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ABSTRACT

Protein interactions are central to all the biological processes and structural scaffolds in
living organisms, because they orchestrate a number of cellular processes such as metabolic
pathways and immunological recognition. Several high-throughput methods, for example,
yeast two-hybrid system and mass spectrometry method, can help determine protein in-
teractions, which, however, suffer from high false-positive rates. Moreover, many protein
interactions predicted by one method are not supported by another. Therefore, computa-
tional methods are necessary and crucial to complete the interactome expeditiously. In this
work, we formulate the problem of predicting protein interactions from a new mathematical
perspective—sparse matrix completion, and propose a novel nonnegative matrix factor-
ization (NMF)-based matrix completion approach to predict new protein interactions from
existing protein interaction networks. Through using manifold regularization, we further
develop our method to integrate different biological data sources, such as protein sequences,
gene expressions, protein structure information, etc. Extensive experimental results on four
species, Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, and Cae-
norhabditis elegans, have shown that our new methods outperform related state-of-the-art
protein interaction prediction methods.

Key words: algorithms, biochemical networks, gene clusters, gene expression, learning, machine

learning, mass spectroscopy.

1. INTRODUCTION

Proteins play an essential role in nearly all cellular functions, such as promoting biochemical

reactions and composing cellular structures. The multiplicity of functions that proteins execute in most

cellular processes and biochemical events is attributed to their interactions with other proteins. As a result, it

is critical to understand protein–protein interactions (PPIs) in both scientific research and practical appli-

cations such as new drug development. A variety of techniques are now available to experimental biologists

for discovering protein–protein interactions, such as yeast two-hybrid systems (Ito et al., 2000), mass

spectrometry (Ho et al., 2002), and many others as surveyed in Shoemaker and Panchenko (2007a). Although
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these high-throughput experimental methods have accumulated a large amount of data, interactomes of many

organisms are far from complete (Shoemaker and Panchenko, 2007a). The low interaction coverage, along

with the experimental biases toward certain protein types and cellular localizations reported by most ex-

perimental techniques, call for the development of computational methods that are able to predict more

reliable putative PPI for further experimental screening (Shoemaker and Panchenko, 2007b).

Computational methods for predicting protein interaction partners in early ages use genomic or protein

context to infer functional associations (Shoemaker and Panchenko, 2007b). It is assumed in gene neighbor

and gene cluster methods (Bowers et al., 2004b; Ermolaeva et al., 2001; Moreno-Hagelsieb and Collado-

Vides, 2002; Strong et al., 2003; Salgado et al., 2000) that genes with closely related functions that encode

potentially interacting proteins are often transcribed as a single unit—an operon. The phylogenetic profile

methods (Bowers et al., 2004a, 2005; Pagel et al., 2004; Barker and Pagel, 2005) are based on the

hypothesis that functionally linked and potentially interacting nonhomologous proteins coevolve and have

orthologs in the same subset of fully sequenced organisms. The Rosetta Stone approaches (Marcotte et al.,

1999; Enright et al., 1999; Marcotte and Marcotte, 2002; Yanai et al., 2001) infers protein interactions from

protein sequences in different genomes. Sequence-based coevolution methods (Goh et al., 2000; Jothi et al.,

2006; Ramani and Marcotte, 2003) take the perspective that interacting proteins very often coevolve so that

changes in one protein leading to the loss of function or interaction should be compensated by the

correlated changes in another protein. More in silico methods to predict protein–protein interactions are

surveyed in Shoemaker and Panchenko (2007b).

