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Abstract The low-rank matrix completion problem is a fundamental machine learning and
data mining problem with many important applications. The standard low-rank matrix com-
pletion methods relax the rank minimization problem by the trace norm minimization. How-
ever, this relaxation may make the solution seriously deviate from the original solution.
Meanwhile, most completion methods minimize the squared prediction errors on the observed
entries, which is sensitive to outliers. In this paper, we propose a new robust matrix comple-
tion method to address these two problems. The joint Schatten p-norm and �p-norm are used
to better approximate the rank minimization problem and enhance the robustness to outliers.
The extensive experiments are performed on both synthetic data and real-world applications
in collaborative filtering prediction and social network link recovery. All empirical results
show that our new method outperforms the standard matrix completion methods.

Keywords Matrix completion · Schatten p-norm · �p-norm · Recommendation system ·
Social network

1 Introduction

The prediction of the incomplete observations of an evolving matrix is a challenge of interest
in many machine learning, data mining, and information retrieval applications [1–3], such as
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friendship prediction in social network, rating value estimation in recommendation system
and collaborative filtering, and link prediction in protein–protein interaction network. All
these problems can be seen as a special case of matrix completion where the goal is to
impute the missing entries of the data matrix. As one emerging technique of compressive
sensing, the problem of matrix completion has been extensively studied on both theory and
algorithms [2,4–8] and also became popular after the recent concluded million-dollar Netflix
competition.

The matrix completion methods assume that the values in the data matrix (graph) are
correlated and the rank of the data matrix is low. The missing entries can be recovered using
the observed entries by minimizing the rank of the data matrix, which is an NP hard problem.
Instead of solving such an NP hard problem, the researchers minimize the trace norm (the
sum of the singular values of the data matrix) as the convex relaxation of the rank function.
Many recent research has been focusing on solving such trace norm minimization problem
or extended formulations [7,9–20]. Meanwhile, instead of strictly keeping the values of the
observed entries, the recent research work relaxed it to minimize the prediction errors (using
squared error function) on the observed entries [7].

Although the trace norm minimization-based matrix completion objective is a convex
problem with global solution, the relaxation may make the solution seriously deviate from
the original solution. It is desired to solve a better approximation of the rank minimization
problem without introducing much computational cost. In this paper, we reformulate the
matrix completion problem using the Schatten p-norm. When p → 0, our new objective
can approximate the rank minimization better than the trace norm. Moreover, to improve
the robustness of matrix completion method, we introduce the �p-norm (0 < p ≤ 1) error
function for the prediction errors on the observed entries. Thus, our new objective mini-
mizes the joint Schatten p-norm and �p-norm (0 < p ≤ 1). When p → 0, our objec-
tive is more robust and effective than the standard matrix completion methods, which is
a special case of our objective when p = 1. Although our objective function is not a
convex problem (when p < 1), we derive an efficient algorithm based on the alternat-
ing direction method. With extensive experiments, we observe that under a large num-
ber of random initializations, our new nonconvex objective can always find a better con-
vergency result for the matrix completion without introducing much extra computational
cost.

We evaluate our new method using both synthetic and real-world data sets. Six bench-
mark data sets from collaborative filtering and social network link prediction applications
are utilized in our validations. All empirical results show that our new robust matrix comple-
tion method outperforms the standard missing value prediction approaches. To evaluate the
robustness of joint Schatten p-norm and �p-norm, we also add Gaussian noise into benchmark
data sets and then perform all compared methods for matrix completion. In all experimental
results, our method still has the best performance on all data sets and also is affected least by
noise in all methods.

In summary, we highlight the main contributions of this paper as follows:

– We propose a novel objective function for the robust matrix completion task by utilizing
joint Schatten p-norm and �p-norm.

– Optimizing the proposed objective function is a nontrivial problem; thus, we derive an
optimization algorithm to solve this problem.

– We derive the optimal solution to the problem (24), which generalizes a famous soft
thresholding result in [8] and can be used in many other Schatten p-norm minimization
problems.
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2 A new robust matrix completion method

2.1 Definitions of �p-norm and Schatten p-norm

The �p-norm1 (0 < p < ∞) of a vector v ∈ R
n×1 is defined as ‖v‖p = (∑n

i |vi |p
) 1

p ,
where vi is the i-th element of v. Thus, the p-norm of a vector v ∈ R

n×1 to the power p is
‖v‖p

p = ∑n
i |vi |p . Similarly, we can define the p-norm of a matrix X ∈ R

n×m to the power
p as ‖X‖p

p = ∑n
i
∑m

j |xi j |p.

