
Simultaneous Image Classification and Annotation
via Biased Random Walk on Tri-relational Graph

Xiao Cai1, Hua Wang2, Heng Huang1, and Chris Ding1

1 Department of Computer Science and Engineering, The University of Texas at Arlington,
Arlington, Texas, 76019-0015, USA

2 Department of Electrical Engineering and Computer Science, Colorado School of Mines,
Golden, Colorado, 80401, USA

xiao.cai@mavs.uta.edu, huawang@mines.edu, {heng,chqding}@uta.edu

Abstract. Image annotation as well as classification are both critical and chal-
lenging work in computer vision research. Due to the rapid increasing number of
images and inevitable biased annotation or classification by the human curator, it
is desired to have an automatic way. Recently, there are lots of methods proposed
regarding image classification or image annotation. However, people usually treat
the above two tasks independently and tackle them separately. Actually, there is
a relationship between the image class label and image annotation terms. As we
know, an image with the sport class label rowing is more likely to be annotated
with the terms water, boat and oar than the terms wall, net and floor, which are
the descriptions of indoor sports.

In this paper, we propose a new method for jointly class recognition and terms
annotation. We present a novel Tri-Relational Graph (TG) model that comprises
the data graph, annotation terms graph, class label graph, and connect them by
two additional graphs induced from class label as well as annotation assignments.
Upon the TG model, we introduce a Biased Random Walk (BRW) method to
jointly recognize class and annotate terms by utilizing the interrelations between
two tasks. We conduct the proposed method on two benchmark data sets and the
experimental results demonstrate our joint learning method can achieve superior
prediction results on both tasks than the state-of-the-art methods.

1 Introduction

Image classification and image annotation are both important and challenging problems
in computer vision research. Automatic approaches are desired due to the rapid increas-
ing number of images and inevitable biased annotation or classification by the human
curator. In real life, we often encounter the images that are both labeled with one cat-
egory as well as annotated with some free text, such as the images shown in Fig. 1,
where the category label is the global description of the image from a bigger scope
point of view and annotation terms are the local components derived from a smaller
scope perspective.

In the previous research, people usually consider image classification and image an-
notation as two independent tasks. However, because of the existing relationship be-
tween the image class label and image annotation terms, these two problems can be
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Class: rockclimbing
Annotations: climber, hook,

mountain, rock, rope, sky, tree
(a) UIUC-sports

Class:coast
Annotations:sky,building,
sea, palm tree,sand beach,

(b) LabelMe

Fig. 1. Example images with one class label and several annotation terms from UIUC-sport [4]
and LabelMe [5] datasets

tackled together [1] [2]. As we know, an image with the sport class label rowing is
more likely to be annotated with the terms water, boat and oar than the terms wall, net
and floor, which are the descriptions of indoor sports. In this paper, we propose a novel
Tri-Relational Graph (TG) model that comprises the data graph, annotation term graph,
class label graph, and connect them by two additional graphs induced from label as well
as annotation assignments. Upon the TG model, we introduce a Biased Random Walk
(BRW) method to simultaneously produce image-to-class, image-to-annotation, image-
to-image, class-to-image, class-to-annotation, class-to-class, annotation-to-image,
annotation-to-class, and annotation-to-annotation relevances to jointly learn the salient
patterns among images that are predictive of their class label and annotation terms,
and achieve both superior performances compared with the state-of-the-art methods.
We consider each image as a data point and extract the Dense SIFT features [3] as the
corresponding descriptors. We summarize our contributions as follows: 1. This paper
proposes a novel solution to questions “What is the image class?” and “What are the
image annotations” simultaneously, given an unlabeled and unsegmented image; 2. Via
the new TG model that we constructed, the relationships between class label and an-
notation terms as well as the correlations among annotation terms can be naturally and
explicitly propagated by the graph-based learning method; 3. Other than using image-
to-image relevance only conducted by the existing graph based methods, we propose
a new BRW method to exploit the hidden annotation-to-annotation and annotation-to-
class relevances.

