
Function-Function Correlated Multi-Label

Protein Function Prediction over Interaction
Networks

Hua Wang, Heng Huang�, and Chris Ding

Department of Computer Science and Engineering,
University of Texas at Arlington, Arlington, TX 76019
huawangcs@gmail.com, {heng,chqding}@uta.edu

Abstract. Many previous computational methods for protein function
prediction make prediction one function at a time, fundamentally, which
is equivalent to assume the functional categories of proteins to be
isolated. However, biological processes are highly correlated and usu-
ally intertwined together to happen at the same time, therefore it would
be beneficial to consider protein function prediction as one indivisible
task and treat all the functional categories as an integral and correlated
prediction target. By leveraging the function-function correlations, it is
expected to achieve improved overall predictive accuracy. To this end,
we develop a novel network based protein function prediction approach,
under the framework of multi-label classification in machine learning, to
utilize the function-function correlations. Besides formulating the
function-function correlations in the optimization objective explicitly,
we also exploit them as part of the pairwise protein-protein similarities
implicitly. The algorithm is built upon the Green’s function over a graph,
which not only employs the global topology of a network but also cap-
tures its local structural information. We evaluate the proposed approach
on Saccharomyces cerevisiae species. The encouraging experimental re-
sults demonstrate the effectiveness of the proposed method.

Keywords: Protein Function Prediction, Green’s Function, Multi-Label
Classification, Function-Function Correlations.

1 Introduction

Many existing in silico methods for protein function prediction typically make
prediction one function at a time, fundamentally. This turns the problem into
a convenient form to use existing machine learning algorithms, which, however,
abstracts away the function correlations due to neglecting the fact that most bio-
logical functions are interdependent from one another. For example, “Transcrip-
tion” and “Protein Synthesis” usually appear together [13], one after another,
i.e., they tend to appear in the processes of a same protein. Therefore, if a protein
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is known to be annotated with function “Transcription”, we would have high con-
fidence to annotate the same protein with function “Protein Synthesis” as well.
In other words, the function-function correlations convey valuable information
to understand the biological processes, which provide a potential opportunity
to improve the overall accuracy of protein function prediction. However, how to
effectively exploit function-function correlations remains a challenge for devising
computational methods for protein function prediction. In this study, we tackle
this new, yet important, problem by placing protein function prediction under
the framework of multi-label classification, an emerging topic in machine learn-
ing, to develop a new graph based protein function prediction method to take
advantage of function-function correlations.

1.1 Network Based Protein Function Prediction

Recent availability of protein interaction networks for many genomic species
has stimulated the development of network based computational methods for
protein function prediction. Typically, an interaction network is first modeled
as a graph, with the vertices representing proteins and the edges representing
the detected protein-protein interactions (PPI), then a graph based statistical
learning method is used to infer putative protein functions.

The most straightforward method using network data to predict protein func-
tion determines the putative functions of a protein from the known functions of
its neighboring proteins on a PPI network [16,9,2], which, though, only lever-
ages the local information of a network. Lately, researchers used the global opti-
mization approaches to improve the protein function predictions by taking into
account the full topology of networks [20,11,14]. All these approaches can be
summarized as the following common scheme: (1) compute a set of ranking lists,
and (2) make prediction using certain thresholds on the ranking lists. In step 1,
which is the most critical part of algorithms, these existing methods compute the
ranking lists one function at a time, therefore they do not take into account the
interrelationships among the functions. Network based approaches using other
models for protein function prediction are surveyed in [17].

The aforementioned graph-based protein function prediction methods bank on
two assumptions: local consistency and global consistency, which are the exact
foundations of label propagation based learning approaches in machine learning.
This motivates us to formulate protein function prediction over a PPI network
as a label propagation problem on a graph. Among existing label propagation
methods, we choose to develop our new method from the Green’s function ap-
proach [5,23] due to its clear intuition and demonstrated effectiveness in other
real-world applications.