The extended Schatten p-norm (0 < p < ∞) of a matrix X ∈ R
n×m is defined as

‖X‖Sp
=

⎛

⎝
min{n,m}∑

i=1

σ
p

i

⎞

⎠

1
p

, (1)

where σi is the i-th singular value of X . Thus, the Schatten p-norm of a matrix X ∈ R
n×m

to the power p is

‖X‖p
Sp

=
min{n,m}∑

i=1

σ
p

i . (2)

When p = 1, the Schatten 1-norm is the trace norm or nuclear norm, which is usually
denoted as ‖X‖∗. When p → 0, from Fig. 1 we can see the extended Schatten p-norm of X
approximates the rank of X . If we define 00 = 0, then when p = 0, Eq. (2) is the rank of X .

2.2 Robust matrix completion objective

We denote XΩ = {Xi j |(i, j) ∈ Ω }, and ‖XΩ‖p
p = ∑

(i, j)∈Ω

∣∣Xi j
∣∣p . Suppose we are given

the observed values DΩ = {Di j |(i, j) ∈ Ω } in a matrix D, the matrix completion task is
to predict the unobserved values in the matrix D. The general rank minimization problem
[21–28] solves the following problem:

min
X

‖XΩ − DΩ‖2
2 + γ rank(X), (3)

This problem is NP hard due to the rank function in the objective. In practice, the rank is
relaxed to the Schatten 1-norm (trace norm), and then we solve the following relaxed problem:

min
X

‖XΩ − DΩ‖2
2 + γ ‖X‖∗ . (4)

However, the relaxation may make the solution deviate seriously from the original solution.
Meanwhile, the used squared error is sensitive to outliers.

When p → 0, the Schatten p-norm ‖X‖p
Sp

will approximate the rank of X [29]. In this

paper, we replace the ‖X‖∗ by ‖X‖p
Sp

; the value of p can be selected from (0, 1]. When p is
set to a value smaller than 1, then the resulted problem will better approximate the original
problem. We also use the �p-norm (0 < p ≤ 1) as the error function to improve the robustness

1 When p ≥ 1, ‖v‖p = (
∑n

i=1 |vi |p)
1
p strictly defines a norm that satisfies the three norm conditions,

while it defines a quasinorm when 0 < p < 1. The quasinorm extends the standard norm in the sense that it
replaces the triangle inequality by ‖x + y‖p ≤ K (‖x‖p + ‖y‖p) for some K > 1. Because the mathematical
formulations and derivations in this paper equally apply to both norm and quasinorm, we do not differentiate
these two concepts for notation brevity.
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Fig. 1 The curves of function |x |p with different values of p

to outliers in given data [30] and propose to solve the following robust matrix completion
problem (we could use the same p for the two norms to avoid one more parameter):

min
X

‖XΩ − DΩ‖p
p + γ ‖X‖p

Sp
. (5)

3 Proposed algorithm

Solving the problem in Eq. (5) is challenge since both of the terms in Eq. (5) are nonsmooth and
the Schatten p-norm is somewhat intractable. We use the augmented Lagrangian multiplier
(ALM) method [31–33] to solve this problem and focus on the solutions to several related
subproblems.

3.1 Brief description of augmented Lagrangian multiplier method

Consider the constrained optimization problem:

min
h(X)=0

f (X) (6)

The algorithm using the augmented Lagrangian multiplier (ALM) method to solve the prob-
lem (6) is described in Algorithm 1.

123



Matrix completion using Schatten p-norm and �p-norm

It has been proved that under some rather general conditions, Algorithm 1 converges Q-
linearly to the optimal solution [33]. This property makes the ALM method very attractive.

Algorithm 1 Algorithm to solve the problem (6).
Set 1 < ρ < 2. Initialize μ > 0, �

while not converge do

1. Update X by min
X

f (X) + μ
2

∥∥
∥h(X) + 1

μ�

∥∥
∥

2

F
2. Update � by � = � + μh(X)

3. Update μ by μ = ρμ

end while

3.2 Solving problem (5) using ALM method

We equivalently rewritten Problem (5) as:

min
X,EΩ=XΩ−DΩ,X=Z

‖EΩ‖p
p + γ ‖Z‖p

Sp
. (7)

According to step 1 in Algorithm 1, we need to solve the following problem:

min
X,EΩ,Z

‖EΩ‖p
p + γ ‖Z‖p

Sp

+μ

2

∥∥∥∥EΩ − (XΩ − DΩ) + 1

μ
�Ω

∥∥∥∥

2

F

+μ

2

∥∥∥∥X − Z + 1

μ
Σ

∥∥∥∥

2

F
. (8)

An accurate, joint minimization with respect to X, EΩ, Z is difficult and costly; we can use
the alternating direction method (ADM) [34] to solve this problem. Specifically, we optimize
the problem with respect to one variable when fixing the other two variables, which result in
the following three subproblems.

