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Abstract The recent years have witnessed a surge of

interests of learning high-dimensional correspondence,

which is important for both machine learning and neural

computation community. Manifold learning–based resear-

ches have been considered as one of the most promising

directions. In this paper, by analyzing traditional methods,

we summarized a new framework for high-dimensional

correspondence learning. Within this framework, we also

presented a new approach, Local Approximation Maxi-

mum Variance Unfolding. Compared with other machine

learning–based methods, it could achieve higher accuracy.

Besides, we also introduce how to use the proposed

framework and methods in a concrete application, cross-

system personalization (CSP). Promising experimental

results on image alignment and CSP applications are pro-

posed for demonstration.

Keywords High-dimensional correspondence �
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1 Introduction

In many real applications, one can often observe the same

object, such as images or web texts, in many different

aspects. These descriptions are highly related in essence

though looks different sometimes. For example, the same

scene may be captured from different viewpoints [9] and

the same action of different objects is recorded sepa-

rately. Besides, we may record profiles of a unique person

when he/she browses multiple web sites. In these sce-

narios, how to learn the correspondence between differ-

ent observations and descriptions is very important.

Taking facial expression recognition as an instance, if we

can align one person’s faces to a benchmark data, which

contains expressions, for example, happy, sad, anger, etc,

we can determine this person’s expression directly [27].

Similarly, in cross-system personalization (CSP) [11], it

will be much easier to accommodate a system with

respect to user’s tastes if we can align profile data from

different systems.

Due to the fact that these data often have high dimen-

sionality, it is difficult to construct the mapping between

two observations directly. For example, it is usually diffi-

cult to construct a mapping function between two image

sets with resolution 100 9 100, since they are 100,000

dimensional vectors. Fortunately, from the geometric view,

each observation set is often lying on a low-dimensional

manifold [15, 23, 26]. We can first reduce the dimension-

ality of each data set and then learn their correspondences

in the embedded low-dimensional spaces.
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Many efforts have been devoted to reducing the dimen-

sionality of high-dimensional data. The widely used methods

include feature selection [18] and feature extraction (or

manifold learning–based dimensionality reduction). Briefly,

manifold learning approaches can be categorized into two

groups, linear and nonlinear. Traditional approaches, such as

principal component analysis (PCA) [7, 8] and linear dis-

criminant analysis (LDA) [2] have been widely used to solve

the linear problem. Other linear approaches, such as locality

preserving projections (LPP) [6] and its extensions in [24],

neighborhood preserving embedding (NPE) [5], are the lin-

earization of their nonlinear counterparts. They have also

been widely used due to its inductive nature. Nonlinear

approaches assume that the high-dimensional data are nearly

lying on a nonlinear low-dimensional manifold. Typical

approaches include isomap [15], locally linear embedding

(LLE) [13] and its variant in [10], Laplacian eigenmaps (LE)

[1], and maximum variance unfolding (MVU) [19, 20].

Although these approaches have achieved prominent per-

formances in many applications, they all try to find low-

dimensional embedding for only one high-dimensional rep-

resentation. In our work, we aim to learn high-dimensional

correspondence between different observations.

In the past ten years, some investigations have been

dedicated to use manifold learning approaches for high-

dimensional correspondence learning, from both the

machine learning and computer vision community. Ham

et al. [3, 4] have proposed a semi-supervised manifold

alignment algorithm in learning high-dimensional corre-

spondence. In their works, some traditional approaches,

such as factor analysis, LLE, and LE, are extended. Among

them, the extensions of LLE and LE, that is, constraint

LLE (CLLE) and constraint LE (CLE), have been widely

investigated. In [14], an algorithm based on Gaussian

process regression is proposed to learn the shared latent

structure. Xiong et al. [22] investigated this problem with

loose semi-supervised constraints to align manifolds. More

recently, some other researches used procrustes analysis to

form a new two-stage algorithm [17]. Verbeek [16] pro-

posed a method to learning nonlinear image manifolds by

global alignment of local linear models in the perspective

of probability. In [25], Zhai et al. presented a method to

learn the explicit corresponding projections from each

observation space to the common embedding space. Ro-

scher et al. [12] gave an empirical comparison of graph-

based dimensionality reduction algorithms in learning

high-dimensional correspondences. In applications, Mehta

[11] has extensively investigated these approaches for

cross-system personalization. These methods have

achieved prominent performances in their related applica-

tions. Nevertheless, their performances can also be

improved since a more faithful common embedding can be

derived by employing another manifold learning approach.

In this paper, by analyzing traditional methods, we

provide a common framework to learn high-dimensional

correspondences from low-dimensional manifolds. We also

plan to leverage a more prominent learning approach for

correspondence determination. Motivated by the better

performance of MVU [19, 20], we propose a new approach

named Local Approximation Maximum Variance Unfold-

ing (LAMVU) for high-dimensional correspondence

learning. MVU, which has been extended to its semi-

supervised counterpart by combining local approximation

technique, is employed to discover the common embed-

ding. Besides, to show the validity, it will be used in a real

application task, cross-system personalization (CSP). We

enable CSP according to local approximation. Since MVU

can derive faithful embedding, LAMVU achieves better

results in image alignment and higher accuracy than state-

of-the-art learning-based CSP approaches. Plenty of

experimental results are provided for demonstration.

The rest of this paper is structured as follows. In Sect. 2,

high-dimensional correspondence learning is formulated as

a special semi-supervised learning problem. The perfor-

mances of some manifold learning approaches are also

provided. In Sect. 3, we first summarize the framework and

then LAMVU is proposed in detail, together with some

important discussions. Section 4 is the implementation of

our algorithm to enable CSP. Section 5 provides experi-

ments on different kinds of real data sets, followed by the

concluding remarks in Sect. 6.

2 Problem formulation and performance comparison

In this section, high-dimensional correspondence learning

is reformulated and CLLE as a representative method is

introduced. Since the outperformance of LAMVU is due to

the fact that MVU could derive faithful embedding, we

briefly introduce MVU and compare its performance with

that of LLE and LE.

2.1 Problem formulation

For simplicity, we consider the scenario with observations

from two aspects, denoted as A and B. Generalization to

any arbitrary number can be done as the same strategy

mentioned in [11].

