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Abstract

To better understand, search, and classify image and
video information, many visual feature descriptors have
been proposed to describe elementary visual characteris-
tics, such as the shape, the color, the texture, etc. How
to integrate these heterogeneous visual features and iden-
tify the important ones from them for specific vision tasks
has become an increasingly critical problem. In this paper,
We propose a novel Sparse Multimodal Learning (SMML)
approach to integrate such heterogeneous features by using
the joint structured sparsity regularizations to learn the fea-
ture importance of for the vision tasks from both group-wise
and individual point of views. A new optimization algo-
rithm is also introduced to solve the non-smooth objective
with rigorously proved global convergence. We applied our
SMML method to five broadly used object categorization
and scene understanding image data sets for both single-
label and multi-label image classification tasks. For each
data set we integrate six different types of popularly used
image features. Compared to existing scene and object cat-
egorization methods using either single modality or multi-
modalities of features, our approach always achieves better
performances measured.

1. Introduction
Scene categorization and visual recognition problem an-

alyzes and classifies the images into semantically meaning-

ful categories. It is without doubts a difficult task in com-

puter vision research field, because any scene/object cate-

gory can be characterized by a high degree of diversity and

potential ambiguities. To enhance the visual understand-

ing, computer vision researchers have proposed many fea-

ture representation methods to describe the visual objects in
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different types of images [12, 18, 3]. However, it is usually

not clear what the best feature descriptor to solve a given

application problem is. Because different features describe

different aspects of the visual characteristics, one descriptor

can be better than others under certain circumstances.

How to integrate heterogeneous features is becoming a

challenging as well as attractive problem nowadays. Con-

sidering different feature representations give rise to differ-

ent kernel functions, the Multiple Kernel Learning (MKL)

approaches [19, 9, 13] have been recently studied and em-

ployed to integrate heterogenous features or data and se-

lect multi-modal features. Particularly, [5] surveyed sev-

eral MKL methods, as well as their variants using boosting

method, for computer vision tasks and applied them in ob-

ject classification. However, such models train a weight for

each type of features, i.e., when multiple types of features

are combined together, all features from the same type are

weighted equally. This crucial drawback often causes the

low performance.

To address the integration of the heterogeneous image

features for visual recognition tasks, in this paper, we pro-

pose a novel Sparse Multimodal Learning (SMML) method

by utilizing a new mixed structured sparsity norms. In our

method, we concatenate all features of one image together

as its feature vector and learn the weight of each feature

in the classification decision functions. The main difficulty

of integrating heterogeneous image features is to simulta-

neously consider the feature group property (e.g. GIST

is good at detecting natural scenes and the GIST features

should have large weights for classes related to outdoor nat-

ural scenes) and individual feature property, i.e., although

a type of features are not useful to categorize certain spe-

cific classes, a small number of individual features from the

same type can still be discriminative for these classes.

We propose to utilize two structured sparsity regularizers

to capture both group and individual properties of different

modalities (types) of features. Meanwhile the sparse weight

matrix provides a natural feature selection results. Our new
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objective, employing the hinge loss and the two non-smooth

regularizers, is highly non-smooth and difficult to solve in

general. Thus, we derive a new efficient algorithm to solve

it with rigorously proved global convergence. We applied

our new sparse multimodal learning method to five broadly

used object categorization and scene understanding image

data sets for both single-label and multi-label image classi-

fication tasks. For each data set we integrate six different

types of popularly used image features. In all experimen-

tal results, our new method always achieves a better object

and scene categorization performance than traditional clas-

sification methods utilizing each single type descriptor and

the widely used MKL based feature integration methods.

2. Sparse Multimodal Learning
In recent research, sparse regularizations have been

widely investigated and applied into different computer vi-

sion and machine learning studies [1, 16, 11]. The sparse

representations are typically achieved by imposing non-

smooth norms as regularizers in the optimization problems.

Because the structured sparsity regularizers can capture the

structures existing in data points and features, they are use-

ful in discovering the underlying patterns. We will use a

new joint structured sparsity regularizers to explore both

group-wise and individual importance of each feature for

different classes.

