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Abstract. Due to the high false positive rate in the high-throughput
experimental methods to discover protein interactions, computational
methods are necessary and crucial to complete the interactome expe-
ditiously. However, when building classification models to identify pu-
tative protein interactions, compared to the obvious choice of positive
samples from truly interacting protein pairs, it is usually very hard to
select negative samples, because non-interacting protein pairs refer to
those currently without experimental or computational evidence to sup-
port a physical interaction or a functional association, which, though,
could interact in reality. To tackle this difficulty, instead of using heuris-
tics as in many existing works, in this paper we solve it in a principled
way by formulating the protein interaction prediction problem from a
new mathematical perspective of view — sparse matrix completion, and
propose a novel Nonnegative Matrix Tri-Factorization (NMTF) based
matrix completion approach to predict new protein interactions from
existing protein interaction networks. Because matrix completion only
requires positive samples but not use negative samples, the challenge in
existing classification based methods for protein interaction prediction is
circumvented. Through using manifold regularization, we further develop
our method to integrate different biological data sources, such as protein
sequences, gene expressions, protein structure information, etc. Exten-
sive experimental results on Saccharomyces cerevisiae genome show that
our new methods outperform related state-of-the-art protein interaction
prediction methods.

Keywords: Protein-Protein Interaction, Multimodal Biological Data,
Nonnegative Matrix Factorization.

1 Introduction

Proteins play an essential role in nearly all cellular functions such as promot-
ing biochemical reactions and composing cellular structures. The multiplicity of
functions that proteins execute in most cellular processes and biochemical events
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is attributed to their interactions with other proteins. As a result, it is critical
to understand protein-protein interactions (PPIs) in both scientific research and
practical applications such as new drug development. A variety of techniques
are now available to experimental biologists for discovering protein-protein in-
teractions, such as yeast two-hybrid systems [14], mass spectrometry [13], and
many others as surveyed in [27]. Although these high-throughput experimen-
tal methods have accumulated a large amount of data, interactomes of many
organisms are far from complete [27]. The low interaction coverage along with
the experimental biases toward certain protein types and cellular localizations
reported by most experimental techniques call for the development of computa-
tional methods that are able to predict more reliable putative PPI for further
experimental screening [28].

Recently, machine learning techniques, such as Bayesian networks [15], deci-
sion trees [32,7], random forest [22,6], and support vector machines (SVM) with
different kernels [20,2,25,19], have been successfully applied to predict PPIs.
These methods used various data sources to train a classifier to distinguish pos-
itive examples of truly interacting protein pairs from the negative examples of
non-interacting pairs. However, all these methods suffer from a fundamental dif-
ficulty — how to choose the negative samples. Compared to the obvious choice
of positive samples from truly interacting protein pairs, the selection of negative
samples typically is not easy. First, non-interacting protein pairs refer to those
currently without experimental or computational evidence to support a physical
interaction or functional association. In reality, however, such protein pairs could
interact. Second, the number of non-interacting protein pairs is much larger than
the number of the interacting ones, therefore unbalanced training data often
cause skewed prediction models that lead to unsatisfactory prediction results.
In most existing classification based methods, heuristics are often employed to
tackle these problems. By recognizing these difficulties, instead of considering
PPI prediction as a classification problem, we approach it from a new perspec-
tive by using matrix completion, which is an important mathematical topic to
address the problem to recover a matrix from what appears to be incomplete, or
even corrupted [5]. Because matrix completion only uses truly interacting protein
pairs without requiring negative training samples, the difficulty in classification
based PPI prediction methods is circumvented.

In this paper, we propose a novel Nonnegative Matrix Tri-Factorization
(NMTF) [16,11] based matrix completion approach to predict protein-protein
interactions. NMTF focuses on the analysis of data matrices whose elements
are nonnegative, such as the adjacency matrix of a PPI graph, and decomposes
the input matrix into three nonnegative factor matrices that approximate the
input matrix by a low-rank nonnegative representation [9,10]. We first employ
NMTF approach to predict putative protein interactions, which only makes use
of PPI network data. After that, we extend the standard NMTF framework
by adding manifold regularization [12], such that additional biological data,
e.g., protein sequences data, protein structures information, and gene expres-
sions, can be incorporated to achieve enhanced PPI prediction performance.
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Extensive empirical evaluations on Saccharomyces cerevisiae genome have shown
encouraging performance, which demonstrate the effectiveness the proposed
methods.