2 Related Work

There are lots of work proposed recently regarding image classification or image anno-
tation [6]. For image classification, Fei-fei Li [3] firstly used bag-of-word feature with
the help of modified LDA model to classify the nature scenes. A.Bosch [7] utilized an-
other generative model pLSA [8] with addition of KNN to do the scene classification.
These topic models find a low dimensional representation of data under the assump-
tion that each data point can exhibit multiple “topics”. Discriminate model can solve
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image classification problem as well, for example, multi-class support vector machine
(MSVM). For image annotation, Ji et al. proposed Multi-Label Least Square (MLLS)
method [9] to extract a common structure (subspace) shared among multiple labels. Yu
et al extended unsupervised latent semantic indexing(LSI) [10] to make use of supervi-
sion information, called Multi-label informed Latent Semantic Index (MLSI) [10] and
etc [11] [12] [13] [14]. Nevertheless, the above methods can only handle one task only.
None of them consider the two problems together.

Recently, Chong Wang [15] takes advantage of the novel generative model JLDA,
combining classification model SLDA [16] and annotation model [17] to do the image
classification and image annotation simultaneously. Taking advantage of the relation-
ship between class label and annotation terms, annotation can boost the classification
performance and vice versa.

3 Method

In this section, we first construct a Tri-Relational Graph (TG) to model the intra-
relationships as well as inter-relationships among images, class label and annotation
assignments, followed by proposing a novel Biased Random Walk (BRW) method. Us-
ing BRW on TG, we can jointly make class classification and term annotation for the
test image. We summarize the notation as follows. Matrices are written as uppercase
letters and column vectors are written as boldface lowercase letters. vi is the i-th ele-
ment of column vector v and M(i, j) is the entry located at i-th row and j-th column of
matrix M . e is the column vector with all the elements being 1.

We have n images X = {x1, · · · , xn}, where each image is abstracted as a data point
xi ∈ R

p. Each data point xi belongs to one and only one of Kc category classes C =
{c1, · · · , cKc} represented by yci ∈ {0, 1}Kc, such that yc

i (k) = 1 if xi is classified into
class ck, and 0 otherwise. Meanwhile, each image xi is also annotated with a number of
annotation terms A = {a1, · · · , aKa} represented by yai ∈ {0, 1}Ka, such that ya

i (k) =
1 if xi is annotated with term ak, and 0 otherwise. For convenience, we write yi =
[ycTi , yaT

i ]T ∈ {0, 1}Kc+Ka . Without loss of generality, we assume the first l < n
images are already labeled, which are denoted as T = {xi, yi}li=1. Our task is to learn
a function f : X → {0, 1}Kc+Ka from T that is able to classify the given test image
xi(l + 1 ≤ i ≤ n) into one category class in C and to annotate it with a number of
annotation terms in A at the same time. For simplicity, we write Yc = [yc1, · · · , yc

n],
Ya = [ya1 , · · · , ya

n] and Y = [y1, · · · , yn].

3.1 The Construction of Tri-relational Graph

Given image data set X , the pairwise similarity WX ∈ R
n×n between data points can

be computed using the Gaussian kernel function,

WX(i, j) =

{
exp(−‖xi − xj‖2/2σ2, i �= j

0, otherwise
(1)

where each image x is represented by the dense SIFT feature [3]. Regarding the parame-
ter σ, we utlize self-tuning method [18]. In addition, we use kNN graph. To be specific,
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Fig. 2. The Tri-Relational Graph constructed from the LabelMe data. Solid lines indicate affinity
between vertices in the same subgraph, dashed lines indicate associations between vertices in two
different subgraphs.

we connect xi, xj if one of them is among the other’s k nearest neighbor and determine
the value of the edge connecting them by Eq.(1). WX(i, j) indicates how closely xi and
xj are related. From WX , a graph GX = (VX , EX) can be induced, where VX = X and
EX ⊆ VX ×VX . Because GX characterizes the intra-relationships between data points,
it is usually called data graph, such as the middle subgraph in Fig. 2.

Moreover, we exploit the intra-relationship between different category classes by
the category class graph shown as the left subgraph in Fig. 2. Specifically, the category
class graph GC = (VC , EC) can be constructed based on the category class information,
where VC = C and EC ⊆ VC × VC . And we define the value of the edge connecting
two category classes by WC(i, j) = ‖Sbi − Sbj‖F , where ‖ ‖F means Frobenius
norm and Sbi denotes the between class scatter matrix of the i-th category.