2.1. Joint Structured Sparsity Regularizations

In the supervised learning setting, we are

given n training images {(xi,yi)}ni=1, where

xi =
[(
x1
i

)T
, · · · , (xk

i

)T ]T ∈ �d is the input vec-

tor including all features from a total of k modalities and

each modality j has dj features (d =
∑k

j=1 dj). yi ∈ �c

is the class label vector of data point xi, where c is the

number of classes. Let X = [x1, · · · ,xn] ∈ �d×n and

Y = [y1, · · · ,yc] ∈ �c×n. In this paper, we write matrices

as boldface uppercase letters and vectors as boldface

lowercase letters. For matrix W = (wij), its i-th row and

j-th column are denoted by wi and wj respectively.

Different to MKL, we directly learn a d×c feature weight

matrix W = [w1
1, · · ·,w1

c ; · · ·, · · ·, · · ·;wk
1 , · · ·,wk

c ] ∈
�d×c, where wq

p ∈ �dq indicates the weights of all fea-

tures from the q-th modality in the classification decision

function of the p-th class. Typically we can use a convex

loss function L(X,W) to measure the loss incurred by W
on the training images. We choose to use the hinge loss, be-

cause the hinge loss based SVM has shown state-of-the-art

performance in classifications.

Compared to MKL approaches that learn weight matri-

ces in unsupervised way, our method will learn all weights

of features using supervised learning model. Because the

heterogeneous features come from different visual descrip-

tors, we cannot only use the loss function that equivalents

to assign the uniform weights to all features. The regular-

izer R has to be added to impose the interrelationships of

modalities and features as:

min
W

c∑
i=1

n∑
j=1

(
1− yji(w

T
i xj + bi)

)
+
+ γR, (1)

where γ > 0 is a trade-off parameter and the function (a)+
is defined as (a)+ = max(0, a). For brevity, we denote

fi(wi, bi) =
n∑

j=1

(1− yji
(
wT

i xj + bi)
)
+

in the sequel.

In heterogeneous features fusion, from multimodal view-

point, the features of a specific modality can be more or

less discriminative for specific classes. For instance, the

color features substantially increases the detection of stop

signs while they are almost irrelevant for finding cars in im-

ages. Thus, we propose a new group �1-norm (G1-norm)

as regularizer in Eq. (1), which is defined as ‖W‖G1
=

c∑
i=1

k∑
j=1

||wj
i ||2 [17]. Then Eq. (1) becomes:

min
W

c∑
i=1

fi(wi, bi) + γ1 ‖W‖G1
. (2)

Because the group �1-norm uses �2-norm within each

modality and �1-norm between modalities, it enforces the

sparsity between different modalities, i.e., if one modality

of features are not discriminative for certain tasks, the ob-

jective in Eq. (2) will assign zeros (in ideal case, usually

they are very small values) to them for corresponding tasks;

otherwise, their weights are large. This group �1-norm regu-

larizer captures the global relationships between modalities.

However, in certain cases, even if most features in one

modality are not discriminative for certain visual categories,

a small number of features from the same modality can still

be highly discriminative. From the multi-task learning point

of view, such important features should be shared by all

tasks. Thus, we add one more �2,1-norm regularizer into

Eq. (2) and get the final objective as:

min
W

c∑
i=1

fi(wi, bi) + 2γ1 ‖W‖G1
+ 2γ2 ‖W‖2,1 . (3)

Because the �2,1-norm regularizer imposes the sparsity be-

tween all features and non-sparsity between classes, the fea-

tures that are discriminative for all classes will get large

weights. Because of the imposed sparsity, the weights of

most features are close to zeroes and only the features im-

portant to classification tasks have large weights. Thus, our

SMML results automatically perform the feature selection

procedure.
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2.2. A New Efficient Optimization Algorithm

The objective of Eq. (3) is a highly non-smooth problem

and cannot be easily solved in general. Thus, we derive a

new efficient algorithm to solve this problem as summarized

in Algorithm 1, whose convergence to the global optimum

is guaranteed by the following theorem.