2 Methods

We first briefly formalize the problem of PPI prediction. Given a PPI network,
we may construct a graph G = (V,Ω,X), with V corresponding to n = |V |
proteins and Ω ⊆ V × V corresponding to known PPIs. X ∈ {0, 1}n×n is the
adjacency matrix, such that Xij = 1 if (i, j) ∈ Ω, i.e., there exists a PPI between
protein i and protein j, and Xij = 0 otherwise. Our task is to identify a subset
of non-interacting protein pairs M ⊆ (V × V ) \Ω which tend to interact and
can be served as potential targets for further experimental screening.

Throughout this paper, we denote matrices as boldface upper case characters.
Given a matrix M, its Frobenius norm and trace are denoted as ‖M‖ and tr(M)
respectively. For convenience, given an index set M of a matrix X, we define XM

as following:

(XM )ij =

{
Xij , ∀ (i, j) ∈ M,

0 otherwise.
(1)

2.1 Predict New Protein Interactions via PPI Networks

Objective to Predict PPIs. We first predict protein interactions only using
PPI network data. Considering the protein interaction prediction as a matrix
completion problem, where the input PPI adjacency matrix X contains missing
entries (pairs of proteins whose interactions are yet to be determined), we wish to
predict Y which has full entries, i.e., every elements of Y is filled with computed
values. Y completes X in the sense that YΩ = XΩ , or more explicitly, Yij =
Xij , ∀(i, j) ∈ Ω, where Ω denotes the set of edges where the input adjacency
matrix X has known values (the set of interacting edges). Mathematically, the
PPI prediction problem can be solved as the following optimization problem:

min
Y

J1 = ‖X−Y‖2Ω =
∑

(i,j)∈Ω

(X−Y)2ij . (2)

Due to the low-rank nature of the adjacency matrix of an input PPI network as
discussed earlier, the completed matrix Y can be factorized and written as Y =
HSHT , where H ∈ R

n×k
+ and S ∈ R

k×k
+ are the factor matrices with nonnegative

elements. As a result, Y = HSHT can be seen as a low-rank representation of
the input matrixX with rank of k � n. Thus we can rewrite Eq. (2) as following:

min
H≥0, S≥0

J2 = ‖X−HSHT ‖2Ω . (3)

Note that, although other low-rank matrix approximation methods, e.g., singu-
lar value decomposition (SVD), exist, using NMTF as in Eq. (3) to constrain
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the factor matrices H and S to be nonnegative is a natural choice as all the
entries of the adjacency matrix X of the input PPI network are positive by defi-
nition. Moreover, because of the clustering interpretation of NMTF [9,11], other
biological data sources can be easily incorporated via manifold regularization as
introduced later.

The Solution Algorithm. Different from standard NMTF based objectives
as in [16,9,11,31], which are defined over the entire input nonnegative matrix,
the objective in Eq. (3) for PPI prediction is defined over a subset of the entries
that correspond to known PPIs. Therefore, the solution algorithms to standard
NMTF cannot be directly applied to solve Eq. (3). To this end, we present an
iterative algorithm in Algorithm 1 to solve Eq. (3). The main computational load
of Algorithm 1 is step 4 to solve a symmetric NMF problem, whose numerical
solution was just proposed in our recent work in [31].

Algorithm 1. Algorithm to solve Eq. (3).

Input: Input PPI adjacency matrix X;
Index set of known PPIs Ω.
begin

1. t = 0;

2. Initialize Z(0) = XΩ ;
while not converge do

3. t = t+ 1;
4. Solve

argmin
H≥0 S≥0

∥
∥
∥
∥
Z(t−1) −H(t)S(t)

(

H(t)
)T

∥
∥
∥
∥

2

(4)

to obtain H(t) and S(t);

5. Compute Y(t) = H(t)S(t)
(

H(t)
)T

;

6. Compute Z(t) = XΩ +Y
(t)
M ;

end

end
Output: Output matrix with filled missing entries Y.

Solving Eq. (3) by Algorithm 1 for matrix completion, our NMTF approach
to predict PPIs is proposed.