When fixing EΩ, Z , the problem (8) is simplified to the following problem:

min
X

‖XΩ − MΩ‖2
F + ‖X − N‖2

F , (9)

where MΩ = (EΩ + DΩ + 1
μ
�Ω) and N = (Z − 1

μ
Σ). Denote XΩ̄ = {Xi j |(i, j) /∈ Ω },

the optimal solution to problem (9) can be easily obtained by

XΩ = MΩ + NΩ

2
, XΩ̄ = NΩ̄ (10)

When fixing X, Z , the problem (8) is simplified to the following problem:

min
EΩ

1

2
‖EΩ − HΩ‖2

F + 1

μ
‖EΩ‖p

p , (11)

where HΩ = XΩ − DΩ − 1
μ
�Ω .

When fixing X, EΩ , the problem (8) is simplified to the following problem:

min
Z

1

2
‖Z − G‖2

F + γ

μ
‖Z‖p

Sp
, (12)

where G = X + 1
μ
Σ
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Based on the ALM method in Algorithm 1, the detailed algorithm to solve the problem
in Eq. (5) is described in Algorithm 2.

Subsequently, we derive the optimal solution to subproblems in Eqs. (11) and (12), respec-
tively.

Algorithm 2 Algorithm to solve the problem (5).
Set 1 < ρ < 2. Initialize μ > 0, �Ω , Σ , EΩ, Z
while not converge do

1. Update X by Eq. (10)
2. Update EΩ by the optimal solution to problem (11)
3. Update Z by the optimal solution to problem (12)
4. Update �Ω by �Ω = �Ω + μ(EΩ − XΩ + DΩ), Update Σ by Σ = Σ + μ(X − Z)

5. Update μ by μ = ρμ

end while

3.3 Solving the subproblem (11)

Note that the elements {Xi j |(i, j) ∈ Ω } in subproblem (11) can be decoupled. For each
element, we only need to solve the following problem:

min
x

1

2
(x − a)2 + λ |x |p (13)

Denote the objective function in the problem (13) by h(x), i.e.,

h(x) = 1

2
(x − a)2 + λ |x |p . (14)

Note that h(x) is an equation with one variable, and its convexity can be easily analyzed.
The shapes of the curve of h(x) with different values of a are shown in Fig. 2; the following
is the details of the analysis of h(x).

The function h(x) is not differentiable at x = 0. In the following analysis, we only consider
to find the minimal solution to h(x) in the case of x 	= 0, and then we compare it with h(0)

to obtain the final minimal solution to h(x).
If x 	= 0, we can see that the fist derivative of h(x) is

g(x) = h′(x) = x − a + λp |x |p−1 sgn(x), (15)

where the sign function sgn(x) is defined as follows: sgn(x) = 1 if x > 0 and sgn(x) = −1
if x < 0. According to Eq. (15), we know h′(x) < 0 when x closes 0 but x < 0, h′(x) > 0
when x closes 0 but x > 0.

We can obtain the local minimum of h(x) by finding the root of g(x) = 0. The first and
second derivative of g(x) are as follows:

g′(x) = h′′(x) = 1 − λp(1 − p) |x |p−2 , (16)

g′′(x) = h′′′(x) = λp(1 − p)(2 − p) |x |p−3 sgn(x), (17)

From Eq. (17), we can see g(x) is concave when x < 0, and g(x) is convex when x > 0.
Denote a constant v as

ν = (λp(1 − p))
1

2−p . (18)
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Fig. 2 The shapes of the curve of h(x) in Eq. (14) with different values of a. The values ν and ν1 are defined
in Eqs. (18) and (20), respectively

Then we can see g′(ν) = 0 and g′(−ν) = 0. So g(−ν) is the maximum of g(x) when x < 0,
and g(ν) is the minimum of g(x) when x > 0. We have the following three cases:

Case 1: g(ν) ≥ 0 and g(−ν) ≤ 0

In this case, g(x) (or h′(x)) is always smaller than or equal to zero when x < 0, and g(x) (or
h′(x)) is always larger than or equal to zero when x < 0, which indicates that the minimal
solution to h(x) is 0.
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Case 2: g(ν) < 0

In this case, it can be easy to see g(−ν) < 0, so g(x) (or h′(x)) is always smaller than zero
when x < 0, and g(x) = 0 (or h′(x) = 0) has two roots at x > 0. We can also see that h(x) is
concave at 0 < x ≤ ν and h(x) is convex at x > ν. So the minimal solution to h(x)(x 	= 0)

in this case is the root of g(x) = 0 (or h′(x) = 0) at a < x < −ν.

Case 3: g(−ν) > 0

In this case, it can be easy to see g(ν) > 0, so g(x) (or h′(x)) is always larger than zero
when x > 0, and g(x) = 0 (or h′(x) = 0) has two roots at x < 0. We can also see that
h(x) is concave at −ν ≤ x < 0 and h(x) is convex at x < −ν. So the minimal solution to
h(x)(x 	= 0) in this case is the root of g(x) = 0 (or h′(x) = 0) at a < x < −ν.