Commonly, high-dimensional correspondence learning

has two different goals: (1) If we have been told that we have

observations of the same objects in both sets, our goal is to

match the data. (2) If we only have observations in A (or B),

we try to predict the corresponding data in B (or A). This is

extremely important for CSP. These two goals can be unified

to compute a mapping from one observation set to the other.

Since constructing the mapping from B to A is almost the
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same as computing the mapping from A to B, we only

consider the mapping from A to B as an instance.

Mathematically, we assume that the data are stored as

vectors xi � R
n in A and yi � R

m in B. Given xi of an

object in A, we need to obtain yi of the same object in B,

that is, we are eager to find a mapping:

FAB : Rn ! R
m; s.t. FABðxiÞ ¼ yi: ð1Þ

Notice that, if we have Nc data who are known in

correspondence in both systems, that is, a data set fðxi; yiÞ :

i ¼ 1; 2; . . .;Ncg is available, we can consider this set as

training data and this amounts to a standard supervised

learning problem. Besides, let XU and YU consist of

samples with unknown correspondence. We will use these

data since they contain some information that is helpful for

learning-based methods. If we regard training set fðxi; yiÞ :

i ¼ 1; 2; . . .;Ncg as labeled data and XU, YU as unlabeled

data, our problem can be referred to as a special semi-

supervised learning problem. Our goal is to predict labels

for unlabeled data points. Traditional regression methods

are not suitable to handle this problem since the function

FAB is vector-valued, while regression problem typically

only involves a real valued response variable. Besides, the

accuracy of regression model is degraded when Nc is small.

For convenience, we collect all data and form the following

matrix according to their relationships

H ¼ XC XU XD

YC YD YU

� �
; ð2Þ

where XC and YC consist of Nc labeled data that are known

in one-to-one correspondence in A and B. XU contains NA

objects whose data only in A are known. Similarly, YU are

formed by NB objects whose data only in B are known. XD

represents the corresponding data (in A) of YU and YD is the

predicted examples (in B) whose corresponding data are

XU. Note that XC and YC are stacked by simply connecting

the corresponding column of each matrix since they have

the same number of columns.

Techniques in manifold learning mainly focus on

deriving hidden patterns of the example data. As mentioned

in [3], in order to account for correspondences between two

high-dimensional data sets, two low-dimensional repre-

sentations should be equivalent for those examples that are

in correspondence. This is mainly due to the fact that the

intrinsic structure, such as image variability of objects from

different viewpoints or social similarity among people in

CSP, can be typically revealed by a low-dimensional

manifold structure in the embedded space. Thus, the key

idea is to embed different observations into a common low-

dimensional space, where two low-dimensional represen-

tations will be aligned at the corresponding points. In other

words, one needs to find low-dimensional representations

of XC, XU, YC, YU and formulate the following matrix L

L ¼ PC PU PD

QC QD QU

� �
: ð3Þ

Here, PC = QC is the common embedding of XC and YC. PU is

the embedding of XU and QU is the embedding of YU. Similarly,

PD and QD represent embeddings of XD and YD respectively. In

learning-based methods, since PC = QC, we aim to construct

XD and YD according to the relationship among these low-

dimensional embeddings, that is, the elements of L.

Take a representative method CLLE as an example, it first

computes the local linear reconstruction weight matrixes W1

and W2 on two sets {XC [ XU} and {YC [ YU}, respectively.

More concretely, we use several nearby points to reconstruct

concerning points linearly and assign these weights into a

matrix. See more details in [13]. After that, it assumes

PC = QC and minimizes the following objective function

min traceððP̂�W1P̂ÞTðP̂�W1P̂Þ
þ ðQ̂�W2Q̂ÞTðQ̂�W2Q̂ÞÞ

ð4Þ

where P̂ ¼ ½PC;PU � and Q̂ ¼ ½QC;QU �:
Similarly, CLE extends traditional LE and minimizes a

function with different similarity matrices W1 and W2. Its

objective function is

min traceðP̂L1P̂TÞ þ traceðQ̂L2Q̂TÞ ð5Þ

where L1 and L2 are two graph Laplacian matrixes deter-

mined by W1 and W2. The above two problems shown in

Eq. (4) and Eq. (5) can be solved by eigen-decomposition

of a symmetric matrix. See more details in [3].

2.2 Performance comparison of manifold learning

approaches

Since one motivation of our work is the outperformance of

MVU in deriving low-dimensional structures, we will first

introduce MVU and then compare it with LLE and LE,

especially when the sample size is small. This situation is

important since it is hard to obtain too many corresponding

points in real application. Besides, traditional MVU can

only be applied on data of one observation set and it cannot

incorporate label information either.

The basic idea of MVU is to maximize the variance of

its embedding. It assumes that distances and angles

between nearby points are preserved. Low-dimensional

coefficients can be considered as several local linear

transformations of the input data. There are mainly three

stages of MVU. The first step is to construct a neighbor-

hood graph. Then, the constraints that preserve local dis-

tances and angles can be formulated as follows

gij k pi � pj k2¼ gij k xi � xj k2 : ð6Þ

Here, pi is the embedding of xi. Besides, in order to keep

the translation invariable of embeddings and guarantee the
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identifiable of solution, the outputs are constrained to be

centered, that is,
P

i pi ¼ 0; as in LLE and LE. MVU,

which aims to unfold the data by maximizing the variance,

that is,
P

i

P
j kpi � pjk2; can be formulated as following

optimization problem

max
P

i

P
j

kpi � pjk2

s.t. gij k pi � pj k2¼ gij k xi � xj k2 �P
i

pi ¼ 0: ð7Þ

LLE and LE aim to preserve local similarities in

deriving low-dimensional embeddings. They use different

methods in characterizing local structures. More

concretely, LLE aims to maintain local linear

approximating weights while LE tries to keep local

similarity defined by different weight matrix. Please see

more details in [1] and [13].

To show the effectiveness of MVU in deriving embed-

ding, we compare it with LLE and LE on a toy data set for

illustration. The Swiss Roll data [13], which are commonly

used to compare the performances of different manifold

learning approaches, are employed. Since the former work

provides empirical evidence that LLE and LE outperform

other approaches, we only compare MVU with them. With

two data sets consisting of 500 and 1,000 randomly sam-

pled points, Fig. 1 shows the embeddings derived by LLE,

LE, and MVU. Here the parameter k is set as 6 empirically.