Recently, machine-learning techniques, such as Bayesian networks ( Jansen et al., 2003), decision trees

(Zhang et al., 2004; Chen and Liu, 2005), random forest (Qi et al., 2005; Chen and Jeong, 2009), and support

vector machines (SVM) with different kernels (Martin et al., 2005; Ben-Hur and Noble, 2005; Shen et al.,

2007; Martial et al., 2010), have been successfully applied to predict PPIs. These methods used various data

sources to train a classifier to distinguish positive examples of truly interacting protein pairs from the negative

examples of noninteracting pairs. However, all these methods suffer from a fundamental difficulty—how to

choose the negative samples. Compared to the obvious choice of positive samples from truly interacting

protein pairs, negative samples are typically hard to be chosen. First, noninteracting protein pairs refer to

those currently without experimental or computational evidence to support a physical interaction or func-

tional association. In reality, however, such protein pairs could interact. Second, the number of noninteracting

protein pairs is much larger than the number of the interacting ones, therefore, unbalanced training data often

cause skewed prediction models that lead to unsatisfactory prediction results. In most existing classification-

based methods, heuristic ways have been employed to tackle these problems.

With the above recognitions, instead of considering PPI prediction as a classification problem, we

approach it from a different perspective using matrix completion, which is an important mathematical topic

to address the problem to recover a matrix from what appears to be incomplete or even corrupted (Candès

and Plan, 2009). An illustrative example to predict missing PPIs using matrix completion is given in Figure 1.

Given a protein interaction network, a graph can be naturally constructed as shown in the top left panel of

Figure 1, with vertices representing proteins and edges representing known PPIs. The adjacency matrix of

the resulted graph is shown in the bottom left panel of Figure 1, where ‘‘1’’ indicates a known PPI and ‘‘?’’

indicates that there currently exists no experimental evidence to support a physical interaction between the

corresponding protein pair. Our task is to identify putative interacting protein pairs from those marked as

‘‘?’’. Using a matrix completion algorithm, the unknown entries of the matrix is filled as in the bottom right

panel of Figure 1, where the value filled for an unknown entry indicates how likely it should be recovered.

FIG. 1. Prediction of putative protein–

protein interactions (PPIs) can be performed

as a process of matrix completion. Top left:

Original PPI graph. Bottom left: Adjacency

matrix of the original PPI graph, where ‘‘1’’

indicates a known PPI and ‘‘?’’ indicates the

protein pair has no experimental support to

have a physical link. Bottom right: A process

of matrix completion. Top right: Predict

missing PPIs by taking the entries with top 3

ranking scores in the filled matrix.
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As a result, a list of ranking scores are produced for the noninteracting protein pairs, and prediction can be

performed by picking up the top-ranking ones as putative PPIs. As shown in the top right panel of Figure 1,

the top three ranked unknown entries are predicted as putative PPIs, which are marked as blue dash lines

and correspond to the underlined entries in the filled matrix in the bottom right panel of Figure 1.

Obviously, matrix completion only uses truly interacting protein pairs without requiring negative training

samples, thus the difficulty in existing classification-based PPI prediction methods is circumvented.

Another important property of protein interaction networks makes matrix completion of particular use in

predicting PPIs. Recent studies (Valdar and Thornton, 2001; Teichmann, 2002; Nooren and Thornton, 2003;

Aloy et al., 2003; Littler and Hubbard, 2005; Panchenko et al., 2005; Dai and Prasad, 2010) have confirmed that,

as opposed to the huge number of protein interactions, the number of interaction types or modes is limited and

rather small, (i.e., the adjacency matrices of PPI graphs by nature are low-rank matrices). It is also proved in

mathematics (Candès and Recht, 2009) that if the unknown matrix is known to have low rank or approximately

low rank, accurate and even exact matrix recovery is possible. Therefore, using matrix completion methods,

putative protein interactions can be inferred from incomplete, or even noisy, input PPI graphs.

In this article, we propose a novel nonnegative matrix tri-factorization (NMTF)-based (Lee and Seung,

1999; Ding et al., 2006b) matrix completion approach to predict candidate protein–protein interactions.