In summary, the optimal solution to problem (13) can be obtained by
⎧
⎨

⎩

g(ν) ≥ 0, g(−ν) ≤ 0 x∗ = 0
g(ν) < 0 x∗ = arg minx∈{0,x1}h(x)

g(−ν) > 0 x∗ = arg minx∈{0,x2}h(x)

(19)

where x1 and x2 are the roots of g(x) = 0 at ν < x < a and a < x < −ν, respectively. The
roots can be easily obtained with Newton method initialized at a.

Denote another constant ν1 as

ν1 = ν + λp |ν|p−1 , (20)

Then it is easy to know that Eq. (19) is equivalent to
⎧
⎨

⎩

−ν1 ≤ a ≤ ν1 x∗ = 0
a > ν1 x∗ = arg minx∈{0,x1}h(x)

a < −ν1 x∗ = arg minx∈{0,x2}h(x)

(21)

Similarly, consider the following problem which will be used later:

min
x≥0

1

2
(x − a)2 + λ |x |p , (22)

the optimal solution to problem (22) can be obtained by
{

a ≤ ν1 x∗ = 0
a > ν1 x∗ = arg minx∈{0,x1}h(x)

(23)

where x1 is the root of g(x) = 0 at ν < x < a, which can be easily obtained with Newton
method initialized at a.

3.4 Solving the subproblem (12)

We rewrite the subproblem (12) as follows to simplify the notation.

min
X

1

2
‖X − A‖2

F + λ ‖X‖p
Sp

(24)

To analyze its solution, we first introduce the following result:

Theorem 1 (von Neumann) For any two matrices A, B ∈ R
m×n, tr(AT B) ≤ tr(σ (A)T

σ(B)), where σ(A) and σ(B) are the ordered singular value matrices of A and B with the
same order, i.e., the singular values in σ(A) and σ(B) are ordered with the same order.
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The problem (24) can be solved based on the following theorem:

Theorem 2 The optimal solution X to problem (24) is QΔRT , where Q and R are the left
and right singular vector matrices of A, respectively, and the i-th diagonal element δi of the
diagonal matrix Δ is given by the optimal solution to the following problem (σi is the i-th
singular value of A:

min
δi ≥0

1

2
(δi − σi )

2 + λδ
p
i (25)

Proof Suppose the SVD of X and A are X = UΔV T and A = QΣ RT , respectively, where
Δ,Σ are ordered singular value matrices with the same order. Then problem (24) can be
written as

min
X

1

2

∥
∥
∥UΔV T − QΣ RT

∥
∥
∥

2

F
+ λtr(Δp) (26)

According to Theorem 1, we know
∥
∥UΔV T − QΣ RT

∥
∥2

F = tr(ΔT Δ) + tr(ΣT Σ) −
2tr(X T A) ≥ tr(ΔT Δ) + tr(ΣT Σ) − 2tr(ΔT Σ) = ‖Δ − Σ‖2

F , the equality holds only
when U = Q and V = R. Therefore, problem (24) is minimized when U = Q and V = R,
and Δ is the optimal solution to the following problem:

min
Δ≥0

1

2
‖Δ − Σ‖2

F + λtr(Δp) (27)

which is equivalent to (δi and σi are the i-th singular value of X and A, respectively)

min
δi ≥0

1

2

∑

i

(δi − σi )
2 + λ

∑

i

δ
p
i (28)

Problem (28) can be decoupled to solve problem (25) for each i . ��
Problem (25) is the same as problem (22); thus, the optimal solution to the problem (25)

can be easily obtained according to Eq. (23). It is interesting to see that when p = 1, the
derived solution is exactly the same as in [8], and our result extends the result in [8] to the
case of 0 < p < 1.

4 Discussion of the selection of value p in the robust matrix completion method

Despite the proposed robust matrix completion method in Eq. (5) with general values of
p ∈ (0, 1], we are more interested in the special cases of selecting the specific values of p.

In Eq. (5), we use the �p(0 < p ≤ 1)-norm as the error function to improve the robustness
to outliers in given data and use the Schatten p(0 < p ≤ 1)-norm as the regularization
function to achieve a low-rank matrix. When we use the �p-norm as the error function to
improve the robustness, the value of p should be smaller than 2, but it does not indicate that
smaller p is better performance when p ≤ 1. Since the error function is convex when p = 1,
we suggest using the �1-norm as the error function to improve the robustness to outliers.
In contrast, when we use the Schatten p-norm as the regularization function to achieve a
low-rank matrix, we prefer smaller p since Schatten p-norm approximates the rank function
when p → 0. However, when 0 ≤ p < 1, the Schatten p-norm is not convex. Hence, it
is a trade-off between 0 ≤ p < 1 (more accurate to approximate rank but not convex) and
p = 1 (convex but not accurate to approximate rank) when we use the Schatten p-norm as
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the regularization function to achieve a low-rank matrix. In practice, we are interested in the
following two cases: Schatten 1-norm (trace norm) and Schatten 0-norm (rank).