As seen from Fig. 1, MVU performs the best in both

cases, especially when the sample size is 500. There are

folds and overlaps in the embeddings of LLE and LE.

Since it is difficult to describe the local geometric struc-

tures with low sample density, local approaches, such as

LLE and LE, would fail in this situation. On the contrary,

MVU aims to unfold the data when local distance is pre-

served; it still works well and thus effective. This is the

motivation why we extend MVU in solving CSP problem.

3 Learning high-dimensional correspondence

via manifold learning

In this section, by summarizing a common framework of

learning high-dimensional correspondence, we then ana-

lyze some traditional approaches within this framework

and propose our new method LAMVU. Finally, we analyze

the proposed approach briefly.

3.1 Common framework

Recalling the basic idea of traditional high-dimensional

correspondence learning methods, we can divide its pro-

cedure into two main parts. The first one is to learn the

common embeddings of two data sets, with the constraint

that low-dimensional representations of ever-known one-

to-one corresponding observations are the same. The other

step is to assign correspondence based on their low-

Fig. 1 Performance comparison of LLE, LE, and MVU. a Original

Swiss Roll data with N = 500; b LLE embedding with N = 500;

c LE embedding with N = 500; d MVU embedding with N = 500;

e Original Swiss Roll data with N = 1000; f LLE embedding with

N = 1,000; g LE embedding with N = 1000; h MVU embedding

with N = 1,000

Neural Comput & Applic

123



dimensional embeddings, as the substitution of the corre-

sponding relationship in high-dimensional space.

More concretely, as mentioned above, if we denote the

low-dimensional embedding of XC, YC, XU, YU as

PC, QC, PU, QU, the first step of our framework amounts to

the following optimization problem:

arg min
PC ;QC ;PU ;QU

LðXC; YC;XU ; YU ;PC;QC;PU ;QUÞ
s.t. PC ¼ QC

ð8Þ

Here, L is the loss function in learning common embed-

dings. It is commonly designed by combining the objective

functions of traditional dimensionality reductions on two

data sets.

Take two famous correspondence learning methods

CLLE and CLE as examples; the objective function of

CLLE is shown in Eq. (4). Thus, within this framework, its

objective function can be regarded as

arg min
PC ;QC ;PU ;QU

traceððP̂�W1P̂ÞTðP̂�W1P̂Þ

þðQ̂�W2Q̂ÞTðQ̂�W2Q̂ÞÞ
s.t. PC ¼ QC ð9Þ

where P̂ ¼ ½PC;PU � and Q̂ ¼ ½QC;QU � �W1 is the local

similarity matrix which is determined by XC and XU.

Similarly, W2 is computed based on YC and YU.

As in traditional LE method, CLE uses the Gaussian

function to compute the local similarity matrix on two data

sets, that is, {XC [ XU} and {YC [ YU}, respectively.

Denote the computed similarity matrix by W1 and W2,

CLLE has the following objective function, which can also

be unified within the proposed framework

arg min
PC ;QC ;PU ;QU

X
pi;pj2fPC[PUg

W1
ijkpi � pjk2

þ
X

qi;qj2fQC[QUg
W2

ijkqi � qjk2

s.t. PC ¼ QC ð10Þ

Here pi is low-dimensional embeddings of data xi 2 fXC [
XUg: qi is low-dimensional representation of data yi [ {YC

[ YU} and similarly for others.

As seen from two concrete forms of L in Eqs. (9) and

(10), they are both the sum of objective functions of tradi-

tional methods, that is, LLE and LE. One can also extend

other dimensionality reduction methods within this frame-

work in the same way.

The second step of our framework is to assign high-

dimensional correspondence based on previous derived

low-dimensional representations. Mathematically, we want

to construct a function fAB as the substitution of FAB. Denote

px as the embedding of xi, qi as the embedding of yi, we aim

to derive the following mapping

fABðpiÞ ¼ qj; ð11Þ

and assign that FAB(xi) = yj.

Formally, we should design another objective function

to determine FAB and fAB (they are the same based on above

analysis). It has the following form

arg min
FAB;fAB

GðXC; YC;XU ; YU ;PC;QC;PU ;QUÞ
s.t. FABðxiÞ ¼ yi; if xi 2 XC and yi 2 YC

fABðpiÞ ¼ qi; if pi 2 PC and qi 2 QC

ð12Þ

where G is a loss function which can measure the dissim-

ilarity in determining correspondences. The constraints

indicate that the ever-known correspondence relationship

should not be changed in this framework.

Note that we have assumed pi = pi in Eq. (8). Thus, in

the following design of fAB, it is mainly based on the

similarity between pi and qi. If pi = qi, we should have

fAB(pi) = qi. One common way in determining fAB is based

on a similarity metric of the common low-dimensional

embedding. In other words, we assign xi a correspondence

yj if the embedding of yj (qj) is the one that nearest to pi

among QC [ QU. Let us analyze CLLE and CLE within this

framework and show its concrete forms.

CLLE and CLE use the same criterion as mentioned

above to determine high-dimensional correspondence.

More concretely, they use the following function to

determine high-dimensional correspondence

FABðxiÞ ¼ yi; If xi 2 XC and yi 2 YC

FABðxiÞ ¼ yl; If xi 2 XU and

l ¼ arg min
j
kpi � qjk; qj 2 fQC [ QUg ð13Þ

In next subsection, we will provide new formulations of

L and G; which enable MVU to learn the common

embeddings of two data sets simultaneously.

In summary, the above framework can be summarized

into the procedure shown in Fig. 2. As seen from Fig. 2,

data in the top and bottom tables are in original space and

examples in the middle tables are their low-dimensional

representations. Examples in two columns of each subfigure

are assigned according to their corresponding relationships.

3.2 LAMVU

Considering that learning approaches aim to discover the

hidden consensus patterns and MVU can derive these

patterns faithfully, we propose a new correspondence

learning method, LAMVU, within the proposed frame-

work. We first extend MVU to derive the common

embedding of labeled examples. Then, low-dimensional

representations of unlabeled data are computed by local
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approximation. Finally, correspondences of unknown

points are assigned or predicted. In brief, the first two steps

are the implementation of the first procedure of our

framework and the last just aims to determine suitable G:
Let us introduce them sequentially under guidance of the

proposed framework.