NMTF focuses on the analysis of data matrices whose elements are nonnegative, such as the adjacency

matrix of a PPI graph, and decomposes the input matrix into three nonnegative factor matrices that

approximate the input matrix by a low-rank nonnegative representation (Ding et al., 2005, 2006a), which,

due to its mathematical elegance, has been widely studied (Wang et al., 2011d) and applied to solve a

variety of real-world problems (Wang et al., 2011b, 2011c). We first employ NMTF approach to predict

putative protein interactions, which only makes use of the PPI network data. After that, we extend the

standard NMTF framework by adding manifold regularization (Gu and Zhou, 2009), such that additional

biological data, for example, protein sequences data, protein structures information, and gene expressions,

can be incorporated to achieve enhanced PPI prediction performance. Our extension for manifold reg-

ularization is different from existing works (Cai et al., 2008; Gu and Zhou, 2009) where we emphasize the

orthogonality on the factor matrices, which avoids degenerate solutions and makes our method more robust

to parameter selection. Extensive empirical evaluations on four different genomic species have shown

encouraging performance, which demonstrate the effectiveness of the proposed methods.

2. METHODS

First we briefly formalize the problem of PPI prediction. Given a PPI network, we may construct a graph

G = (V, U, X), with V corresponding to n = jVj proteins and U 4 V · V corresponding to known PPIs.

X 2 f0‚ 1gn · n
is the adjacency matrix, such that Xij = 1 if (i‚ j) 2 O (i.e., there exists a PPI between protein i

and protein j), and Xij = 0 otherwise. Our task is to identify a subset of noninteracting protein pairs M 4 (V ·
V)yU, which tend to interact and can be served as potential targets for further experimental screening.

Throughout this article, we denote matrices as boldface, uppercase characters. Given a matrix M, its

Frobenius norm and trace are denoted as kMk and tr (M) respectively. For convenience, given a index set

M of a matrix X, we define XM as following:

(XM)ij = Xij‚ 8 (i‚ j) 2 M‚

0 otherwise:

�
(1)

2.1. Predict new protein interactions via PPI networks

Objective to predict PPIs We first predict protein interactions only using PPI network data. Considering

the protein interaction prediction as a matrix completion problem, where the input PPI adjacency matrix X

contains missing entries (pairs of proteins whose interactions are yet to be determined), we wish to predict

Y, which has full entries (i.e., every element of Y is filled with computed values). Y completes X in the

sense that YU = XU, or more explicitly, Yij = Xij, 8(i‚ j) 2 O, where U denotes the set of edges where the

input adjacency matrix X has known values (the set of interacting edges). Mathematically, the PPI pre-

diction problem can be solved as the following optimization problem:

min
Y

J1 = jjX - Yjj2O =
X

(i‚ j)2O
(X - Y)2

ij: (2)
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Due to the low-rank nature of the adjacency matrix as discussed earlier, the completed matrix Y can be

factorized and written as Y = HSHT, where H 2 Rn · k
+ and S 2 Rk · k

+ are the factor matrices with non-

negative elements. As a result, Y = HSHT can be seen as a low-rank representation of the input matrix X

with rank of k / n. Thus, we can rewrite Equation (2) as follows:

min
Hq0‚ Sq0

J2 = jjX - HSHT jj2O: (3)

Note that, although there exist other low-rank matrix approximation methods, for example, singular

value decomposition (SVD), using NMTF as in Equation (3) to constrain the factor matrices H and S to

be nonnegative is a natural choice because all the entries of the input PPI adjacency matrix X are

positive by definition. Moreover, because of the clustering interpretation of NMTF (Ding et al., 2005,

2006b), other biological data sources can be easily incorporated via manifold regularization as intro-

duced later.

The solution algorithm Different from standard NMTF-based objectives (as in Lee and Seung, 1999;

Ding et al., 2005, 2006b; Wang et al., 2011a), which are defined over the whole input nonnegative matrix,

the objective in Equation (3) for PPI prediction is defined over a subset of the entries that correspond to

known PPIs. Therefore, the solution algorithms to standard NMTF cannot be directly applied to solve

Equation (3). To this end, we present an iterative algorithm in Algorithm 1 to solve Equation (3).