Different from conventional single-label classification learning problem in which
classes are mutual exclusive, the annotation terms are interrelated with one another. We
resort to the following cosine similarity to calculate the annotation term affinity matrix

WA(i, j) = cos(ỹa
i , ỹaj ) =< ỹa

i , ỹaj > /(
∥∥∥ỹa

i

∥∥∥
∥∥∥ỹaj

∥∥∥) (2)

where ỹa
i and ỹaj are the i-th and j-th rows of Ya respectively. Thus, a graph GA =

(VA, EA) is induced, where VA = A and EA ⊆ VA × VA. We call GA as annotation
terms subgraph shown as the right subgraph in Fig. 2.

As introduced in sec 1, the category class and annotation terms have some relations.
We utilize the following cosine similarity to measure their interrelations,

R(i, j) = cos(ỹc
i , ỹaj ) =< ỹci , ỹa

j > /(
∥∥∥ỹc

i

∥∥∥
∥∥∥ỹaj

∥∥∥) (3)

where ỹc
i is the i-th row of Yc and ỹa

j is the j-th row of Ya. R ∈ R
Kc×Ka , where R(i, j)

indicates how closely the i-th category class and the j-th annotation term are related.
Obviously, the subgraph GAX = (VX , VA, EXA) connects GX and GA, whose adja-

cency matrix is Y T
a . Similarly, the adjacency matrix of GCX = (VX ,VC , EXC) is Y T

c .
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The subgraph (VC ,VA, ECA) characterizes the associations between category classes
and annotation terms whose adjacency matrix is R defined in Eq.(3). Connecting GX

and GA by the annotation associations via the green dashed lines, connecting GX and
GC by the class associations via the blue dashed lines and connecting GC and GA by the
class-annotation association via the purple dashed lines, we construct a Tri-Relational
Graph (TG), G = (VX ∪VC ∪VA, EX ∪EA ∪EXC ∪EXA ∪ECA), which is illustrated
in Fig. 2.

In contrast to existing graph-based learning methods that only use information con-
veyed by GX only [19,20,21], on which labeling information is propagated, we aim
to simultaneously classify and annotate an unlabeled data point using all the infor-
mation encoded in G. Because all data points (images), category class and annotation
terms are equally regarded as vertices on G, our task is to measure the relevance be-
tween a category class/anntotation term vertex and a data point vertex. As each cate-
gory class/annotation term has a set of associated training data points, which convey
the same scene information, we consider both the category class/annotation term vertex
and its labeled training image vertices as a group set. As a result, instead of measuring
vertex-to-vertex relevance between a class/annotatation vertex and an unlabeled data
point vertex, we may measure the set-to-vertex relevance between the group set and
the unlabeled data point. Motivated by [22,23], we consider to further develop standard
random walk and use its equilibrium probability to measure the relevance between a
group set and an unlabeled data point.

3.2 Biased Random Walk

Standard random walk on a graph W can be described as a Markov process with tran-
sition probability M = D−1W , where di =

∑
j W (i, j) is the degree of vertex i

and D = diag(d1, · · · , dn). Clearly, MT �= M and
∑

j M(i, j) = 1. Let p(t) be
the distribution of the random walker at time t, the distribution at t + 1 is given by
p(t+1)(j) =

∑
i p(t)(i)M(i, j). Thus the equilibrium (stationary) distribution of the

random walk p∗ = p(t=∞) is determined by MT p∗. It is well known that the solution
is simply given by p∗ = W e/(

∑
i di) = d/(

∑
i di), where d = [d1, · · · , dn]T .

It can be seen that the equilibrium distribution of a standard random walk is solely
determined by the graph itself, but independent of the location where the random walk
is initiated. In order to incorporate label information, we propose the following Biased
Random Walk (BRW):

p(t+1)(j) = (1 − α)
∑

i
p(t)(i)M(i, j) + αhj , (4)

where 0 � α � 1 is a fixed parameter, and h, called biased distribution, is a probability
distribution such that h(i) � 0 and