3.2.1 Derive common embeddings of labeled examples

by MVU

Recalling the basic assumption that both XC and YC are

representations of the same hidden structure, we would like

to use MVU in deriving this common structure. Never-

theless, as XC and YC are collected from different aspects,

there is no numerical relationship between them. For

example, one observation may be much larger than that in

the other. Besides, they may use different metrics to

measure distances. Fortunately, they are all representations

of the same structure. More concretely, the local relation-

ship between any two points in XC should be similar to that

of the corresponding points in YC. Otherwise, the hidden

consensus patterns that they revealed may be different.

Manifold learning approach, that is, MVU, should maintain

this similarity in deriving the hidden consensus pattern.

To make the distance computed from two data sets

comparable and the embedding identifiable to transforma-

tion, we would like to use the following two strategies for

preprocessing. The first is normalization. We normalize

each data set using the following method. For

xi 2 XC [ XU ; yj 2 YC [ YU ;

xi  xi=s; where s ¼ maxfkxjkjxj 2 XC [ XUg;
yi  xi=t; where t ¼ maxfkyjkjyj 2 YC [ YUg:

ð14Þ

where k � k represents the F-norm of a vector. Note that,

through this kind of normalization, the points, which have

the largest norms in their own set, both have the norm 1.

Thus, the computed distances are comparable in data scale.

The second strategy is centralization. Since two data sets are

normalized, we centralize two data sets by their own centers,

respectively. That is to say, for xi 2 XC [ XU ; yj 2 YC [ YU ;

xi  xi � c; where c ¼
P

xj2XC[XU
xj

#ðXC [ XUÞ
;

yj  yj � d; where d ¼
P

yi2YC[YU
yi

#ðYC [ YUÞ
:

ð15Þ

where #ð�Þ means the cardinality of a set.

After this important preprocessing, we take the weighted

distance matrix shown in the following as the input of

MVU

kdisðXCÞ þ ldisðYCÞ: ð16Þ

Here, dis(XC) is a matrix whose elements are geodesic

distances between points whose representations are column

vectors of preprocessed XC and similarly for dis(YC). As in

Isomap [15], these distances are more accurate than the

Euclidean distance to characterize the structure of data

manifold. They can be approximated by the shortest path

distances on the constructed neighborhood graph, whose

vertexes combine the points represented by both XC and XU

(see the introduction about the first step of MVU in Sect.

2.2). The induction of unlabeled points will make the

computation of geodesic distances more accurately [15]. k
and l are two turning weights which can balance the

effects of two distance matrixes. For convenience, we take

k = 1/max(dis(XC)) and l = 1/max(dis(YC)). Here, max(-

dis(XC)) is the maximum value of the elements in dis(XC)

and similarly for max(dis(YC)).

Take the weighted distance matrix shown in Eq. (16) as

the input, we derive the common representations PC = QC

of labeled data by employing MVU. It combines the prior

knowledge in learning procedure and derives an identical

representation for the corresponding data. They also reveal

the intrinsic structures of two data sets and maintain their

corresponding relationships. For visualization, we will

show some two-dimensional embeddings in Sect. 5.

3.2.2 Learn low-dimensional embedding of unlabeled

examples

In last stage, we only derived the common embedding. As

mentioned in above framework, we also need to compute

the embedding PU and QU. Considering the fact that any

smooth manifold can be linearly approximated in local

regions, we employ local approximation technique as in

[13] to derive embedding of unlabeled data, that is, XU and

YU. As the procedure is similar for both systems, we only

take data from the first system as an example.

CX

CY
UX

? UY

?

CP

CQ
UP

? UQ

?

CX

CY
UX

UY
ÛY

ˆ
UX

Fig. 2 The proposed framework
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The first step is to identify local regions for each unla-

beled data in XU. We choose a fixed number, kD, of nearest

points in XC for each unlabeled data. In other words,

neighbors of XU (i), for i ¼ 1; 2; . . .;NA; are selected only

in XC. Here, XU (i) denotes the data point represented by

the ith column of XU.

The second step is to compute the local combination

weights. Assume that W is a NC 9 NA weight matrix. The

ith column of W consists of reconstruction weights for XU

(i). Wji represents the contribution of the jth labeled data

XC(j) to the reconstruction of the ith unlabeled data XU (i).

XC (j) is the data point shown in the jth column of XC. If

XC(j) is not a neighbor of XU (i), then Wji = 0. Meanwhile,

in order to guarantee that the weights are invariant to

rotations, rescaling, and translations, the sum of every

column vector of W is equal to one, that is,
PNC

j¼1 Wji ¼ 1;

for i ¼ 1; 2; . . .;NA: Thus, W can be derived by minimizing

the following equation, which can be solved by constrained

least square regression

arg min �ðWÞ ¼
PNA

i¼1

XUðiÞ �
PNC

j¼1

WjiXCðjÞ
�����

�����
2

PNC

j¼1

Wji ¼ 1 for i ¼ 1; 2. . .;NA

Wji ¼ 0 If XCðjÞ is not a neighbor of XUðiÞ:

ð17Þ

Finally, by using this reconstruction weight matrix, we

can calculate the embedding of XU. These results are shown

in the following equation

PU ¼ PC �W : ð18Þ

Similarly, we can apply the same technique to derive

embedding of YU, that is, QU = QC 9 U. Here, U is a

NC 9 NB weight matrix, which can be calculated in the

same way as computing W. All data in the low-dimensional

space are listed in the following matrix

L ¼ PC PU ¼ PC �W PD

QC QD QU ¼ QC � U

� �
: ð19Þ

By now, we have finished the first stage of our

framework. We will assign correspondences for unlabeled

data based on the relationships among the elements of L.

3.2.3 Assign correspondences for unlabeled examples

As mentioned above, there are two tasks of learning high-

dimensional correspondence, that is, to predict the data

when they only known in A or to align the data when they

appear in both observations. Considering the second stage

of proposed framework, we will show how to achieve these

goals, respectively.

We first employ the linear approximation technique to

compute the predictions, that is, the approximated mapping

results of XU and YU (Eq. 21) and then assign the corre-

spondences based on the metric proposed in our

framework.