Theorem 1 In Algorithm 1, the value of the objective in
Eq. (3) is monotonically decreased in each iteration.

Proof: In each iteration t, according to the Step 3 in the

Algorithm 1, we have:

Wt+1 = min
W

c∑
i=1

fi(wi, bi)

+ γ1

c∑
i=1

Di
t ‖wi‖22 + γ2 tr

(
WT D̃tW

)
,

(4)

by which we can derive

c∑
i=1

fi((wt+1)i, (bt+1)i)

+ γ1

c∑
i=1

k∑
j=1

∥∥∥(wt+1)
j
i

∥∥∥
2

2

2
∥∥∥(wt)

j
i

∥∥∥
2

+ γ2

d∑
i=1

∥∥wi
t+1

∥∥2

2

2‖wi
t‖2

≤
c∑

i=1

fi((wt)i, (bt)i)

+ γ1

c∑
i=1

k∑
j=1

∥∥∥(wt)
j
i

∥∥∥
2

2

2
∥∥∥(wt)

j
i

∥∥∥
2

+ γ2

d∑
i=1

∥∥wi
t

∥∥2

2

2‖wi
t‖2

.

(5)

Because it can verified that for function g (x) = x − x2

2α ,

given any x �= α ∈ �n, g (x) ≤ g (α) holds, we can derive:

γ1

c∑
i=1

k∑
j=1

∥∥∥(wt+1)
j
i

∥∥∥
2
− γ1

c∑
i=1

k∑
j=1

∥∥∥(wt+1)
j
i

∥∥∥
2

2

2
∥∥∥(wt)

j
i

∥∥∥
2

≤ γ1

c∑
i=1

k∑
j=1

∥∥∥(wt)
j
i

∥∥∥
2
− γ1

c∑
i=1

k∑
j=1

∥∥∥(wt)
j
i

∥∥∥
2

2

2
∥∥∥(wt)

j
i

∥∥∥
2

;

(6)

γ2

d∑
i=1

∥∥∥wi
t+1

∥∥∥
2
− γ2

d∑
i=1

∥∥wi
t+1

∥∥2

2

2 ‖wi
t‖2

≤

γ2

d∑
i=1

∥∥∥wi
t

∥∥∥
2
− γ2

d∑
i=1

∥∥wi
t

∥∥2

2

2 ‖wi
t‖2

.

(7)

Adding Eqs. (5)-(7) in both sides, we have

c∑
i=1

fi((wt+1)i, (bt+1)i) + γ1

c∑
i=1

k∑
j=1

∥∥∥(wt+1)
j
i

∥∥∥
2
+ γ2

d∑
i=1

∥∥∥wi
t+1

∥∥∥
2

≤
c∑

i=1

fi((wt)i, (bt)i) + γ1

c∑
i=1

k∑
j=1

∥∥∥(wt)
j
i

∥∥∥
2
+ γ2

d∑
i=1

∥∥∥wi
t

∥∥∥
2
.

(8)

Therefore, the algorithm decreases the objective value in

each iteration. �
Because the problem (3) is a convex problem, Algorithm

1 will converge to the global optimum.

Input: X = [x1,x2, · · · ,xn] ∈ �d×n,

Y = [y1,y2, · · · ,yc] ∈ �n×c.

1. Let t = 1. Initialize Wt ∈ �d×c.

while Not converges do
2. Calculate the block diagonal matrices Di

t(1 ≤ i ≤ c), where

the j-th diagonal block of Di
t is 1

2‖(wt)
j
i‖2

Ij . Calculate the

diagonal matrix D̃t, where the i-th diagonal element is 1
2‖wi

t‖2
.

3. For each wi(1 ≤ i ≤ c), calculate (wt+1)i = D−
1
2 (w̃t)i,

where w̃i = argmin
w̃i

fi(w̃i, bi; X̃) + w̃T
i w̃i, X̃ = D−

1
2 X

and D = γ1Di + γ2D̃.

4. t = t+ 1.
end
Output: Wt ∈ �d×c.