∑
i h(i) = 1. Eq. (4) describes a random walk

process in which the random walker hops on the graph W according to the transition
matrix M with probability 1 − α, and meanwhile it takes a preference to go to other
vertices specified by h with probability α. The equilibrium distribution of BRW in
Eq. (4) is determined by p∗ = (1 − α)MT p∗ + αh, which leads to:

p∗ = α[I − (1− α)MT ]−1h. (5)
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Due to Perron-Frobenius theorem, the maximum eigenvalue of M is less than
maxi

∑
j M(i, j) = 1. Thus, I − (1−α)MT is positive definite and invertible. Eq. (4)

takes a similar form with respect to two existing works: random walk with restart
(RWR) method [23] and PageRank algorithm [22]. In the former, h is a vector with
all entries to be 0 except one entry to be 1 indicating the vertex where the random
walk could be restarted; while in the latter, h is a constant vector called as damping
factor [22]. In contrast, the biased distribution vector h in Eq. (4) is a generic probabil-
ity distribution, which is flexible thereby more powerful. Most importantly, through h
we can assess group-to-vertex relevance, while RWR and PageRank methods measure
vertex-to-vertex relevance. Similar to RWR [23], when we set the h to be a probability
distribution in which all the entries are 0 except for those corresponding to Gk, p∗(i)
measures how relevant the k-th group is to the i-th vertex on G.

3.3 Biased Random Walk on Tri-relational Graph

In order to classify unlabeled data points using the equilibrium probabilities in Eq. (5)
of the BRW on TG, we need to construct the transition matrix M and the biased distri-
bution h from G.

Construction of the Transition Matrix M
Let

M =

⎡
⎣ MX MXC MXA

MCX MC MCA

MAX MAC MA

⎤
⎦ , (6)

where MX , MC and MA are the intra-subgraph transition matrices of GX , GC and
GA respectively, and the rest 6 sub-matrices are the inter-subgraph transition matrices
among GX , GC and GA. Let β1 ∈ [0, 1] be the jumping probability, i.e., the probability
that a random walker hops from GX to GC and vice versa. And let β2 ∈ [0, 1] be the
jumping probability from GX to GA or vice versa. Therefore, β1 and β2 regulates the
reinforcement between GX and one of the other two subgraphs. When both β1 = 0
and β2 = 0, the random walk are performed independently on GX , which is equivalent
to existing graph-based learning methods using the data graph GX only. Similarly, we
define λ, λ ∈ [0, 1] as the jumping probability from GC to GA or vice versa.

During a random walk process, if the random walker is on a vertex of the data sub-
graph which has at least one connection to the either of the other two subgraphs, she
can hop to the category class subgraph with probability β1 or annotation terms sub-
graph with probability β2, or stay on the data subgraph with probability 1 − β1 − β2

hopping to other vertices of the data subgraph. If the random walker is on a vertex of
the data subgraph without any connection to the category class subgraph or annota-
tion terms subgraph, she stays on the data subgraph, hopping to other vertices on the
same subgraph as the case of standard random walk process. To be more precise, let

d
Y T
c

i =
∑

j Y
T
c (i, j), the transition probability from xi to cj is defined as following:

p(cj |xi) = MXC(i, j) =

{
β1Y

T
c (i, j)/d

Y T
c

i , d
Y T
c

i > 0,
0, otherwise.

(7)
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Similarly, let dYc

i =
∑

j Yc(i, j), the transition probability from ci to xj is:

p(xj |ci) = MCX(i, j) =

{
β1Yc(i, j)/d

Yc

i , dYc

i > 0,
0, otherwise.

(8)

Following the same definition, the rest four inter-subgraph transition probability matri-
ces are defined as:

p(aj |xi) = MXA(i, j) =

{
β2Y

T
a (i, j)/d

Y T
a

i , if d
Y T
a

i > 0,
0, otherwise.

(9)

p(xj |ai) = MAX(i, j) =

{
β2Ya(i, j)/d

Ya

i , if dYa

i > 0,
0, otherwise.

(10)

where dY
T
a

i =
∑

j Y
T
a (i, j) and d

Ya

i =
∑

j Ya(i, j), and

p(cj |ai) = MAC(i, j) =

{
λRT (i, j)/dR

T

i , if dR
T

i > 0,
0, otherwise.