For illustration, take a particular point XU(i) as an

example, its low-dimensional representation is PU(i). Since

PC = QC and PU, QU are derived by PC and QC, we can

linearly approximate PU(i) by finding its kA nearest

neighbors in the data set formed by the combination of QC

and QU. Assume that x is an (NC ? NB) 9 1 vector whose

elements are the approximating coefficients and computed

by the minimization of following equation

arg min PUðiÞ �
PNC

i¼1

xðiÞQCðiÞ �
PNB

i¼1

xðiþ NCÞQUðiÞ
����

����
2

PNCþNB

i¼1

xðiÞ ¼ 1

xðiÞ ¼ 0; if QCðiÞ is not a neighbor of PUðiÞ
xðiþ NCÞ ¼ 0; if QUðiÞ is not a neighbor of PUðiÞ:

ð20Þ

Here, x(i) is the ith element of x. Weights for points that

are beyond the kA nearest neighbors of PU(i) are defined as

zeros.

Consequently, we can define the prediction ŶDðiÞ of

XU(i) as follows

ŶDðiÞ ¼
XNC

i¼1

xðiÞYCðiÞ þ
XNB

i¼1

xðiþ NCÞYUðiÞ: ð21Þ

We now explain how to achieve the above two goals.

1. To deal with the missing value situation, that is, to

establish data of a data which appear only in system A,

we directly assign ŶDðiÞ as its correspondence in B.

2. If we have been told that the corresponding data of

XU(i) belong to either YC or YU, it is straightforward to

assign the point which is nearest to ŶDðiÞ as its

matching example.

Similarly, we can also compute the prediction X̂D of YU

in the same way. The matrix H in original space can be

reformulated according to their corresponding relationships

H ¼ XC XU X̂D

YC ŶD YU

� �
: ð22Þ

In summary, the procedure of LAMVU is in Table 1.

3.3 Discussion

In this subsection, we first compare LAMVU with CLLE

and CLE within the proposed framework. Then, some

discussions about LAMVU are provided.

As seen from the proposed framework and above

methods, we can see that the performance of embedding
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learning is vital. As mentioned in Sect. 2, since MVU can

derive more faithful embedding, LAMVU should outper-

form CLLE and CLE. More concretely, when CLLE and

CLE are employed to solve this problem, they violate the

basic assumptions of these methods. In other words, the

local similarity that they want to keep cannot be main-

tained when we add the constrain PC = QC. They fail to

describe the local properties of data manifold in solving

this problem. LAMVU, however, also follows the geome-

try intuition of MVU, that is, unfolding the manifold while

preserving local distances.

The second problem is the similarity and dissimilarity

among three methods. As shown in our framework, all the

methods follow the same procedure in learning high-

dimensional correspondence. Moreover, comparing Eq.

(13) with that in formulating Eq. (22), in the second step of

our framework, three methods use the same criterion in

determining high-dimensional correspondence. Their main

differences are the concrete formulations of L in Eq. (8).

As we have known, CLLE and LE are all distance based.

Since MVU could use distance in a more direct way, it is

no surprise that it performs better than CLLE and CLE.

The third problem is about the computational com-

plexity. Denote Nc as the number of corresponding points,

Nx and Ny as the numbers of unlabeled points in A and

B, that is, Nx = #(XU), Ny = #(YU). As seen from above

procedure, the most computational step of CLLE and CLE

is the decomposition of the Laplacian matrix. Thus, their

computational complexity is O((Nc ? Nx ? Ny)
3). LAM-

VU costs the most time in deriving the common embedding

by MVU. Essentially, it is formulated as a semi-definite

program, which can be solved by other approaches, such as

CSDP. Its computational complexity is O(Nc
3 ? h3), where

h is the number of constraints on the constructed graph as

shown in Eq. (6). Nevertheless, its computational com-

plexity is still high. We can apply the accelerating method

proposed in [21].

Finally, we would like to show some shortcomings of

the proposed framework and method. Since we have

restricted that embedding of corresponding points should

be the same, this seems to strict in real applications. We

will relax this constraint by assuming that there is a linear

transformation between them in the further researches.

Besides, LAMVU is not as fast as CLLE and CLE.

Meanwhile, as in most learning-based methods, LAMVU

assumes that the embedding of two data sets must have the

same dimensionality. This may be also too strict in appli-

cations. Additionally, all parameters are chosen experien-

tially; we will investigate an effective rule to determine

parameters.

4 CSP, a concrete application

In this section, we will briefly explain how to use the

methods within our framework in an important application

CSP. We will combine the separated personalization

information within each system to provide an enhanced

personalization experience.

As mentioned in [11], CSP can be regarded as a typical

corresponding problem. If we take the user data from two

different systems, also denoted as A and B, as the obser-

vations from different aspects, personalization of a system

amounts to learning the correspondences between them.

More concretely, (1) if we have been told that the user u

has visited both systems, CSP is to match the data of u in

both systems. (2) If the user u is known to only use system

A (or B), CSP tries to predict his (or her) data in B (or A).

We would like to explain why we can use the methods

within our framework for CSP. When it is applied to per-

sonalization, our method can learn the social similarity

between people by deriving the common embedding. There

are mainly two reasons: (1) There is enough regularity

among users that one can learn within a user population.

This fact is commonly exploited in social research or col-

laborative filtering. This regularity is represented by the

consensus pattern or common embedding learned by

manifold learning approach. (2) When a person uses

Table 1 LAMVU Algorithm

Step 1 Derive common embedding of labeled points

Input: Data which are known in correspondence XC, YC;

Output: Common embedding of XC: PC and YC: QC, such that

PC = QC;

1. Compute geodesic distance matrixes dis(XC) and dis(YC) of XC

and YC respectively;

2. Compute the weighted matrix kdis(XC) ? l dis(YC);

3. Employ MVU to derive common embedding PC and QC, such

that PC = QC;

Step 2 Learn embeddings of unlabeled examples

Input: Labeled data XC, YC, unlabeled data XU, YU, common

embedding PC, QC;

Output: Embeddings of XU and YU, that is, PU, QU;

1. Compute approximation matrixes W and U by Eq. (17);

2. Assign PU = PC 9 W, QU = QC 9 U;

Step 3 Assign correspondences for unlabeled data

Input: Labeled data XC, YC, unlabeled data XU, YU, embeddings

PC, QC, PU, QU;

Output: Correspondences of unlabeled examples;

1. For each point in XU and YU, compute the local linear

approximation weights in embedding space by Eq. (20);

2. Compute predictions ŶD; X̂D by Eq. (21);

3. (a) For predicting, assign ŶD as prediction of XU, assign X̂D as

prediction of YU;

(b) For matching, assign the point that is nearest to the

prediction as its matching point.