Algorithm 1: An efficient iterative algorithm to solve

the optimization problem in Eq. (3).

3. Experimental Results
In this section, we experimentally evaluate the proposed

Sparse Multi-Modal Learning (SMML) approach in both

single-label image classification tasks and multi-label im-

age classification tasks.

3.1. Evaluation in Single-Label Image Classification

We first evaluate the proposed approach in single-label

image classification, in which each image belongs to one

and only one class. We experiment with the following three

benchmark single-label multi-modal image data sets, which

are broadly used computer vision studies.

NUS-WIDE-Object data set1 contains 30,000 images

and 31 classes. Following [4], we select to use a subset

of 26 classes in our experiments.

Animal data set2 contains 30457 images for 50 animals

(classes).

MSRC-v1 data set3 contains 240 images with 9 classes.

Following [2], we refine the data set to get 7 classes includ-

ing tree, building, airplane, cow, face, car, bicycle, and each

refined class has 30 images.

All the three data sets are described by a set of 6 different

image descriptors, which are listed in Table 1.

Experimental setups. We classify the images in the above

three data sets using the proposed methods by integrating

the six types of image features of each of them. We compare

the proposed method against several most recent multiple

1http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
2http://attributes.kyb.tuebingen.mpg.de/
3http://research.microsoft.com/en-us/projects/objectclassrecognition/
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Table 1. Image feature descriptors of image data sets used in experiments.

Type
NUS-WIDE-Object Animal MSRC-v1 / MSRC-v2 / TRECVID 2005

Features Dimension Features Dimension Features Dimension

1 Color moments 255 Self-Similarity 2000 Color moment 48
2 Color histogram 64 Color histogram 2688 LBP 256
3 Color correlogram 144 PyramidHOG 252 HOG 100
4 Wavelet texture 128 SIFT 2000 SIFT 1230
5 Edge distribution 73 colorSIFT 2000 GIST 512
6 Visual words 500 SURF 2000 Centrist 1320

kernel learning (MKL) methods that are able to make use

of multiple types of data: (1) SVM �∞ MKL method [13],

(2) SVM �1 MKL [9], (3) SVM �2 MKL method [8], (4)

least square (LSSVM) �∞ MKL method [19], (5) LSSVM

�1 MKL method [14] and (6) LSSVM �2 MKL method

[20]. Besides, we also compare our method to three most

recent multi-model image classification methods published

in computer vision community, including Gaussian process

(GP) method [7], LPBoost-β method [5] and LPBoost-B

method [5], which have demonstrated state-of-the-art ob-

ject categorization performance. In addition, we also report

the classification performances by SVM on each individual

type of features and a straightforward concatenation of all

six types of features as baselines.

We implement three versions of the proposed method.

First, we set γ2 in Eq. (3) as 0, which only uses the G1-

norm as regularization thereby only takes into account the

structure over modalities. We denote it as “Our method

(G1-norm only)”. Second, we set γ1 in Eq. (3) as 0 to only

use �2,1-norm regularization, which thereby select feature

shared across tasks yet modality structure is not considered.

We denote this degenerate version of the proposed method

as “Our method (�2,1-norm only)”. Finally, the full version

of the proposed method by Eq. (3) is implemented and de-

noted as “Our method”.

We conduct standard 5-fold cross-validation and report

the average results. For each of the 5 trials, within the

training data, an internal 5-fold cross-validation is per-

formed to fine tune the parameters. The parameters of our

method (γ1 and γ2 in Eq. (3)) are optimized in the range

of
{
10−5, 10−4, . . . , 104, 105

}
. For SVM method and

MKL methods, one Gaussian kernel is constructed for each

type of features (i.e., K (xi,xj) = exp
(
−γ ‖xi − xj‖2

)
),

where the parameter γ is fine tuned in the same range used

as our method. We implement the compared MKL meth-

ods using the codes published by [20]. Following [20], in

LSSVM �∞ and �2 methods, the regularization parameter

λ is estimated jointly as the kernel coefficient of an identity

matrix; in LSSVM �1 method, λ is set to 1; in all other SVM

approaches, the C parameter of the box constraint is fine

tuned in the same range as γ. For LPBoost-β and LPBoost-

B methods, we use the codes published by the authors4. We

4http://www.vision.ee.ethz.ch/∼pgehler/projects/iccv09/

Table 2. Classification accuracies (mean ± std) of the compared

methods in three single-label image classification tasks.

