
fold cross-validation strategy by computing the Pearson’s correlation
coefficient (CORR) and the root mean square error (RMSE) between
the predicted and the actual SNP values, which are reported in
Figure 1.

As can be seen from Figure 1, if we only use the baseline
data, the proposed method is reduced into a conventional multi-
task regression model, which appears as a matrix but not a tensor
and achieves only the slightly better performance than the RR and
Lasso methods. On the other hand, by using the longitudinal data,
the performance of the proposed method is significantly improved,
e.g. for predicting SNPs using the longitudinal data over all the four
time points, the proposed (BL∼M24) method achieves the CORR
of 0.793 and 0.812 and the RMSE of 0.314 and 0.301, respectively,
which are much better than the case of using only the baseline
data.

In addition, Figure 1 also shows that the usage of longitudinal data
can improve the performances of all the LR, RR and Lasso methods,
although the improvements are much less than the proposed method.

These results demonstrate the effectiveness of using longitudinal
data for improved regression from imaging phenotypes to genotypes,
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Fig. 1. Regression performance with respect to the use of different number
of longitudinal time points by three different methods

especially by the proposed method, which has the capability to make
use of the input data through longitudinal feature selection; and the
integration of the interrelatedness among the SNPs.

4.2 Identification of longitudinal imaging markers
One primary goal of this study is to identify a subset of imaging
phenotypes that are highly correlated to certain SNPs to capture
important imaging genomic associations in AD research. Thus, we
examine the phenotypic imaging markers identified by the proposed
methods, which are relevant to the genotypes encoded by SNPs.

4.2.1 Identified imaging markers with high AD risks Shown in
Figure 2 are the overall regression coefficients for all the VBM
and FreeSurfer measures with respect to the 1224 SNPs used in
this study. Because these SNPs are AlzGene candidates or proximal
to the candidates, the results in Figure 2 can help identify SNP-
relevant imaging phenotypes and have a potential to gain biological
insights from gene to brain to symptoms. Besides, the top 10 selected
VBM imaging features, as well as their association coefficients,
are visualized in Figure 3 by mapping them onto the human
brain.

A first glance at the association weigh maps shows that
the selected imaging markers have clear patterns that span
across all the four studied time points, which demonstrates
that these phenotypic markers are longitudinally stable thus can
serve as screening target over the course of AD progression.
We also observe that hippocampal measures (LHippocampus,
RHippocampus, LHippVol and RHippVol) are identified, which
is in accordance with the fact that in the pathological pathway
of AD, medial temporal lobe including hippocampus is firstly
affected, followed by progressive neocortical damage (Braak and
Braak, 1991; Delacourte et al., 1999). The thickness measures
of isthmus cingulate (LIsthmCing and RIsthmCing), frontal pole
(LFrontalPole and RFrontalPole) and posterior cingulate gyrus
(LPostCingulate and RPostCingulate) are also selected, which,
again, is accordance with the fact that the GM atrophy of these
regions is high in AD (Lehmann et al., 2010; McEvoy et al., 2009).
In summary, the identified longitudinally stable markers strongly
agree with the existing findings, which warrants the correctness
of the discovered phenotype–genotype associations, and reveals

the complex relationships among MRI measures, genetic variations
and diagnosis status. This is of clear importance for theoretical
research and clinical practices for a better understanding of AD
mechanism.

4.2.2 Case studies: markers identified for rs423958-APOE and
rs11136000-CLU We provide two case studies to show the top
10 FreeSurfer markers associated with two major AD risk SNPs:
rs423958-APOE and rs11136000-CLU. We explore the associations
between the FreeSurfer markers and the two SNPs in four different
subject groups induced from the ADNI data, i.e. the groups of All,
AD, MCI and HC participants, respectively. The number of the
subjects in each group is available in Table 1. We select the imaging
markers by their average regression coefficients over all the four
time points. The top 10 FreeSurfer markers relevant to rs423958-
APOE and their regression coefficients are shown in Figure 4 and
those relevant to rs11136000-CLU are shown in Figure 5. From
Figure 4 we can see that most of the top 10 FreeSurfer markers for
rs423958-APOE in the four different testing groups are well-known
AD-sensitive phenotypes, such as hippocampal volume in All, AD,
MCI and HC groups; amygdala volume in All, AD, MCI and HC
groups; accumbens volume in All and MCI groups and entorhinal
cortex thickness in AD and HC groups; Similar patterns are also
observed for rs11136000-CLU, as shown in Figure 5. Although data
are not shown due to space limit, our VBM analyses have also
yielded similar results. The complete imaging marker identification
results by our method for both VBM and FreeSurfer markers on
the top 10 identified SNPs are available at the author’s website
at http://ranger.uta.edu/%7eheng/imgsnp/. These results have again
demonstrated the promise of the proposed method in terms of its
capability to identify imaging markers relevant to AD-sensitive
SNPs.

5 CONCLUSIONS
Elucidating the associations between longitudinal phenotypic
imaging markers and AD sensitive SNPs is of important value
for both scientific research and clinical practice. In this article,
we presented a new task-correlated longitudinal sparse regression
method to identify longitudinal imaging markers to AD-relevant
SNPs. In our newly proposed regression model, we imposed a
tensor �2,1-norm regularization extended from the standard matrix
�2,1-norm to capture the temporal patterns in the longitudinal data
over all the tasks of interest, and meanwhile imposed the trace-
norm regularization onto the unfolded coefficient tensor such that
the interrelatedness among the SNPs during the progression of
AD conversion is addressed. Due to the additional time dimension
of the input data and the non-smoothness of the tensor �2,1-
norm and trace-norm, solving the formulated objective of our
new method was very challenging. Therefore, we presented an
efficient iterative algorithm and rigorously proved its convergence
to the global optimum. We applied the proposed method to
the ADNI cohort and evaluated it in both SNPs prediction and
longitudinal imaging marker identification. The clearly improved
regression performance in the prediction and highly suggestive
imaging markers selected by our new method have validated its
effectiveness.
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Fig. 2. Weight maps of the association between imaging markers and the SNPs learned by the proposed method

Fig. 3. Visualization of top 10 VBM features selected by the proposed method at four different time points. The colors of the selected brain regions show the
regression coefficients of the corresponding VBM markers

(a) (b) (c) (d)

Fig. 4. Top 10 FreeSurfer markers identified for rs423958-APOE.

(a) (b) (c) (d)

Fig. 5. Top 10 FreeSurfer markers identified for rs11136000-CLU
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