Neural Comput & Applic

123



multiple systems, there is likely to be a lot of consistencies

between data of the same person. Intuitively, these con-

sistencies can be regarded as the tastes of a user. Thus, the

performance of embedding learning is also vital for CSP.

As explained in Sect. 3.3, LAMVU should also outperform

CLLE and CLE in CSP.

Considering the above analyses, we can directly use the

correspondence learning methods, such as LAMVU,

CLLE, and CLE, for CSp. Traditionally, there are two

commonly used non-cross-system personalization methods,

the Popular Votes and Mean Votes. In Brief, Popular Votes

recommends any user with the most popular votes and

Mean Votes provides the average votes of ever-known

labeled points. They are nonpersonalization recommenda-

tions. Compared with these methods, the learning-based

methods within our framework incorporate their common

relationship between two systems. Thus, they should per-

form better. In next section, we will compare their

performances.

Finally, we would like to introduce an evaluation metric

which is commonly used to measure the performance of

CSP algorithms. We employ modified mean average error

(MMAE) as an evaluation metric [11]. It can be computed

according to the following formulation

MMAE ¼ 1

q

Xq

i¼1

1

mðiÞ
X

j2CðiÞ
jpi

j � ai
jj: ð23Þ

In Eq. (23), q is the number of evaluation examples. aj
i is

the jth element of the ith real data, that is, pj
i represents the

jth element of the ith predicted data pi. CðiÞ ¼ fjjai
j [ 0g

and m(i) is the number of nonzero values provided by the

ith user, that is, mðiÞ ¼ #ðCðiÞÞ:
Note that, since the data are often very sparse, the sec-

ond sum is taken only over known values, that is, j 2 CðiÞ:
If the sum is taken over all items, the distance between

different points will trend to equal. For example, assume a1

is a D-dimensional vector whose first element is one and

other elements are zeros. a2 is also a D-dimensional vector

whose elements are all zeros. If the sum is taken over all

elements, their distance is 1/D, which is near zero when

D is sufficiently large (it is common in CSP). By

employing MMAE, however, their distance is one. We can

easily separate these two data sets by MMAE since they are

different in essence in our applications.

5 Experiments

In this section, we mainly provide two groups of experi-

ments. The first group is to show the image alignment

results intuitively. This is important for pattern recognition

and computer vision. The second group contains CSP

experimental results on several real data sets. They are the

teapot data set [3], the hand data set1, the created Lenna

and Earth data sets2, two MovieLens data sets3, the Jester

data set4, and the Book Crossing data set5. The first four are

employed to show the results intuitively, and the last three

are commonly used to evaluate the performance of differ-

ent learning-based CSP approaches. Since it has been

shown that CLLE achieves the best performance, we only

compare LAMVU with CLLE for visualization. Other two

commonly used methods, Popular Votes and Mean Votes,

are also employed for CSP.

5.1 Experiments on the rotated images

As seen from the procedure of our proposed framework in

Table 1, the derivation of consensus pattern is vital for

high-dimensional correspondence learning. In this section,

we propose two examples on two rotated image sets. The

first one aims to learn correspondence between images of a

rotated teapot data set and a rotated hand data set. They

contain 200 and 481 images, respectively. These images

have been arranged according to their angles of rotation.

In our experiments, we select 41 training images based

on the angels of rotations uniformly. In other words, we

select images rotated from left to right with equal inter-

val. The low-dimensional embeddings, derived by CLLE

and LAMVU, are shown in Fig. 3. Together with them,

we have also selected some typical images. They are

drawn according to their embedding. Other parameters

are empirically determined. Notice that the horizontal

axis represents the data’s location in the data set. For

example, the x-axis for the first image is 1. The y-axis

represents the one-dimensional embedding derived by

different methods.

As seen from the results in Fig. 3, the results of LAM-

VU (Fig. 3c,d) are very similar. The embeddings of CLLE

in Fig. 3a, b, however, have large variance with each other.

It indicates that it is more accurate in using our method to

align high-dimensional data.

In the second experiment, we use the created Lena and

earth image data sets. The images of Lena were generated by

moving the Lena image of 32 9 32 pixels on a noisy back-

ground of 61 9 61 pixels. We moved one pixel at a time, and

the representing data set is of 61 9 61 = 3721 dimension-

ality. The second data set was 100 9 100 images of the earth

rendered by rotating its azimuthal and elevation angles. It

1 http://vasc.ri.cmu.edu/idb/html/motion/hand/.
2 http://www.seas.up-enn.edu/jhham/.
3 http://www.grouplens.org.
4 http://goldberg.berkeley.edu/jester-data/.
5 http://www.informatik.uni-freiburg.de/cziegler/BX/.
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contains -45 to 45� of azimuth and -45 to 45 degree for

elevation changes. Both of them consist of 900 points.

In our illustrations, to show the effectiveness of our

method, we take some aligned images determined by

LAMVU. The correspondence results are shown in Fig. 4.

It implies that the up–down moving of the Lena image

aligns with the elevation changes and the left-right transfer

corresponds to the azimuthal movements. It means that our

method could reveal the consensus hidden pattern of two

different sets efficiently.

5.2 Experiments on MovieLens

To show the effectiveness of the proposed approach for

CSP, we present several results on real data set, that is, the

MovieLens data. It contains two subsets with different size.

For simplicity, we call them the MovieLens-I and the

MovieLens-II.