Methods NUS-WIDE Animal MSRC-v1

SVM (Type 1) 0.152±0.018 0.542±0.016 0.777±0.019
SVM (Type 2) 0.149±0.020 0.551±0.019 0.768±0.018
SVM (Type 3) 0.146±0.016 0.569±0.021 0.781±0.022
SVM (Type 4) 0.150±0.018 0.541±0.023 0.784±0.026
SVM (Type 5) 0.141±0.017 0.566±0.021 0.773±0.023
SVM (Type 6) 0.149±0.018 0.554±0.200 0.789±0.021
SVM (all by concatenation) 0.138±0.020 0.547±0.019 0.793±0.025

SVM �∞ MKL method 0.211±0.023 0.603±0.017 0.820±0.023
SVM �1 MKL method 0.207±0.020 0.599±0.019 0.813±0.019
SVM �2 MKL method 0.202±0.021 0.593±0.018 0.789±0.022
LSSVM �∞ MKL method 0.200±0.018 0.588±0.025 0.778±0.025
LSSVM �1 MKL method 0.195±0.022 0.586±0.023 0.808±0.027
LSSVM �2 MKL method 0.187±0.021 0.578±0.019 0.796±0.018
GP method 0.181±0.020 0.569±0.022 0.794±0.015
LPboost-β 0.220±0.015 0.612±0.011 0.815±0.010
LPboost-B 0.219±0.012 0.610±0.014 0.813±0.013

Our method (G1-norm only) 0.222±0.013 0.615±0.013 0.818±0.012
Our method (�2,1-norm only) 0.223±0.011 0.618±0.014 0.815±0.013
Our method 0.245± 0.013 0.641± 0.012 0.834± 0.052

use LIBSVM5 software package to implement SVM in all

our experiments.

Experimental results. Because we are concerned with

single-label image classification, we employ the most

widely used classification accuracy to assess the classifica-

tion performance. The results of all compared methods in

the three image classification tasks are reported in Table 2.

A first glance at the results shows that our methods

generally outperform all other compared methods, which

demonstrate the effectiveness of our methods in single-label

image classification.

In addition, the methods using multiple data sources are

significantly better than SVM using one single type of data.

This confirms the usefulness of data integration in image

classification.

Moreover, the results that our methods are always better

than the MKL methods and boosting enhanced MKL meth-

ods is consistent with the previous theoretical analysis in

that, although both of them take advantage of the informa-

tion from multiple different sources, our method not only

assigns proper weight to each type of features, but also re-

wards the relevances of the individual features inside a give

feature type. In contrast, the MKL methods and boosting

enhanced MKL methods only address the former while not

being able to take into account the latter.

5http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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Finally, the performances of the full version of the pro-

posed method is consistently better than those of its two

degenerate versions, which demonstrate that both task-

specific modality selection and across-task feature selection

are necessary in image categorization, no one less.

3.2. Evaluation in Multi-Label Image Classification

Now we evaluate the proposed method in multi-label im-

age classification, in which each image can be associated

with more than one class label. We evaluate the proposed

approach on the following two benchmark multi-label im-

age data for image annotation tasks.

TRECVID 20056 data set contains 61901 images and la-

beled with 39 concepts (labels). As in most previous works

[15], we randomly sample the data such that each concept

has at least 100 images.

MSRC-v27 data set is an extension of MSRC-v1 data

set, which has 591 images annotated by 22 classes.

Same as the MSRC-v1 data set, we extract six types of

image features for these two data sets as detailed in the last

column of Table 1 following [2].