1.2 Multi-Label Correlated Protein Function Prediction

Because a protein is usually observed to play several functional roles in different
biological processes within an organism, it is natural to annotate it with multi-
ple functions. Thus, protein function prediction is an ideal example of multi-label
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classification [21,22,23,24,25] in machine learning. Multi-label classification is an
emerging topic driven by the advances of modern technologies in recent years, in
which each object could belong to more than one class. In contrast, in traditional
single-label classification, a data object may belong to one and only one class.
Placing protein function prediction under the framework of multi-label classifi-
cation, we use the Green’s function approach to integrate the function-function
correlations from theory of reproducing kernel Hilbert space (RKHS). Besides
incorporating the function-function correlations as a regularizer in the optimiza-
tion objective explicitly, we also take advantage of them as part of the pairwise
protein similarities implicitly.

2 Methods

In this section, we propose a novel Function-function Correlated Multi-Label
(FCML) approach using the Green’s function on a graph to predict protein
functions, which incorporates the function-function correlations by two levels:
one from the function perspective to formulate the function-wise similarities ex-
plicitly in the optimization objective (Section 2.3), and the other from protein
similarity perspective using function assignments to model the function correla-
tions implicitly (Section 2.4).

2.1 Notations and Problem Formalization

In protein function prediction, given K biological functions and n proteins, each
protein xi is associated with a set of labels represented by a function assignment
indication vector yi ∈ {−1, 0, 1}K such that yi(k) = 1 if protein xi has the
k-th function, yi(k) = −1 if it does not have the k-th function, and yi(k) =
0 if its function assignment is not yet known in a priori. Given l annotated
proteins {(x1,y1), . . . , (xl,yl)} where l < n, our task is to predict functions

{yi}ni=l+1 for the unannotated proteins {xi}ni=l+1. We write Y = [y1, . . . ,yn]
T
,

and Yl = [y1, . . . ,yl]
T
=

[
y(1), . . . ,y(K)

]
, where y(k) ∈ R

l is a class-wise function
assignment vector. We also define F = [f1, . . . , fn]

T ∈ R
n×K as the decision

matrix for prediction, and {fi}ni=l+1 include the decision values for prediction.
We formalize a protein interaction network as a graph G = (V , E). The vertices

V correspond to the proteins {x1, . . . , xn}, and the edges E are weighted by an
n×n similarity matrix W with Wij indicating the similarity between xi and xj .
In the simplest case, W is the adjacency matrix of the PPI graph where Wij = 1
if proteins xi and xj interact, and 0 otherwise. In this work, W is computed in
Eq. (10) to incorporate more useful information.

2.2 Protein Function Prediction Using the Green’s Function over a
Graph

In this section, we first briefly review the Green’s function approach for label
propagation over a graph, from which we will derive the proposed FCML method
in later subsections.
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Given a graph with edge weights W , its combinatorial Laplacian is defined as
L = D − W [3], where D = diag(We) and e = [1...1]T . The Green’s function
over the graph is defined as the inverse of L with zero-mode discarded, which is
computed as following [5]:

G = L−1
+ =

1

(D −W )+
=

n∑

i=2

viv
T
i

λi
, (1)

where L−1
+ and (D −W )+ indicates that the zero eigen-mode of the concerned

matrix is discarded, and 0 = λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of L and vi

are the corresponding eigenvectors. Because the Green’s function G in Eq. (1)
is a kernel [5], from the theory of RKHS, the Green’s function approach is to
minimize the following objective [5]:

J0 (F ) = (1− μ) ‖F − Y ‖2 + μ tr
(
FTK−1F

)
, (2)

where K = G is the kernel, μ ∈ (0, 1) is a constant to control the smoothness
regularizer tr

(
FTK−1F

)
, and tr(·) denotes the trace of a matrix.

Thus, we assign functions to unannotated proteins by [5]:

yi = sign (fi) , l < j ≤ n, where F = GY. (3)

We name Eq. (3) as simple Multi-Label Green’s Function (MLGF) approach,
beyond which we will propose a novel function-function correlated multi-label
Green’s function approach to leveraging function-function correlations.