(11)

p(aj |ci) = MCA(i, j) =

{
λR(i, j)/dRi , if dRi > 0,

0, otherwise
(12)

where dR
T

i =
∑

j R
T (i, j) and dRi =

∑
j R(i, j). Let dXi =

∑
j WX(i, j), dYi =∑

j Y (i, j), dQa

i =
∑

j Qa(i, j), d
Qc

i =
∑

j Qc(i, j) where Qa = R + Ya and Qc =

RT + Yc.
The data subgraph intra transition probability from xi to xj is computed as:

p(xj |xi) = MX(i, j) =

{
(1− β1 − β2)WX(i, j)/dXi , if dY

T

i > 0
WX(i, j)/dXi , otherwise

(13)

Similarly, let dAi =
∑

j WA(i, j), the annotation terms subgraph intra transition proba-
bility from ai to aj is:

p(aj |ai) = MA(i, j) =

{
(1− β2 − λ)WA(i, j)/d

A
i , if d

QT
a

i > 0
WA(i, j)/d

A
i , otherwise

(14)

let dCi =
∑

j WC(i, j), the category class subgraph intra transition probability from ci
to cj is:

p(cj |ci) = MC(i, j) =

{
(1− β1 − λ)WC(i, j)/d

C
i , if d

QT
c

i > 0
WC(i, j)/d

C
i , otherwise

(15)

It can be easily verified that,
∑

j M(i, j) = 1, i.e., M is a stochastic matrix.

Construction of the Biased Distribution H
The biased distribution vector specifies a group of vertices to which the random walker
prefers to moving in every iteration step. The relevance between this group and an vertex



830 X. Cai et al.

is measured by the equilibrium distribution of the random walk process. Therefore, we
construct K = Kc +Ka biased distribution vectors, one for each semantic group Gk:

h(k) =

[
γh(k)

X
(1− γ)h(k)

L

]
∈ R

n+K
+ (16)

where h(k)
X (i) = 1/

∑
i yi(k) if yi(k) = 1 and h(k)

X (i) = 0, otherwise; h(k)
L (i) = 1,

if i = k, γ ∈ [0, 1] controls how much the random walker prefers to go to the data
subgraph GX and other two subgraphs GC , GA. It can be verified that

∑
i h(k)(i) = 1,

i.e, h(k) is a probability distribution. Let IK be the identity matrix of size K ×K , we
write

H = [h(1), · · · , h(K)] =

[
γHX

(1− γ)IK

]
(17)

BRW on TG
Given the TG of a data set, using the transition matrix M defined in Eq. (6) and the
biased probability matrix H defined in Eq. (17), we can perform BRW on the TG.
According to Eq. (5), its equilibrium distribution matrix P ∗ is computed as:

P ∗ = α[I − (1− α)MT ]−1H, (18)

P ∗ = [p∗
1, · · · , p∗

K ] ∈ R
(n+K)×K , and p∗

k is the equilibrium distribution of the BRW
taking the k-th semantic group as preference. Therefore, p∗

k(i) (l + 1 � i � n)
measures the relevance between the k-th class and an unlabeled test image xi. We
can predict the category class from the block Pnc obtained from the matrix P ∗ us-
ing Eq. (18) and select annotation terms for xi using the adaptive decision bound-
ary method [21] on block Pna which is calculated from matrix P ∗, where Pnc =⎡
⎢⎣
P ∗(l + 1, 1) · · · P ∗(l + 1,Kc)

...
. . .

...
P ∗(n, 1) · · · P ∗(n,Kc)

⎤
⎥⎦, Pna =

⎡
⎢⎣
P ∗(l + 1,Kc + 1) · · · P ∗(l + 1,Kc +Ka)

...
. . .

...
P ∗(n,Kc + 1) · · · P ∗(n,Kc +Ka)

⎤
⎥⎦

Since the category class prediction is a single-label classification problem, we select
the category class y(i)c∗ with the maximum probability as the predicted category class
for image xi.

y(i)
c∗

= argmax
k

(p̃c
i ) (19)

where p̃c
i is the i-th row vector of matrix Pnc. Up to here, we are able to achieve the

goal, that is, to predict the category class and annotation terms for the given test image
simultaneously.