Experimental setups. We still implement the three ver-

sions of our method and compare them against the MKL

methods used in the above experiments with the same set-

tings. For our method and MKL methods, we conduct

classification for every class individually. For each class,

we consider it as a binary classification task by using one-

vs.-others strategy. For the classification on each individ-

ual data type and the simple mixture of all types of fea-

tures, instead of using SVM as in the previous subsection

for single-label data, we use multi-label k-Nearest Neigh-

bor (Mk-NN) [21] method to classify the images, which is a

broadly used multi-label classification method. In addition,

we also implement two most recent multi-label classifica-

tion methods including multi-label correlated Green’s func-

tion (MCGF) [15] method and Multi-Label Least Square

(MLLS) [6] method. However, these two methods are de-

signed for data with single type of features, therefore we use

the concatenation of all types of features as their input. We

implement the two multi-label classification methods using

the codes published by the authors.

The conventional classification performance metrics in

statistical learning, precision and F1 score, are used to eval-

uate the compared methods. For every class, the precision

and F1 score are computed following the standard definition

for a binary classification problem. To address the multi-

label scenario, following [10], macro average and micro av-

erage of precision and F1 score are computed to assess the

overall performance across multiple labels.

Experimental results. The classification results by stan-

dard 5-fold cross-validation on TRECVID 2005 data set

6http://www-nlpir.nist.gov/projects/trecvid
7http://research.microsoft.com/en-us/projects/objectclassrecognition/

(a) Face, meeting, per-

son, studio.

(b) Crowd, face, per-

son.

(c) Bus, car, person.

(d) Outdoor, face, per-

son, vegetation.

(e) Building, crowd,

person.

(f) Outdoor, person,

Sports, vegetation.

Figure 1. Sample images from TRECVID 2005 data set, whose

labels can only be correctly and completely predicted by the pro-

posed method, not other compared methods. The bolded and un-

derlined labels can only be correctly predict by our method.

and MSRC-v2 data set are reported in Table 3. From the

results, we can see that our method still performs the best

on the both data sets. Besides, MKL methods using multi-

ple types of features are generally better than the methods

using single type of features. Although Mk-NN, MCGF

and MLLS methods are designed for multi-label data, they

can only work with one type of features. When using the

feature concatenation as input, they assume all types of fea-

tures as homogenous with no distinction, which, however,

is not true in both our experiments as well as most real

world applications. Although our method and MKL meth-

ods do not purposely address the multi-label settings, we

still achieve better performance due to properly making use

of the available information from various types of features.

By further checking the detailed labeling results, we notice

that many images can only be correctly annotated by our

method, some of which are shown in Figure 1. The bolded

and underlined labels can only be correctly predict by our

method, but not the other compared methods. All these ob-

servations, again, confirm the effectiveness of the proposed

approach in feature integration for multi-label image classi-

fication tasks.

4. Conclusions
We proposed a novel Sparse Multimodal Learning

method to integrate different types of visual features for

scene and object classifications. Instead of learning one pa-

rameter for all features from one modality as in multiple

kernel learning, our method learned the parameters for each

feature on different classes via the joint structured sparsity

regularizations. Our new combined convex regularizations

consider the importance of both feature modality and indi-

vidual feature. The natural property of sparse regulariza-

tion automatically identifies the important visual features

for different visual recognition tasks. We derived an effi-
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Table 3. Multi-label classification performances (mean ± std) of the compared methods.