2.3 Function-Function Correlated RKHS Approach for Multi-Label
Classification

Although the function-function correlations are useful to infer putative functions
of unannotated proteins, MLGF approach defined in Eq. (3) does not exploit
them because it treats the biological functions of interest as isolated. In multi-
label scenarios, however, we concentrate on making use of the function-function
correlations, which could be defined as C ∈ R

K×K using cosine similarity as
following [22,23,24,25]:

Ckl = cos
(
y(k),y(l)

)
=

〈y(k),y(l)〉
‖y(k)‖ ‖y(l)‖ . (4)

Following [23], we expect to maximize tr
(
FCFT

)
. In order to make connection

with the theory of RKHS, instead of directly using F , we use kernel assisted
decision matrix K− 1

2F , which leads to the following objective to maximize [23]:

JC (F ) = tr
(
K− 1

2FCFTK− 1
2

)
. (5)

Combining Eq. (5) with the original RKHS objective in Eq. (2), we minimize
the following objective:

J (F ) = β‖F − Y ‖2 + tr
(
FTK−1F

)− α tr
(
K− 1

2FCFTK− 1
2

)
, (6)

where α ∈ (0, 1) balances the the two objectives, and β = 1−μ
μ .
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Differentiating J with respect to F , we have:

∂J

∂F
= 2β(F − Y ) + 2K−1F − 2αK−1FC = 0 =⇒

F =
1

βI +K−1
βY + α

1

βI +K−1
K−1FC.

(7)

Because β is usually very small in typical empirical settings, we have:

F

β
= KY + α

F

β
C =⇒ F̃ = KY + αF̃C = GY + αF̃C, (8)

where F̃ = F
β
. Thus, we have

F̃ = GY (I − αC)−1 . (9)

We name Eq. (9) as our proposed Function-function Correlated Multi-Label
(FCML) approach for protein function prediction.

2.4 Correlation Augmented Interaction Network

Traditional network based protein function prediction approaches only employ
biological interaction networks obtained from experimental data such as those
from high-throughput technologies. When considering protein function predic-
tion as a multi-label classification problem, we can build a computational inter-
action network WL ∈ R

n×n from label assignment perspective. As one of our
contribution, we make use of this new computational interaction network and
propose a correlation augmented interaction network as follows:

W = WBio + γWL, (10)

where WBio is the biological interaction network, which is same as those in
existing approaches. In Eq. (10), γ controls the relative importance ofWL, which

is empirically selected as γ =
∑

i,j,i�=j WBio(i,j)
∑

i,j,i�=j WL(i,j)
.

The true power of the correlation augmented interaction network construction
scheme defined in Eq. (10) lies in that, the original biological similarities among
proteins are augmented by the function assignment similarities. As a result,
label propagation pathways over a graph are reinforced. With this interaction
network construction scheme, the correlations among the functional categories
are encoded into the graph weights, such that the resulted hybrid graph can be
directly used in existing methods to enhance their prediction performance. In
this paper, we use W defined in Eq. (10) to compute the Green’s function in
Eq. (1).
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Protein-Protein Similarity from Function Assignments (WL). Because
multiple functions could be assigned to one single protein, the overlap between
the function assignments of two proteins can be used to evaluate their similarity.
The more functions shared by two proteins, the more similar they are. Conse-
quently, besides the class membership indications, the label assignment vector
yi is enriched with characteristic meaning, which thereby can be used as an
attribute vector to characterize protein xi. Using cosine similarity, the function
assignment similarity between two proteins is computed as:

WL(i, j) = cos(yi,yj) =
〈yi,yj〉
‖yi‖‖yj‖ . (11)

Note that, the entries of WL measures individual protein - individual protein
relationships ; whereas the entries of C defined in Eq. (4) assesses the function
category - function category correlations.

Our task in protein function prediction is to assign functions to unannotated
proteins upon annotated ones. In order to compute WL, however, we need func-
tion assignments of all the proteins, including those annotated and unannotated.
Therefore, we first initialize unannotated proteins through majority voting [16]
approach, which makes prediction using the top three frequent functions appear-
ing one protein’s interacting partners.