In the first case, we solve the following problem:

min
X

J = ‖XΩ − DΩ‖1 + γ ‖X‖∗ . (29)

The problem (29) can also be solved using ALM method. In this case, the problem (13)
becomes

min
x

1

2
(x − a)2 + λ |x | , (30)

It is easy to see that the optimal solution to problem (30) is x = sgn(a)(|a| − λ)+, where
(x)+ is defined as follows: (x)+ = x if x > 0 and (x)+ = 0 otherwise. Correspondingly,
the problem (22) becomes

min
x≥0

1

2
(x − a)2 + λ |x | , (31)

Note that |x | = x under the constraint x ≥ 0, so problem (31) can be written as

min
x≥0

1

2
(x − (a − λ))2. (32)

The optimal solution can be easily obtained by x = (a − λ)+.
The problem (29) is convex, so we can obtain the globally optimal solution to the problem

(29). When all the elements in data D are observed, XΩ and DΩ become X and D, respec-
tively, and thus, the problem is converted from robust matrix completion to robust principal
component analysis (PCA) [35]. Therefore, robust PCA is a special case of our method.

In the second case, we solve the following problem:

min
X

J = ‖XΩ − DΩ‖1 + γ rank(X). (33)

If we define 00 = 0, then the rank(X) is the Schatten 0-norm of X , and Theorem 2 also holds
when p = 0. Thus, the problem (33) can also be solved using ALM method. In this case, the
problem (22) becomes

min
x≥0

1

2
(x − a)2 + λ |x |0 , (34)

Only x = 0 and x = a are possible to be the optimal solution to the problem (34), so the
optimal solution to problem (34) can be easily obtained by

{
a ≤ √

2λ x∗ = 0
a >

√
2λ x∗ = a

(35)

5 Experiments

In this section, we empirically evaluate the proposed method in the matrix completion task
on both synthetic data and two real-world applications of collaborative filtering and link
discovery in social networks.

For simplicity, the regularization parameter γ in (5) is set to 1 in all our experiments.
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5.1 Numerical results on synthetic data

To demonstrate the practical applicability of the proposed method for recovering low-
rank matrices from their entries, we first perform the following numerical experiments.
Following [4], for each (n, r, q) triplet, where n (we set m = n) is the matrix dimen-
sion, r is the predetermined rank, and q is the number of known entries, we experiment
with the following procedures. We generate M = ML MT

R as suggested in [4], where ML

and MR are n × r matrices with i.i.d. standard Gaussian entries. We then select a sub-
set Ω of q elements uniformly at random from {(i, j) : i = 1, . . . , n, j = 1, . . . , n} as
known entries, and our goal is to recover the rest entries of M given the incomplete input
matrix.

The stopping criterion we use for our algorithm in all our experiments is as
follows:

∥
∥X (k) − X (k−1)

∥
∥

F

max(
∥
∥Xk

∥
∥

F , 1)
≤ Tol, (36)

where Tol is a moderately small number. In our experiments, we set Tol = 10−4.
We measure the accuracy of the computed solution Xsol of our algorithm by the relative

error (RE) [9], which is a widely used metric in matrix completion and defined as follows:

RE : =‖Xsol − M‖F

‖M‖F
, (37)

where M is the original matrix created in the above process.

5.1.1 Study of parameter p

Because p in (5) is the most important parameter of the proposed method, we first investigate
its impact on our model. We vary the value of p in the range of {0.1, 0.2 . . . , 1} and perform
incomplete matrix recovery as described above. For each value of p, we repeat the experiment
for 50 times and report the average relative error in Fig. 3, from which we can see that the
matrix recovery performance increases when the value of p decreases. This result clearly
justifies the usefulness of the proposed method to introduce p(< 1)-norm in the proposed
objective.

Fig. 3 Matrix recovery
performance of the proposed
method with different values of p
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5.1.2 Comparison with other matrix completion methods on noiseless data

In order to demonstrate the effectiveness of the proposed method, we compare the per-
formance of the proposed method against the following two matrix completion methods:
fixed point continuation (FPC) method [12] and accelerated proximal gradient singular value
thresholding (APG) method [9], which are the most recent methods and have demonstrated
superior performances. We implement these two methods using the codes published by the
respective authors and set up their parameters following the same settings as in [9]. In order
for a fair comparison, we perform our experiments using the procedures described above
with the same (n, r, q) triplet settings as in [9]. For each triplet setting, we repeat the exper-
iment for 50 times and report the average performance in Table 1. The average number of
iterations (denoted as iter) is also reported in Table 1, as well as the ratio (denoted by q/dr )
between the number of known entries and the degree of freedom of an n ×n matrix of rank r .
Following [8], the degree of an n × n matrix of rank r depends on dr = r(2n − r) degrees
of freedom. As can be seen, q is selected to be 3, 4, and 5 times of the degrees of freedom of
the corresponding input matrices.