4 Experiment and Results

In this section, we will first briefly introduce the two datasets that we used in our ex-
periment, followed by the feature extraction and experiment setup. After that, we will
demonstrate the results of image classification and image annotation using our approach
with the comparison of the state-of-art methods.
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4.1 Data Description and Feature Extraction

We used two benchmark colorful image datasets, i.e. LabelMe [5] data and the UIUC-
sport data [4]. Each image in our experiment contains one category class and several
annotation terms. LabelMe dataset consists of eight category classes: coast, forest, high-
way, inside-city, mountain, open-country, street and tall-building. In order to keep the
balance of the number of images for each class, followed [15] we unified the size of
each image as 256× 256× 3 and then randomly selected 200 images for each category
class. Thus, the total number of images is 1600. The UIUC-sports dataset is an event
dataset composed of eight classes as well: badminton, bocce, croquet, polo, rockclimb-
ing, sailing and snowboarding. The number of images in each category class varies from
136 (bocce) to 250 (rowing). The total number of images is 1578. In both datasets, we
remove the annotation terms that occurred less than 3 times. We refined the annotation
terms based on the following two reasons. On one hand, if the number of data point
with a certain annotation term is too small, from statistic point of view, it is hard let the
machine learn this annotation efficiently. On the other hand, since we will do two-fold
cross validation in our experiment, if the annotation terms correspond to too small num-
ber of data points, it is hard for us to evenly split the data, obtaining the training sets
and testing sets. At last, we get a refined LabelMe data set with 58 distinct annotation
terms and a refined UIUC-sports data set with 90 distinct annotation terms. On average,
there are 4 terms per annotation in the refined LabelMe data and 6 terms per annotation
in the refined UIUC-sports data.

Following the setting in [15], we used the 128-dimensional SIFT region descriptors
to represent a sliding grid (5 × 5) and choose 256 as the number of codewords created
by K-means algorithm. Therefore, after the visual quantization, we get a histogram with
256 dimension to be the descriptor for the corresponding image data.

4.2 Experimental Setup

In our experiments, we found the following five parameters are not sensitive in certain
ranges with good performance. β1, β2 and λ controls the jumping between different
subgraphs and could not affect the result much if they are assigned in the range from
0.1 to 0.4. α controls initial bias of the random walker and will get stable result if it
is assigned in the range of (0, 0.2). γ controls how much the random walker prefers to
go to the data subgraph or to go to other two subgraphs. We set it as 0.5 since we con-
sider data subgraph and the other two subgraphs are equally important. Besides these
parameters, we also need to initialize the category class as well as annotation terms for
the test data. Practically, we can use any single-label multi-class classification method
to get the initialized category class ŷc

i and use any multi-label multi-class classification
approach to initialize annotation terms ŷai . Although the initializations are not com-
pletely correct, a big portion of them should be (assumed to be) correctly predicted.
Our joint classification framework will self-consistently amend the incorrect labels for
class and annotation, which will be shown in the coming experimental results. In our
experiments, we use k-nearest neighbor (KNN) method to do the above initializations
because of its simplicity and clear intuition. We use k = 1 and abbreviate it as 1NN.
We use 2-fold cross validation in our experiment to calculate the average results.
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Fig. 3. Classification results in terms of confusion matrices on LabelMe data
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Fig. 4. Classification results in terms of confusion matrices on UIUC data

4.3 Joint Classification and Annotation Results

We evaluate the performance of our method on both classifications and annotations
tasks. We firstly train our model with classified and annotated images. And then, we
evaluate the prediction performance of our proposed method on unlabeled as well as
unsegmented test images.

Image Classifications. To evaluate our method’s classification performance, we com-
pared our method with the state-of-the-art method JLDA [15], support vector machine
(SVM) with radial basis function (RBF) kernel [24] and 1NN on benchmark datasets.
As to JLDA, we downloaded the published code from the author’s website and re-
ported the best classification results using different number of topics (from 60 to 120).
For SVM, we tuned the parameters C and γ based on the training data only and used
the trained model using optimal parameters to do the prediction. We demonstrated the
category class prediction results by confusion matrices. From the resultant confusion
matrices as shown in Fig. 3 and Fig. 4, we can see that the prediction accuracy of our
proposed method is higher than the results of the other methods for more than 2 percent
on both datasets.