The main step of Algorithm 1 is step 4, which solves a symmetric NMF problem (Wang et al., 2011a).

Following our earlier publication in Wang et al. (2011a), Equation (5) can be solved by an iterative

algorithm with the following updating rules:

Hjk)Hjk

ðZHSÞjk
(HSHT HS)jk

" #1=4

‚ Sik)Sik

(HT ZH)ik

(HT HSHT H)ik

‚ (4)

where the superscripts are removed for notation brevity. The correctness and convergence of the updating

rules in Equation (4) can be rigorously proved as detailed in Wang et al. (2011a). Apparently, Algorithm 1

converts the difficult problem to solve Equation (3) as a series of standard NMTF problems, for which

existing algorithms, such as the updating rules in Equation (4), can be used.

Solving Equation (3) by Algorithm 1 for matrix completion, our NMTF approach to predict PPIs is proposed.

The convergence of the solution algorithm Now we prove the following theorem that guarantees the

convergence of Algorithm 1.

Algorithm 1: Algorithm to solve Eq. (3).

Input: Input PPI adjacency matrix X;

Index set of known PPIs U.

begin

1. t = 0;

2. Initialize Z = XU;

while not converge do

3. t = t + 1;

4. Solve

arg min
Hq0 Sq0

jjZ(t - 1) - H(t)S(t)(H(t))T jj2 (5)

to obtain H(t) and S(t);

5. Compute Y(t) = H(t)S(t) (H(t))T;

6. Compute Z(t) = XO + Y
(t)
M ;

end

end

Output: Output matrix with filled missing entries Y.
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Theorem 1. Algorithm 1 monotonically decreases the objective value of J1 in Equation (2) in each

iteration.

Proof. First, by definition we have Y(t) = Y
(t)
O + Y

(t)
M ‚ thus

jjX - Y(t)jj2O = jj(XO + Y
(t)
M ) - Y(t)jj2: (6)

Then because Algorithm 1 can be summarized as computing

min
Y(t + 1)
jj(XO + Y

(t)
M ) - Y(t + 1)jj2‚ t = 0‚ 1‚ . . . ‚ Y

(0)
M = 0‚ (7)

we can derive

jj(X + Y
(t)
M ) - Y(t)jj2qjj(X + Y

(t)
M ) - Y(t + 1)jj2: (8)

Again, by definition we have Y(t + 1) = Y
(t + 1)
O + Y

(t + 1)
M , thus

jj(X + Y
(t)
M ) - Y(t + 1)jj2 = jj(X - Y(t + 1))O + (Y(t) - Y(t + 1))Mjj

2 (9)

= jjX - Y(t + 1)jj2O + jjY(t) - Y(t + 1)jj2MqjjX - Y(t + 1)jj2O
Combining Equations (6), (8), and (9), we obtain

jjX - Y(t)jj2OqjjX - Y(t + 1)jj2O for t = 0‚ 1‚ 2‚ 3‚ . . . ‚ (10)

which proves the theorem. -

As in Equation (10), the approximation errors, that is, the objective value J1 in Equation (2), goes down

monotonically but remains bigger than zero, i.e., jjX - Y(0)jj2OqjjX - Y(1)jj2OqjjX - Y(2)jj2Oq � � �q0,

therefore Theorem 1 guarantees the convergence of the algorithm.

2.2. Predict new protein interactions from multimodal biological data

In the last subsection, we introduced how to infer putative protein interactions using only the PPI

network data, while in practice we may have other biological data as well, such as protein sequence data

(Martin et al., 2005; Shen et al., 2007; Martial et al., 2010), 3D protein structures (Ben-Hur and Noble,

2005; Chen and Liu, 2005; Qiu et al., 2007), and so on. To exploit the useful information contained in the

biological data from other sources, in this subsection we further develop the proposed NMTF-based matrix

completion approach.