From Table 1, we can see that the proposed method achieves more accurate results for
matrix recovery than those delivered by the two compared methods. Moreover, our method
uses substantially less iterations than the other two methods. These results clearly demonstrate
the effectiveness of the proposed method in incomplete matrix recovery in terms of both
quality and speed.

5.1.3 Comparison with other matrix completion methods on noisy data

Besides performing matrix completion on noiseless data, we also evaluate the proposed
method on noisy data. Following [9], given a matrix M created by the aforementioned proce-
dures, we corrupt it by a noise matrix N whose element are i.i.d. standard Gaussian variables.
Then, we carry out the same procedures as before for matrix completion on M + σ N , where
σ = nf ‖M‖F‖N‖F

and nf is a given noise factor. We set nf = 0.1. Same as before, the experiment
for each (n, r, q) triplet setting is repeated for 50 times, and the average results are reported
in Table 2.

Table 1 Matrix completion performances of the compared methods on noiseless data

Unknown M FPC APG Our method

n/r q q/dr Iter Relative error Iter Relative error Iter Relative error

100/10 5,666 3 439 1.08e−3 78 1.59e−4 26 7.47e−5

200/10 15,665 4 496 4.66e−4 74 1.19e−4 25 6.17e−5

500/10 49,471 5 491 5.92e−4 76 9.86e−5 27 5.34e−5

Table 2 Matrix completion performances of the compared methods on noisy data

Unknown M FPC APG Our method

n/r q q/dr Iter Relative error Iter Relative error Iter Relative error

100/10 5,666 3 442 2.45e−2 81 2.36e−3 24 6.39e−4

200/10 15,665 4 486 6.61e−3 77 3.21e−3 23 5.15e−4

500/10 49,471 5 488 8.81e−3 73 2.21e−3 21 4.92e−4

123



Matrix completion using Schatten p-norm and �p-norm

Again, the proposed method performs the best. Most importantly, the relative errors of
our method are smaller than the noise level (nf = 0.1), which is consistent with (or even more
accurate than) the theoretical results established in [36], and further confirm the correctness
of our method.

5.2 Improved collaborative filtering by our method

Collaborative filtering is an important topic in data mining and has been widely used in
recommendation system, which aims to predict unknown users’ opinions to a set of items
upon those known and is often formalized as a matrix completion problem [37]. In this
section, we evaluate the proposed method in the task of collaborative filtering.

5.2.1 Data sets

We perform our experiments using the following data sets.
The MovieLens data contain 10,000,054 ratings and 95,580 tags applied to 10,681 movies

by 71,567 users of the online movie recommender service MovieLens, which has been filtered
and refined by GroupLens lab2 as three data sets with the following characteristics

1. Movie-100K: 100,000 ratings for 1,682 movies by 943 users;
2. Movie-1M: 1 million ratings for 3,900 movies by 6,040 users;
3. Movie-10M: 10 million ratings for 10,681 movies by 71,567 users.

In addition, we also experiment with Epinion data.3 In Epinion.com, users can assign
products or reviewers integer ratings. These ratings and reviews will influence future users
when they are deciding whether a product is worth buying or a movie is worth watching. The
data set contains 2,671 users and 1,375 items with 75,308 ratings.

5.2.2 Evaluation metric

In collaborative filtering, some entries of the input matrix are missing; therefore, we cannot
compute the relative error of the estimated output matrix as we did in Sect. 5.1. Instead, we
compute the normalized mean absolute error (NMAE) as in [12,38]:

NMAE =
∑

(i, j)∈Γ |Mi j − Xi j |
|Γ |(rmax − rmin)

, (38)

where Mi j denotes the rating given by user i to item j , Xi j denotes the predicted rating given
by user i to item j , and rmax and rmin are the upper and lower bounds of the ratings. Because
the user ratings in all the data sets range from 1 to 5, we have rmin = 1 and rmax = 5.