2.2 Predict New Protein Interactions from Multimodal Biological
Data

In last subsection, we infer putative protein interactions only from PPI network
data, while in practice we may also have other biological data, such as protein
sequence data [20,25,19] and 3D protein structures [2,7,23], and so on. To exploit
these useful information, in this subsection, we further develop the proposed
NMTF based matrix completion approach.
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An important reason of the popularity of NMTF in statistical learning lies
in its close connection to k-means clustering [9,11]. Specifically, given a sym-
metric nonnegative input matrix W, the resulted factor matrix H can be seen
as the clustering indications of the vertices [18]. Therefore, if we have biologi-
cal data other than PPI networks appearing in form of pairwise similarity, we
can incorporate them through manifold regularization [8,26]. Specifically, let
W(k) (0 ≤ k ≤ K) be a set of pairwise similarities constructed from different
biological data, an integrated similarity among proteins can be constructed as
W =

∑
k ηkW(k) (ηk ≥ 0,

∑
k ηk = 1), where ηk are parameters to balance the

data from different sources. With W we further develop the objective in Eq. (3)
as following:

min
H≥0, S≥0

J4 = ‖X−HSHT ‖2Ω + 2λ tr
(
HT (D−W)H

)
,

s.t. HTDH = I,
(5)

where D is a diagonal matrix whose diagonal entries Dii =
∑

j Wij are the
degree of the corresponding data points on W, and λ is a parameter to balance
the relative importance of the regularization term which is empirically selected
as λ = 0.01 in all our experimental evaluations. Because H can be seen as the
“soft” clustering labels [9], the second term in Eq. (5) enforces the smooth-
ness over the variation of the clustering labels with respect to the underlying
manifold described by W [4,12], by which additional biological data sources are
incorporated.

Equation (5) takes a similar form to Eq. (3), which, again, is not a standard
NMTF problem. We use Algorithm 1 to solve it by replacing step 4 to minimize
the following objective:

J4 =‖Z−HSHT‖2 + 2λ tr
(
HT (D−W)H

)
,

s.t. H ≥ 0,S ≥ 0,HTDH = I.
(6)

Solving Eq. (5) for matrix completion, our Regularized Non-negative Matrix Tri-
Factorization (R-NMTF) approach for PPI prediction is proposed, which is able
to utilize both PPI network data as well as other biological data.

3 Experimental Results and Discussions

3.1 Materials and Data Sources

Protein Interaction Networks. We construct PPI graphs using the protein
interaction networks compiled by BioGRID database [29]. We evaluate our meth-
ods on the Saccharomyces cerevisiae genome, for which an undirected graph is
constructed, with vertices representing proteins and edges representing observed
physical interactions. When constructing the graph, we only consider the largest
connected component of the physical interaction map from BioGRID database
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of version 2.0.56. The details of the PPI graph of S. cerevisiae genome are listed
in Table 1, where “coverage” stands for the percentage of known PPIs against
the total number of protein pairs (n× (n− 1) /2).

Table 1. PPI graphs of the S. cerevisiae genome constructed using BioGRID database
of version 2.0.56.

Number of proteins 5056
Edges (number/coverage) 9439/0.738%

Protein Sequence Data. We downloaded protein sequence data from Gen-
Bank [3] and computed the sequence based similarity using the mismatch ker-
nel [17]. A protein sequence si is first mapped to a feature vector Φk,m (si) =
{φβ (α)}β∈Ak , where A is the alphabet of 20 amino acids. The neighborhood

Nk,m (α) of a k-mer α is the set of k-mers that differs in at most m positions.
The feature vector encodes all the k-mers in the neighborhood for φβ (α) = 1
if α ∈ Nk,m (β), and 0 otherwise. Then the mismatch kernel, thereby the in-
duced pairwise similarity between two protein sequences si and sj , is computed

as W
(1)
ij = K (si, sj) = 〈Φk,m (si) , Φk,m (sj)〉. In our empirical studies, we set

k = 6 and m = 1, which is the same as in [19]. We use protein sequence data as
the additional biological data source, i.e., W = W (1).

Protein Annotation Data. We use the functional annotations defined by
Gene Ontology (GO) Consortium [1], which is a set of structured vocabularies
organized in a rooted directed acyclic graph (DAG), describing attributes of
gene products (proteins or RNA) in three categories of “cellular component”,
“molecular function” and “biological process”.

3.2 Improved Prediction Capability in Cross-Validation

We first evaluate the proposed methods and compare their prediction capabili-
ties against three most recent PPI prediction methods:
(1) Tensor product pairwise kernel (TPPK) method [20]: This method builds
a kernel for pairwise objects. In order for a fair comparison, protein sequence
and protein interaction network topology are used for kernel construction. PPI
prediction is then carried out by the ranking scores for non-interacting protein
pairs yielded by a SVM on the resulted score.
(2) Metric learning pairwise kernel (MLPK) method [23]: This method represents
a pair of objects as the difference between its members, such that the resulted
kernel is invariant with respect to the order of the proteins. Again, SVM is used
to compute the ranking score for putative PPIs.
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(3) Nearest neighbor (NN) [19] method: NN is the simplest classification method
in machine learning. In [19], a ranking score for each non-interacting protein pair
is computed as

fNN (xi) =
∑

xj∈(Nk(xi)∩E)

d (xi, xj)−
∑

xj∈(Nk(xi)∩((V×V )\E))

d (xi, xj) , (7)

where Nk (xi) is the set of k-nearest neighbors of xi, and d (·, ·) is distance func-
tion built from a kernel by d (xi, xj) =

√K (xi, xi)− 2K (xi, xj) +K (xj , xj). In
our evaluations, we use the mismatch kernel for protein sequence data.