Biological Protein-Protein Similarity (WBio) and Multi-Source
Integration. WBio in Eq. (10) computes the protein-protein similarity from
biological experimental data, which is same as existing works and could inte-
grate multiple experimental sources. Let W (1) be the graph built from BioGRID
PPI data [10,7], W (2) be that from synthetic lethal data [19], W (3) be that from
gene co-expression data [6], W (4) be that from gene regulation data [8], etc.,
WBio is computed as [15]:

WBio(i, j) = 1−
∏

k

[
1− r(k)W (k)(i, j)

]
, (12)

where r(k) is estimated reliabilities of the corresponding network by Expression
Profile Reliability (EPR) index [4]. Eq. (12) reflects the fact that interactions
detected in multiple experiments are generally more reliable than those detected
by a single experiment [12].

Because in reality the overlap among different biological networks typically is
very small, and the BioGRID PPI network data are fairly comprehensive, in this
work, we set WBio = W (1), where W (1)(i, j) = 1 if protein xi and xj interact,
and 0 otherwise.

3 Materials and Data Sets

Two types of data are involved in the experimental evaluations for protein func-
tion prediction: function annotation data and PPI data.
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The functional catalogue (FunCat) [13] is a project under the Munich Infor-
mation Center for Protein Sequences (MIPS), which is an annotation scheme for
the functional description of proteins from prokaryotes, unicellular eukaryotes,
plants and animals. Taking into account the broad and highly diverse spectrum
of known protein functions, FunCat of version 2.1 consists of 27 main functional
categories, 17 of which are involved in annotating Saccharomyces cerevisiae. Al-
though there are still other protein annotation systems such as the Gene Ontol-
ogy [1], we use the Funcat annotation system due to its clear tree-like hierarchical
structure. All 17 level-1 biological functions are listed in Table 1.

Table 1. Function IDs and names by Funcat scheme version 2.1

ID Name

‘01’ Metabolism
‘02’ Energy
‘10’ Cell Cycle and Dna Processing
‘11’ Transcription
‘12’ Protein Synthesis
‘14’ Protein Fate (Folding, Modification, Destination)
‘16’ Protein With Binding Function or Cofactor Requirement (Structural or Cat-

alytic)
‘18’ Regulation of Metabolism and Protein Function
‘20’ Cellular Transport, Transport Facilitation and Transport Routes
‘30’ Cellular Communication/Signal Transduction Mechanism
‘32’ Cell Rescue, Defense and Virulence
‘34’ Interaction with the Environment
‘38’ Transposable Elements, Viral and Plasmid Proteins
‘40’ Cell Fate
‘41’ Development (Systemic)
‘42’ Biogenesis of Cellular Components
‘43’ Cell Type Differentiation

The protein-protein interaction data can be downloaded from the BioGRID
database [18] and we focus on the S. cerevisiae. By using the BioGRDI database
of version 2.0.45 and removing the proteins connected by only one PPI, we end
up with 4299 proteins annotated by Funcat annotation scheme with 72624 PPIs,
as well as 1997 unannotated proteins.

4 Results and Discussions

In this section, using the PPI data from BioGRID database [18] and Funcat an-
notation scheme [13] on S. cerevisiae data, we evaluate our new FCML approach
by applying it in protein function prediction, where standard precision and F1
score are used as statistical metrics.
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4.1 Evaluation of the Function-Function Correlations

Because the function-function correlations are one of the most important mech-
anism to improve the prediction performance in our proposed approach, we first
evaluate its correctness. Using the FunCat 2.1 annotation data set for S. cere-
visiae genome, the function-function correlations defined in Eq. (4) are visual-
ized in Figure 1. The high correlation value between functions “40” (Cell Fate)
and “43” (Cell Type Differentiation) depicted in this figure shows that they
are highly correlated. In addition, as shown in this figure some other function
pairs are also highly correlated, such as functions “11” (Transcription) and “16”
(Protein With Binding Function or Cofactor Requirement), “18” (Regulation of
Metabolism and Protein Function) and “30” (Cellular Communication/Signal
Transduction Mechanism), etc. All these observations perfectly comply with the
biological facts, which firmly confirm the correctness of our formulation of the
function-function correlations defined in Eq. (4) from biological perspective.
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Fig. 1. The visualization of the correlation matrix defined in Eq. (4) among the 17
main functional categories in FunCat 2.1 annotated to S. cerevisiae genome