Data set TRECVID 2005 data set MSRC-v2 data set

Methods
Macro average Micro average Macro average Micro average

Precision F1 Precision F1 Precision F1 Precision F1

Mk-NN (Color moment) 0.415± 0.021 0.385± 0.018 0.408± 0.019 0.419± 0.023 0.391± 0.016 0.372± 0.017 0.380± 0.019 0.416± 0.021
Mk-NN (DoG-SIFT) 0.421± 0.022 0.392± 0.017 0.415± 0.020 0.429± 0.025 0.396± 0.018 0.375± 0.017 0.390± 0.016 0.420± 0.020
Mk-NN (LBP) 0.406± 0.016 0.379± 0.018 0.396± 0.020 0.409± 0.023 0.386± 0.019 0.366± 0.016 0.374± 0.017 0.408± 0.020
Mk-NN (HOG) 0.418± 0.021 0.389± 0.019 0.411± 0.022 0.425± 0.024 0.394± 0.019 0.374± 0.017 0.385± 0.020 0.417± 0.021
Mk-NN (GIST) 0.411± 0.022 0.383± 0.018 0.402± 0.020 0.418± 0.023 0.390± 0.018 0.368± 0.016 0.378± 0.021 0.413± 0.022
Mk-NN (CENTRIST) 0.425± 0.017 0.394± 0.019 0.419± 0.021 0.433± 0.026 0.399± 0.020 0.378± 0.017 0.393± 0.022 0.424± 0.024
Mk-NN (all by concatenation) 0.427± 0.024 0.398± 0.020 0.421± 0.023 0.437± 0.025 0.401± 0.019 0.383± 0.019 0.400± 0.020 0.428± 0.023
MCGF (all by concatenation) 0.431± 0.018 0.401± 0.019 0.422± 0.021 0.442± 0.024 0.404± 0.020 0.385± 0.017 0.405± 0.021 0.430± 0.022
MLLS (all by concatenation) 0.434± 0.025 0.405± 0.024 0.427± 0.026 0.446± 0.027 0.409± 0.018 0.390± 0.019 0.408± 0.022 0.434± 0.025

SVM �∞ MKL method 0.477± 0.026 0.429± 0.024 0.463± 0.025 0.486± 0.028 0.420± 0.021 0.395± 0.019 0.416± 0.017 0.443± 0.022
SVM �1 MKL method 0.470± 0.023 0.427± 0.020 0.458± 0.021 0.479± 0.025 0.415± 0.018 0.392± 0.016 0.410± 0.020 0.441± 0.023
SVM �2 MKL method 0.461± 0.020 0.412± 0.019 0.445± 0.018 0.463± 0.021 0.404± 0.017 0.381± 0.016 0.400± 0.019 0.429± 0.021
LSSVM �∞ MKL method 0.452± 0.022 0.404± 0.017 0.438± 0.018 0.458± 0.020 0.400± 0.018 0.374± 0.015 0.399± 0.020 0.426± 0.022
LSSVM �1 MKL method 0.466± 0.022 0.423± 0.020 0.451± 0.025 0.473± 0.027 0.412± 0.019 0.388± 0.018 0.408± 0.021 0.436± 0.024
LSSVM �2 MKL method 0.463± 0.019 0.417± 0.016 0.448± 0.019 0.469± 0.023 0.406± 0.018 0.384± 0.019 0.406± 0.021 0.433± 0.025
GP method 0.460± 0.019 0.414± 0.020 0.442± 0.021 0.466± 0.220 0.403± 0.020 0.389± 0.019 0.409± 0.022 0.437± 0.021
LPboost-β 0.471± 0.017 0.420± 0.019 0.459± 0.016 0.480± 0.219 0.428± 0.016 0.402± 0.015 0.412± 0.016 0.442± 0.015
LPboost-B 0.469± 0.020 0.417± 0.018 0.456± 0.020 0.479± 0.016 0.427± 0.018 0.400± 0.016 0.410± 0.018 0.440± 0.019

Our method (G1-norm only) 0.472± 0.007 0.423± 0.016 0.462± 0.011 0.481± 0.014 0.431± 0.011 0.402± 0.012 0.415± 0.012 0.445± 0.009
Our method (�2,1-norm only) 0.478± 0.010 0.421± 0.012 0.467± 0.018 0.484± 0.012 0.429± 0.012 0.405± 0.014 0.413± 0.014 0.443± 0.010
Our method 0.509± 0.013 0.461± 0.019 0.503± 0.015 0.511± 0.016 0.451± 0.022 0.420± 0.023 0.439± 0.025 0.468± 0.026

cient optimization algorithm to solve our non-smooth ob-

jective and provided a rigorous proof on its global conver-

gence. Extensive experiments have been performed on both

single-label and multi-label image categorization tasks, our

approach outperforms other related methods in all bench-

mark data sets.
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