Image Annotations. We also validate our method by predicting the annotation terms
on these two benchmark datasets. Two standard multi-label classification performance
metrics precision and F1 score are used to evaluate image annotation performances.
Again, we used LIBSVM [24] but considering annotation terms independently by one-
vs-all strategy. We compared the performance of our method with four famous multi-
label classification methods as well, i.e., Harmonic function (HF) [25], random walk
(RW) [26] which considers the data graph and annotation terms graph only, local shared
subspace (LS) [9] and LGC [27]. Table 1 shows that our method can consistently beat
the other methods evaluated by all the metrics on both datasets.
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Table 1. The comparison of average annotation prediction results using 2-fold cross validations

Dataset Method
Metric

Macro avg. Precision Macro avg. F1 Micro avg. Precision Micro avg. F1

LabelMe

SVM[24] 0.4253 0.4179 0.1394 0.2013
HF[25] 0.2569 0.3942 0.1273 0.1061
RW[26] 0.2569 0.3942 0.1273 0.1061
LS[9] 0.3688 0.3603 0.1369 0.1385

LGC[27] 0.4592 0.4578 0.1402 0.1967
BRW(our) 0.4923 0.5038 0.1749 0.2071

UIUC-sports

SVM[24] 0.4376 0.4451 0.1946 0.2018
HF[25] 0.1349 0.2259 0.1514 0.1449
RW[26] 0.2569 0.3942 0.1273 0.1061
LS[9] 0.2576 0.2469 0.1657 0.1791

LGC[27] 0.4328 0.4357 0.1932 0.1937
BRW(our) 0.4679 0.4508 0.2108 0.2052
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Fig. 5. The annotation-class correlation on LabelMe data

5 Discussion

Fig. 5 demonstrates the annotation-class correlation matrix. Highlighted by the red ar-
rows on the top, we can see that the annotation term “building” has higher correlation
with the category class “street”. However it has lower correlation with the category
class “highway”. In other words, the annotation “building” can give us a hint to some
extent, implicitly indicating that it has a higher probability with category class “street”
than category class “highway”. Fig. 7 further illustrates that with the help of annota-
tion terms, we can boost the classification performance. Since we initialize WC and
WA as the symmetric matrices before the random walk starts, we assume the hidden
class-to-class and annotation-to-annotation relationship are both symmetric. However,
in practice, they are not. For example, boat is usually seen in the image with sea back-

ground but not vice versa. Our learned P ∗
cc and P ∗

aa from P ∗ =

⎡
⎣ P ∗

nc P
∗
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Fig. 6. The learned asymmetric annotation-to-annotation matrix by BRW on TG on labelMe data
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Fig. 7. Illustration on how clarification of annotation terms help the classification of the category
of a test image (shown on the right in the data subgraph). Shown on the left in the data subgraph
is the image (from the database) which is the nearest neighbor of the test image. Two main
features/characteristics in both images are road and car. Based on these two main features only,
the category of the test image is ambiguous — it could be either street or highway. However, with
the clarification of the test image’s additional annotation terms of sky, building, windows and etc,
our system assigns street category to the test image.

more accurate asymmetric relationships, which is shown in Fig. 6. And using such kind
of asymmetric information, both of our classification and annotation tasks achieve su-
perior performance than the state-of-art methods. The sample joint prediction results
are shown in Fig. 8.
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Fig. 8. The prediction results of two test images by SVM (left column), by our method (middle)
and ground truth (right column). Annotation predictions are on the top, while the category class
prediction result is on the bottom (incorrect annotation or category class is marked as red). (a)
illustration of good prediction results and (b) failure cases where incorrect annotations affect the
category class prediction and vice versa.

6 Conclusion

In this paper, we proposed a novel Tri-relational Graph (TG) model to jointly learn the
interrelations between category class prediction and terms annotation inspired by the
intuition that image classification and image annotation are related. The standard bag-
of-word features were used to describe the images. A new Biased Random Walk (BRW)
method was introduced to simultaneously propagate the category class and annotation
terms information via TG model. Both category class prediction and terms annotation
tasks are jointly completed. Besides that, our method can also exploit the more ac-
curate intrinsic asymmetric annotation-to-annotation, class-to-class intra-relationships.
We evaluated the proposed method on two popular datasets. The experimental results
demonstrated our joint learning method can achieve superior prediction results on both
tasks than the state-of-the-art methods.
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