4.2 Improved Function Prediction in Cross-Validation

We compare the performances of the proposed Multi-label Green’s Function
(MLGF) approach and Function-function Correlated Multi-Label (FCML) ap-
proach to several benchmark computational methods for protein function pre-
diction, including Majority Voting (MV) approach [16], Global Majority Voting
(GMV) approach [20], χ2 approach [9], and Functional Flow (FF) approach [14].
The PPI graph is built from BioGRID data of version 2.0.45 with annotation
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by MIPS Funcat scheme of version 2.1. The standard 10-fold cross-validation
is used. For our approach, adaptive decision boundary [23] is used to compute
the threshold to make prediction from the ranking list of the decision values
for each function. For the four other approaches, we use their respective optimal
parameters. In MV approach, we select the 3 most frequently occurring functions
in a protein’s neighbors. In χ2 approach, radius = 1 gives the best performance.
In FF approach, we assign functions according to the proportions of positive and
negative training samples as suggested by [14].

The prediction performance of the six compared methods measured by pre-
cision and F1 score are shown in Figure 2(a) and Figure 2(b), respectively.
The experimental results show that the prediction precision by MLGF approach
in 10-fold cross-validation outperforms the other four approaches for most of
the level-1 functions of Funcat scheme, which demonstrates the effectiveness
of the Green’s function method in protein function prediction. Moreover, the
precisions by FCML approach are consistently better than those of MLGF,
which are clearly better than the four competing approaches for almost all
the functions as well. As a balanced performance measurement, the results of
F1 score using FCML further demonstrate that incorporating the inherent cor-
relations among biological functions can improve the prediction performance
significantly.

In addition to evaluating the prediction performance on each individual func-
tion, we also report the overall prediction performance over all functions us-
ing the micro averages to address multi-label scenario. The micro average is
computed from the sum of per-class contingency table, which can be seen as
a weighted average that emphasizes more on the accuracy of classes/functions
with more positive samples. The micro average precision and F1 score by the six
compared approaches over all 17 level-1 biological functions are listed in Table 2,
which give another evidence to support the advantages of the proposed FCML
approach. We notice that the performance of FF approach is not as good, which
is similar to the experimental results reported in [2].

Table 2. Micro average of precision and F1 score by the six compared approaches over
all main functional categories by Funcat Scheme

Approaches Average Precision Average F1 score

MV 30.69% 29.04%
GMV 31.13% 22.41%
χ2 14.8% 7.60%
FF 28.01% 27.05%

MLGF 32.45% 36.36%
FCML 54.83% 43.74%
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(b) F1 score.

Fig. 2. Performance of 10-fold cross-validation for the main functional categories in
Funcat scheme by MV, GMV, χ2, FF, and proposed MLGF and FCML approaches on
BioGRID PPI data

5 Conclusions

Weproposed a novel Function-function CorrelatedMulti-Label (FCML) approach
for protein function prediction, and showed its promising performance to outper-
form other related approaches. Different from most existing approaches that di-
vide protein function prediction into multiple separate tasks and make prediction
fundamentally one function at a time, the proposed FCML approach considers all
the biological functions as a single correlated prediction target and predict protein
functions via an integral procedure. In the proposed approach, correlations among
the functional categories are leveraged.By formulating protein function prediction
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as a multi-label classification problem, we use the Green’s function over a graph to
efficiently resolve the problem. The Green’s function approach takes advantage of
both the full topology of the interaction network toward global optimization and
the local structures, such that the deficiencies of many existing approaches are
gracefully overcome.
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