Experimental Procedures. For each method, we perform 20-fold cross-
validation as following. For each trail, we remove 5% known edges (PPIs) from
the input graph and try to recover them using the remained graph, which is
repeated by 10 times. The average results over the 10 trials on the S. cere-
visiae genome are reported in Fig. 1. During each trial, an internal 5-fold cross
validation is performed for parameter selection. For our NMTF and R-NMTF
methods, the parameter is the rank k of the factor matrices H and S. For TPPK
and MLPK methods, we use the Gaussian kernel, therefore the parameters are
the two regularization parameters. For NN method, we select the k of NN from
{1, 2, 3, 5, 10, 15}, which is the same as in [19]. We fine tune the parameters for
best prediction precision for all the compared methods.

Results. Because all compared methods produce a list of ranking scores for
non-interacting protein pairs, we employ precision-recall curves to measure the
prediction performance. We compute the precisions and recalls when picking
up a range of top k non-interacting protein pairs as predictions, and average
them over the 10 trials. The resulted precision-recall curves on the S. cerevisiae
genome are reported in Fig. 1. From the results, we can see that the both pro-
posed methods, NMTF and R-NMTF, consistently outperform the compared
methods, sometimes very significantly. In addition, the prediction performances
of R-NMTF method are always better than those of NMTF method, which is
consistent with our previous theoretical analysis in that multimodal biological
data, i.e., protein interaction network plus protein sequence data, offer enhanced
prediction performance.

A more careful analysis on the prediction results shows that the non-
interacting protein pairs (including the non-interacting protein paris in the orig-
inal PPI graphs and those removed due to cross-validation) with high ranking
scores identified by the proposed methods typically exhibit high similarities in
their functional roles. In Table 2, we list the predicted protein pairs with top 5
highest ranking scores by R-NMTF method on S. cerevisiae species, in which
the biological functions of all protein pairs are very similar to each other. For
example, “PHO91” works as “Low-affinity phosphate transporter of the vacuo-
lar membrane”, which is also the main functional role of its putative interacting
partner “PHO90”. Moreover, both of them have functionalities of “transcription
independent of Pi and Pho4p activity” and “overexpression results in vigorous
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Fig. 1. Precision-recall curves by 20-fold cross-validation on S. cerevisiae genome by
the compared PPI prediction methods

growth”. These observations clearly demonstrate that these two proteins are
functionally related and tend to interact with each other, which provide a con-
crete evidence to support that the predicted protein interactions by the proposed
R-NMTF are biologically meaningful.

Note that, in our empirical studies we only use one additional data source,
i.e., protein sequence data, for the purpose of demonstration. In practice, more
biological data could be also incorporated through a proper kernel construction
under the R-NMTF prediction framework to achieve better prediction results.

3.3 Improved Protein Function Prediction Using Predicted PPI
Networks

Protein interaction networks are broadly used in various biological applications,
whose performances are inevitably determined by the quality input PPI graphs.
Therefore, we assess the quality of predicted PPI networks in protein function
prediction on S. cerevisiae species.

We predict protein functions on the original PPI graph constructed from the
BioGRID database, the PPI graph filled by the top 1000 putative interacting
protein pairs predicted by NMTF method, and that by R-NMTF method. We
make predictions using the following three benchmark graph-based protein func-
tion prediction methods:
(1) Majority voting (MV) [24] method: This method assigns functions to a pro-
tein via its connecting neighbors in certain ranges.
(2) Iterative majority voting (IMV) [30] method: This method is same as MV
method, but iteratively repeats the function assignment process until certain
conditions are satisfied.
(3) Function Flow (FF) [21] method: This method formulates the annotation
problem as a minimum multiway-cut problem, where the goal is to assign a
unique function to all un-annotated proteins so as to minimize the cost of edges
connecting proteins with different assignments.
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Table 2. Comparisons of biological functionalities of the predicted protein interactions