The MovieLens-I consists of 100,000 ratings for 1682

movies by 944 different users. The rating concerning each

movie is referred as one dimension of the data set. For

example, the first row of the data file is ‘‘196 242 3

881250949.’’ It means that the 196th user rates the 242nd

movie with the score 3 (5-star scale). The final number is a

time represented in seconds since the epoch is returned by

time. If a user does not rate a movie, the corresponding

score is zero. Since every user only rates limited number

of movies, these data are very sparse (about 100,000/

(1682 9 944)& 0.063). As the experiments in previous

papers [11], the users are deemed as the units of analysis,

for which there are two different subsects, that is, one’s

rating of two sets of items. Those ratings are randomly split

into two subsets X (840 9 944) and Y (842 9 944).

The MovieLens-II data set consists of approximately 1

million ratings for 3952 movies by 6040 users. It has the

same structure as MovieLens-I, except that this data set is

more sparse (about 1, 000, 000/(3900 9 6040) & 0.042).

In our experiments, we select the ratings provided by the

first 1000 users. The same as previous, we randomly split

those ratings into two subsets X (2000 9 1000) and

Y (1952 9 1000).

In principle, we can vary the overlaps between two data

sets from no overlap to all items’ overlapping. However, in

real-world scenario, items’ overlaps are very small. We

choose no overlaps in our experiments. Another important

parameter is the size of labeled examples; we vary this

parameter ranging from 20 to 200 in our experiments.

Ratings of the last 143 users form the unlabeled data sets.

Labeled data sets are randomly chosen for every run. In

these settings, the data sets are sparse. Therefore, Euclidean

distance on pure data is not necessarily effective. We

simply apply the cosine distance, which is more suitable to

measure the distance between sparse samples.

Some parameters need to set in advance. These param-

eters are (1) dimensionality of the embedding space, that is,

d; (2) neighborhood size in deriving the common
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Fig. 3 Aligned real images of Teapot and Hand data sets. a, b Are embeddings derived by CLLE. c, d Are embeddings derived by LAMVU.

Some typical images are also shown
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embeddings, that is, k; (3) neighborhood size in learning

the embeddings for unlabeled data, that is, kD; (4) neigh-

borhood size in computing the predictions, that is, kA. As

shown in the following experiments, these parameters have

small influence on the performance of LAMVU. Thus, we

choose them experientially.

In order to compare LAMVU with CLLE intuitively,

we draw two-dimensional embeddings of MovieLens-I,

which consist of 50 labeled pairs and 143 unlabeled pairs,

in Fig. 5. Representations of labeled pairs have been

marked by circles. The parameters are as follows:

d = 2, k = 8, kA = 6 for both methods and kD = 6 for

LAMVU.

As seen from Fig. 5, it seems that low-dimensional

embeddings, which are derived by our method, have

similar shapes. Besides, embeddings of unlabeled points

look like to have the same shape for two bottom figures.

Therefore, it is more reasonable for LAMVU to use nearest

neighbors to determine corresponding data. On the con-

trary, embeddings derived by CLLE have significant dif-

ferences. Except for the same embeddings of XC and

YC, there are large variances between them. Therefore,

LAMVU outperforms CLLE intuitively.

We also compare LAMVU with CLLE, Popular Votes

and Mean Votes quantitatively. With each fixed number

but randomly sampled label points, we repeat every

algorithms 50 times and compute their average MMAEs.

The results are drawn in Fig. 6. Parameters are the same

as that in the first experiment except for d = 15 in these

experiments.

Fig. 4 Aligned real images of

the Lena and Earth data sets
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Fig. 5 Two-dimensional

embedding derived by CLLE

and LAMVU of 50 labeled

points and 143 unlabeled

samples on the MovieLens-I

data set. a CLLE on the first

data; b CLLE on the

second data; c LAMVU on the

first data; d LAMVU on the

second data
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As seen from Fig. 6, compared with other three

approaches, LAMVU has the smallest MMAEs in all cases.

Concretely, it is about 5 % smaller than CLLE and

17–23 % smaller than nonpersonalization methods. More

interesting, if we compare the results in Fig. 6b with those

in Fig. 6a, it seems that all the methods perform worse in

the same situation if the data are more sparse (MovieLens-

II). This may be caused by the inaccurate determination of

distance for very sparse data, although we have used cosine

metric to compute the distance.

Besides, since LAMVU can reveal the intrinsic structure

with a small percent of labeled points, a significant

advantage is that LAMVU performs better than other

approaches even with small NC. This is very important

since labeling points is very expensive, especially in CSP,

due to the violation of privacy.

5.3 Experiments on Jester

In order to show the advantage of LAMVU, we also

present experimental results on another type of real data

set, that is, the Jester data. It consists of 4.1 million con-

tinuous ratings (ranging from -10.00 to ?10.00) of 100

jokes from 73,421 users. It has the same data structure as

MovieLens and contains three parts. We randomly choose

983 users’ ratings from the first part for evaluation. The

users are also deemed as the units of analysis, and those

ratings are also randomly split into two subsets

X (40 9 983) and Y (60 9 983) with no overlaps.

Since the element of this data is decimal, it is difficult to

employ the Popular Votes; we only compare LAMVU with

CLLE and the Mean Votes. Similarly, the last 183 samples

are unlabeled. The number of labeled pairs varies from 100

to 400. Experiments have been repeated 50 times for each

fixed number of points. Mean and standard derivation

(number within the bracket) of these MMAEs are shown in

Table 2. Parameters are as follows: d = 15, k = 8,

kA = 16 for both methods and kD = 16 for our method.

Results with statistical significance are indicated in bold.

As seen from the results, LAMVU outperforms CLLE

and the Mean Votes in all cases. Our algorithm provides

about 11–17 % improvement over CLLE and the Mean

Votes. Similar to the results shown in Fig. 6, LAMVU

achieves encouraging results even when labeled samples

are rare. Hence, LAMVU can achieve higher accuracy than

CLLE and the Mean Votes under pre-given privacy request.