5.2.3 Experimental results on noiseless data

We first experiment with noiseless data. For each data set, we randomly select 20 and 50 %
ratings as known samples, and our task is to recovery the rest ratings from the incomplete
input matrices. Besides comparing to the two matrix completion methods used in Sect. 5.1,
we also compare the results of our method against two state-of-the-art collaborative filter
methods: probabilistic matrix factorization (PMF) method and weighted nonnegative matrix

2 http://www.grouplens.org/.
3 http://www.trustlet.org/wiki/Downloaded_Epinions_dataset.
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Table 3 Performance of the compared methods measured by NMAE in collaborative filtering

Method Movie-100K Movie-1M Movie-10M Epinion

FPC 2.49e−1 2.53e−1 2.38e−1 3.15e−1

APG 1.94e−1 1.96e−1 1.89e−1 2.37e−1

PMF 2.26e−1 2.32e−1 2.21e−1 2.75e−1

WNMF 2.31e−1 2.42e−1 2.36e−1 3.07e−1

Ours (p = 1) 1.81e−1 1.89e−1 1.78e−1 2.23e−1

Ours (p = 0.1) 8.92e−2 9.04e−2 8.09e−2 1.75e−1

Ours (Schatten 0-norm) 7.94e−1 7.02e−2 7.33e−2 1.79e−1

FPC 2.88e−1 2.96e−1 2.76e−1 3.68e−1

APG 2.25e−1 2.33e−1 2.21e−1 2.79e−1

PMF 2.59e−1 2.73e−1 2.58e−1 3.19e−1

WNMF 2.67e−1 2.78e−1 2.78e−1 3.58e−1

Ours (p = 1) 1.95e−1 2.01e−1 1.86e−1 2.36e−1

Ours (p = 0.1) 9.45e−2 9.49e−2 8.65e−2 1.86e−1

Ours (Schatten 0-norm) 8.17e−1 7.23e−2 7.54e−2 1.84e−1

20 % ratings are known as training samples
Top half: noiseless data; bottom half: noisy data

factorization (WNMF) method. The former uses a probabilistic model, while the latter is
devised by extending nonnegative matrix factorization. Both of them have reported promising
empirical results. We implement our method with three different settings: (1) We set p = 1
for both �p-norm and Schatten p-norm, which is denoted by “ours (p = 1)”; (2) we set
p = 0.1 for both �p-norm and Schatten p-norm, which is denoted by “ours (p = 0.1)”; and
(3) we set p = 1 for �p-norm and p = 0 for Schatten p-norm that solves (33), which is
denoted by “Ours (Schatten 0-norm).” For each data set, we run each compared method for
20 times and report the average results in the top halves of Tables 3 and 4.

The results in the top halves of Tables 3 and 4 show that our method consistently out-
performs the compared methods on the noiseless data, sometimes very significantly, which
provide one more concrete evidence to support the advantage of the proposed method. More-
over, as can be seen in the top halves of Tables 3 and 4, the results of our method when
p = 0 and p = 0.1 for the Schatten p-norm are much better than those when p = 1. This
observation is in accordance with our earlier theoretical analysis in that the smaller the value
of p is, the better the Schatten p-norm approximates the matrix rank, which is particularly
true when p = 0 to approximate the rank minimization.

5.2.4 Experimental results on noisy data

Due to the usage of the �p-norm (0 ≤ p ≤ 1) in the error function, the proposed objective
in (5) is robust against outliers. To evaluate this, we add Gaussian noise following the same
way as in Sect. 5.1 where we set the noise factor nf = 0.1. We repeat the same experimental
procedures as those on the noiseless data shortly before and report the results in the bottom
halves of Tables 3 and 4. From the results, we can see that the proposed method with different
parameter settings is still better than the competing methods. Moreover, compared with the
results on the noiseless data, the performance degradations of our new method are much
less than the competing methods, which, again, is consistent with our motivations and the
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Table 4 Performance of the compared methods measured by NMAE in collaborative filtering

Method Movie-100K Movie-1M Movie-10M Epinion

FPC 2.09e−1 2.13e−1 1.98e−1 2.45e−1

APG 1.74e−1 1.84e−1 1.77e−1 2.13e−1

PMF 2.16e−1 2.22e−1 2.11e−1 2.55e−1

WNMF 2.04e−1 2.02e−1 1.95e−1 2.48e−1

Ours (p = 1) 1.66e−1 1.71e−1 1.53e−1 2.03e−1

Ours (p = 0.1) 8.14e−2 8.36e−2 7.94e−2 1.84e−1

Ours (Schatten 0-norm) 7.51e−2 7.99e−2 7.85e−2 1.31e−1

FPC 2.42e−1 2.55e−1 2.35e−1 2.84e−1

APG 2.02e−1 2.12e−1 2.05e−1 2.51e−1

PMF 2.57e−1 2.61e−1 2.51e−1 2.95e−1

WNMF 2.35e−1 2.38e−1 2.28e−1 2.87e−1

Ours (p = 1) 1.79e−1 1.81e−1 1.62e−1 2.13e−1

Ours (p = 0.1) 8.54e−2 8.86e−2 8.33e−2 1.95e−1

Ours (Schatten 0-norm) 7.73e−2 8.22e−2 8.08e−2 1.34e−1

50 % ratings are known as training samples
Top half: noiseless data; bottom half: noisy data

mathematical formulation of our new method in that the �p-norm loss function is more robust
to noises and outliers when p is small.