LAT1 PDX1
Dihydrolipoamide acetyltransferase com-
ponent (E2) of pyruvate dehydrogenase
complex, which catalyzes the oxidative
decarboxylation of pyruvate to acetyl-
CoA—Lat1p; protein coding

Dihydrolipoamide dehydrogenase (E3)-
binding protein (E3BP) of the mitochon-
drial pyruvate dehydrogenase (PDH) com-
plex, plays a structural role in the com-
plex by binding and positioning E3 to the
dihydrolipoamide acetyltransferase (E2)
core—Pdx1p; protein coding

PHO91 PHO90
Low-affinity phosphate transporter of the
vacuolar membrane; deletion of pho84,
pho87, pho89, pho90, and pho91 causes
synthetic lethality; transcription indepen-
dent of Pi and Pho4p activity; overexpres-
sion results in vigorous growth—Pho91p;
protein coding

Low-affinity phosphate transporter; dele-
tion of pho84, pho87, pho89, pho90, and
pho91 causes synthetic lethality; transcrip-
tion independent of Pi and Pho4p ac-
tivity; overexpression results in vigorous
growth—Pho90p; protein coding

PHO91 PHO87
Low-affinity phosphate transporter of the
vacuolar membrane; deletion of pho84,
pho87, pho89, pho90, and pho91 causes
synthetic lethality; transcription indepen-
dent of Pi and Pho4p activity; overexpres-
sion results in vigorous growth—Pho91p;
protein coding

Low-affinity inorganic phosphate (Pi)
transporter, involved in activation of
PHO pathway; expression is independent
of Pi concentration and Pho4p activ-
ity; contains 12 membrane-spanning seg-
ments—Pho87p; protein coding

PHO87 PHO89
Low-affinity inorganic phosphate (Pi)
transporter, involved in activation of
PHO pathway; expression is independent
of Pi concentration and Pho4p activ-
ity; contains 12 membrane-spanning seg-
ments—Pho87p; protein coding

Na+/Pi cotransporter, active in early
growth phase; similar to phosphate trans-
porters of Neurospora crassa; transcription
regulated by inorganic phosphate concen-
trations and Pho4p—Pho89p; protein cod-
ing

COY1 SVP26
Coy1p—Golgi membrane protein with sim-
ilarity to mammalian CASP; genetic inter-
actions with GOS1 (encoding a Golgi snare
protein) suggest a role in Golgi function;
protein coding

Integral membrane protein of the early
Golgi apparatus and endoplasmic reticu-
lum, involved in COP II vesicle transport;
may also function to promote retention
of proteins in the early Golgi compart-
ment—Svp26p; protein coding
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Table 3. Performance of protein function prediction by involved method on compared
PPI graphs

MV IMV FF

Original PPI graph 30.12% 30.92% 32.99%

Predicted PPI graph by NMTF method 34.85% 35.21% 36.02%

Original PPI graph by R-NMTF method 35.98% 36.33% 38.19%

We implement these methods following the details in the original literatures.
Because FF method produces a ranking list of predicted protein functions, we
select a threshold such that the prediction precision is maximized. 5-fold cross-
validation is performed to predict the functions in “biological process” of GO.
The average prediction precision over all test functions and 5 trials of cross-
validation of the involved methods on different PPI graphs are reported in
Table 3.

The results in Table 3 show that the function prediction performance for all
three methods are improved when the predicted PPI graphs are used. Such re-
sults experimentally prove that the predicted PPI graphs have higher quality
than the original one, which demonstrates that the filled putative protein in-
teractions by the proposed methods are largely biological meaningful. Thus, we
can tentatively conclude that the proposed NMTF and R-NMTF indeed can
improve the protein interaction networks. Again, multimodal biological data
sources based R-NMTF method is better than single data source based NMTF
method.

4 Conclusions

In this paper, instead of considering protein-protein interaction prediction as
a binary classification problem as in many existing works, we formulated it as
a matrix completion problem. Taking this different perspective, the difficulty
of selecting negative training samples required by classification based methods
is averted. Moreover, because the number of protein interaction types is small,
the recovery of missing PPIs from an incomplete observed protein interaction
network can be suitably solved under the framework of matrix completion. We
first proposed to use NMF approach to predict PPIs only from protein inter-
action network data, and then extended it through manifold regularization to
incorporate multimodal biological data sources. We have conducted extensive
empirical studies to evaluate different aspects of the proposed methods on S.
cerevisiae genome. Promising results in the experiments validate our methods
that are consistent with our theoretical analysis.

Acknowledgments. This research is supported by NSF-IIS 1117965, NSFCCF-
0830780, NSF-DMS-0915228, NSFCCF-0917274.
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