5.4 Experiments on Book Crossing

To show the validity of LAMVU on sparse samples, we

choose another benchmark data set, the Book Crossing

data. It contains 278,858 users (anonymous but with

demographic information) providing 1,149,780 ratings

(explicit/implicit) about 271,379 books. We use the book

rating information, whose ratings are either explicit,

expressed on a scale from 1–10 (higher values denoting

higher appreciation), or implicit, expressed by 0. We

eliminate the implicit rating and select a subset of users

whose have provide more than 10 ratings and a subset of
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Fig. 6 Precision for different methods on the MovieLens-I and

MovieLens-II data set within the manifold alignment framework. The

x-axis is the number of users crossing over, that is, Nc. The y-axis

represents the mean values after 50 times repeat. a Performance

comparison on MovieLens-I; b Performance comparison on Movie-

Lens-II

Table 2 Mean and standard diversity of MMAE on Jester Jokes data

Mean votes CLLE LAMVU

NC = 100 4.3931 (0.1935) 4.2983 (0.1104) 3.5854 (0.1532)

NC = 150 4.2654 (0.1697) 4.0106 (0.0828) 3.5825 (0.0464)

NC = 200 4.1426 (0.1189) 4.0053 (0.0172) 3.5469 (0.0752)

NC = 250 4.0592 (0.1027) 3.9280 (0.0604) 3.5078 (0.0356)

NC = 300 3.9423 (0.1150) 3.8940 (0.0278) 3.4510 (0.0588)

NC = 350 3.8196 (0.1045) 3.8628 (0.1112) 3.4191 (0.0648)

NC = 400 3.7273 (0.1110) 3.7288 (0.0596) 3.3882 (0.0664)
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books who have received the most 1000 ratings. The vol-

ume of data is 2014. Although we have made some pre-

processing, the data are also very sparse (about 30000/

(1000 9 2014)& 0.015).

Similarly, we randomly split these data into two sets

with X (500 9 2014) and Y (500 9 2014) with no over-

laps. The last 114 points are fixed as testing samples, and

the other settings are the same as previous. With different

number of training point, we compare LAMVU with other

methods and provide the mean and standard diversity of

MMAE for 50 independent runs. The results are listed in

Table 3. Results with statistical significance are indicated

in bold.

As seen from Table 3, we can draw almost the same

conclusion as in previous experiment. LAMVU performs

the best, even when the data are sparser. This often occurs

in real application since getting voting information is cost

consuming.

5.5 Discussions of experiments

We would like to provide some important discussions

about LAMVU.

As seen from Tables 2, 3, and Fig. 6, the prediction

accuracy becomes higher when more labeled examples are

available. It consists with prior knowledge since more

information is provided. More importantly, LAMVU does

not so heavily depend on the number of labeled pairs, that

is, NC, as other learning-based methods. LAMVU has a

significant advantage in achieving high accuracy, espe-

cially when the labeled samples are rare.

There are totally four parameters in LAMVU. They

have been chosen empirically. Fortunately, it seems that

when they are within certain ranges, LAMVU is not very

sensitive to these parameters. For example, we have

done experiments with different d, that is, the dimen-

sionality of embedding space and k, the size of neigh-

borhood in deriving the consensus low-dimensional

embedding.

With each fixed d, we determine other parameters as

previous and repeat every experiments 50 times on three

data sets. The average MMAEs are shown in Table 4.

As seen from the results in Table 4, when d is within a

certain range, LAMVU is robust to d. There are mainly two

reasons. (1) The common low-dimensional embeddings of

labeled points are derived by kernel matrix factorization

and the most d significant eigenvectors are selected. When

d is suitable, these eigenvectors are enough to express the

structures of the embedding manifolds. The performance of

LAMVU does not change too much with the increase of

d. (2) Since representations of unlabeled points are linearly

constructed by the embeddings of labeled points, they are

not sensitive to d either.

We have also evaluated our algorithm with different

neighborhood sizes in deriving common low-dimensional

embedding, that is, k. There are also 50 experiments for

each fixed k. Mean MMAEs are shown in Table 5.

As seen from the results in Table 5, when k is within a

certain range, the accuracy of LAMVU has small changes.

This is because: (1) The determination of k reflects the

extent to which the local similarity should be maintained.

When k is within a certain range, we keep similar local

information. Thus, the embedding derived by LAMVU

does not change heavily. (2) The mean imputation in the

first data tends to change distance between any two points.

It can also reduce the influence of k.

Table 4 Precision of LAMVU on the Movielens and Jester data sets

with different d

d = 5 d = 10 d = 15 d = 20 d = 25

MovieLens-I 0.860 0.861 0.860 0.860 0.859

MovieLens-II 0.879 0.877 0.880 0.878 0.878

Jester 3.682 3.643 3.642 3.651 3.702

Table 5 Precision of LAMVU on the MovieLens and Jester data sets

with different k

k = 6 k = 8 k = 10 k = 12 k = 16

MovieLens-I 0.856 0.862 0.869 0.860 0.860

MovieLens-II 0.873 0.875 0.879 0.878 0.880

Jester 3.597 3.644 3.657 3.657 3.647

Table 3 Mean and standard

diversity of MMAE on Book

Crossing data

Mean votes Popular votes CLLE LAMVU

NC = 100 5.7327 (0.3535) 5.7684 (0.3497) 3.2165 (0.2068) 2.8063 (0.1160)

NC = 150 5.1214 (0.1975) 5.3571 (0.1564) 2.7794 (0.1536) 2.2836 (0.1000)

NC = 150 4.7496 (0.0635) 4.8237 (0.0912) 2.5480 (0.1168) 1.8853 (0.1046)

NC = 150 4.4727 (0.1114) 4.7621 (0.1522) 2.3706 (0.1563) 1.7186 (0.1102)

NC = 150 4.2932 (0.0830) 4.5735 (0.1332) 2.3659 (0.1292) 1.6118 (0.1224)

NC = 150 4.1720 (0.0807) 4.3416 (0.1030) 2.3295 (0.0705) 1.5289 (0.0878)

NC = 150 4.0395 (0.1018) 4.1539 (0.0517) 2.2732 (0.1396) 1.4811 (0.0948)
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6 Conclusion

This paper outlines a framework and novel approach

LAMVU to leverage data distributed in different aspects

for high-dimensional correspondence learning. It mainly

focuses on how to unify previous approaches and increase

the accuracy of learning-based approaches. MVU is

extended within this framework to derive the common

embedding, and local approximation strategy is used to

learn the representations of unlabeled examples. Corre-

sponding data of unknown points can be assigned accord-

ing to the relationships between these representations.

Compared with other learning-based methods, LAMVU

can achieve higher accuracy, even with few labeled

examples. It is of high potential in real applications, such as

CSP.

Future work includes how to effectively determine the

parameters and the accelerating issue of proposed method.
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