5.3 Improved link discovery on social networks by our method

Link discovery on social graphs, which explores the relationships between users, plays a
central role in understanding the structure of related social communities. Because most users
on a social network only know a very small fraction of users and tag even fewer explicitly,
the resulted social graphs are sparse and link discovery is necessary to mine more useful
information to better understand a community. In this section, we evaluate the proposed
matrix completion method by exploring link discovery problem on social networks.

5.3.1 Data sets

We evaluate the performance of our method using the Wikipedia 2 [39] and Slashdot 3 [40]
data set. The former contains more than 7,000 users with 103,000 trust links, and the latter
contains about 80,000 users with 900,000 trust links. The link coverage of these two graphs
are as low as 0.21 and 0.01 %; therefore, they are very sparse and skewed due to the domination
of the noninteracting user pairs. To alleviate the data skewness for fair comparison, we select
top 2,000 highest degree users from each data set for experiments.

5.3.2 Experimental setups

The goal of our method is to infer the unobservable links in the network. However, due to the
lack of ground truth, we have to hide existing links to simulate missing one. In this paper, we
emulate to hide 90 % entries and do the imputation based on the remaining 10 % available
information. The reason we hide large percentage of entries is to simulate the fact that most
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users from social Web sites such as Facebook and Linkedin, according to our observation,
only explicitly express trust and distrust to a small fraction of peer users considering total
number of users.

In order to make prediction, we need a threshold. Empirically, we select the mean of the
available entries as the threshold to convert the prediction into the binary matrix.

5.3.3 Experimental results on noiseless data

Again we first experiment with the noiseless data. Besides comparing the matrix completion
methods as in previous subsections, we also compare our method to two link prediction
methods that are widely used in the studies of social networks, including common neighbors
(CN) method [41] and SVD method [42]. The settings of the matrix completion methods
including ours are same as before. For SVD method, we fine-tune the rank by searching the
grid of {100, 200, . . . , 1000}.

We evaluate the compared methods for two standard performance metrics broadly used
in statistical learning, including precision and recall. The results of the compared methods
on the two data sets are reported in the top half of Table 5. A first glance at the results shows
that the proposed methods again are superior to other compared methods, which demonstrate
their effectiveness in the task of link discovery on social networks. Moreover, when p = 0
and p = 0.1, our method achieved better results than those when p = 1, which once again
validates the usage of small p for Schatten p-norm for matrix completion.

5.3.4 Experimental results on noisy data

Now, we experiment with noisy data to evaluate the robustness of the proposed method.
We randomly split the entries of the input matrix into three parts: We hide the values of
85 % entries, assign the opposite values to 5 % entries to emulate noise, and keep the values
of the remaining 10 % entries. We do the imputation and report the experimental results in
the bottom half of Table 5. Again, we can see that our new method is superior to the other
method, and the performance degradations due to outliers are much less than the competing
methods, which clearly demonstrate the advantage of the proposed method in social link
discovery.

6 Conclusions

In this paper, we proposed a new robust matrix completion method using joint Schatten
p-norm and �p-norm (0 < p ≤ 1). When p → 0, the Schatten p-norm-based objective
can approximate the rank minimization problem much better than the standard trace norm
minimization to achieve better matrix completion results. The �p-norm-based error func-
tion enhances the robustness of the proposed objective. Both Schatten p-norm and �p-norm
are nonsmooth terms. To solve this difficult optimization problem, we derive the algorithm
based on the alternating direction method. Extensive experiments show that under arbitrarily
random initializations, our new method can always get better matrix completion results with-
out introducing much extra computational cost. The extensive experiments were performed
on both synthetic and real-world applications (collaborative filtering and social network
link prediction) data. All empirical results demonstrate the effectiveness of the proposed
approach.
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Table 5 Performance
comparison for the task on link
discovery on social networks

Top half: noiseless data; bottom
half: noisy data

Method Wikipedia 2 Slashdot 3

Precision Recall Precision Recall

CN 0.071 0.205 0.058 0.149

SVD 0.088 0.211 0.064 0.166

FPC 0.107 0.244 0.084 0.189

APG 0.114 0.251 0.089 0.194

Ours (p = 1) 0.135 0.301 0.101 0.224

Ours (p = 0.1) 0.142 0.322 0.112 0.245

Ours (Schatten 0-norm) 0.151 0.337 0.134 0.268

CN 0.060 0.168 0.048 0.122

SVD 0.071 0.173 0.051 0.134

FPC 0.088 0.204 0.069 0.158

APG 0.091 0.203 0.073 0.159

Ours (p = 1) 0.126 0.285 0.095 0.208

Ours (p = 0.1) 0.134 0.302 0.106 0.230

Ours (Schatten 0-norm) 0.146 0.326 0.130 0.260
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