An important reason for the popularity of NMTF in statistical learning lies in its close connection to k-

means clustering (Ding et al., 2005, 2006b). Specifically, given a symmetric nonnegative input matrix W,

the factor matrix H can be seen as the clustering indications of the vertices (Luo et al., 2009). Therefore, if

we have biological data other than PPI networks appearing in form of pairwise similarity, we can incor-

porate them through manifold regularization (Chung, 1997; Shi and Malik, 2000). Specifically, let

W(k)(0pkpK) be a set of pairwise similarities constructed from different biological data, an integrated

similarity among proteins can be constructed as W =
P

k gkW(k) (gkq0‚
P

k gk = 1) where gk are para-

meters to balance the data from different sources. We further develop the objective in Equation (3) as

follows:

min
Hq0‚ Sq0

J4 = jjX - HSHT jj2O + 2ktr(HT (D - W)H)‚ s:t: HT DH = I‚ (11)

where D is a diagonal matrix whose diagonal entries Dii =
P

j Wij are the degree of the corresponding

data points on W, and l is a parameter to balance the relative importance of the regularization term,

which is empirically selected as l = 0.01 in all our experimental evaluations. Because H can be seen as

the ‘‘soft’’ clustering labels (Ding et al., 2005), the second term in Equation (11) enforces the

smoothness over the variation of the clustering labels with respect to the underlying manifold

described by W (Cai et al., 2008; Gu and Zhou, 2009), by which additional biological data sources are

incorporated.
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Equation (11) takes a similar form to Equation (3), which, again, is not a standard NMTF problem. We

use Algorithm 1 to solve it by replacing step 4 to minimize the following objective:

J4 = jjZ - HSHT jj2 + 2ktr(HT (D - W)H)‚ s:t: Hq0‚ Sq0‚ HT DH = I‚ (12)

which can be solved using the following updating rules:

Hik)Hik

(ZHS + kWH)ik

(HSHT HS + DHL)ik

� �1
4

‚ Sik)Sik

(HT ZH)ik

(HT HSHT H)ik

� �1
2

‚ (13)

where L is the Lagrangian multiplier for the constraint HTDH = I, and its value is given by L =
HT XHS - HTHSHT HS + kHTWH. The rigorous proof of the correctness and the convergence of the

iteration procedures in Equation (13) can be found in our earlier publication in Wang et al. (2011e).

Note that, the objective in Equation (12) is different from the objectives of many existing related works

(Cai et al., 2008; Gu and Zhou, 2009) using NMF in that the orthogonality HTDH = I is enforced. This is

important because the second term of Equation (12) can be written as tr(HT (D - W)H) =PK
k = 1 hT

k (D - W)hk. Without the orthogonality constraint, different columns become independent of each

other, thereby reaching the same minimum with same solution, that is, h�1 = � � � = h�k . When k is not small,

degenerate solution will be obtained and the approximation of Z by HSHT is degraded. We refer interested

readers to Wang et al. (2011e) for more detailed discussions on the importance and effectiveness of

enforcing orthogonality constraints in manifold regularized NMTF.

Solving Equation (11) for matrix completion, our regularized non-negative matrix tri-factorization (R-

NMTF) approach for PPI prediction is proposed, which is able to utilize both PPI network data as well as

other biological data.

3. MATERIALS AND DATA SOURCES

Protein interaction networks We construct PPI graphs using the protein interaction networks compiled

by BioGRID database (Stark et al., 2006). We evaluate our methods on the four species as follows:

Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, and Caenorhabditis elegans. For each

species, an undirected graph is constructed, with vertices representing proteins and edges representing

observed physical interactions. For each graph, we only consider the largest connected component of the

physical interaction map from BioGRID database of version 2.0.56. The details of the four PPI graphs are

listed in Table 1, where ‘‘coverage’’ computes the percentage of known PPIs against the total number of

protein pairs (n · (n - 1)/2).

Protein sequence data We download protein sequence data from GenBank (Benson et al., 2006) and

compute the sequence based similarity using the mismatch kernel (Leslie et al., 2003). A protein sequence

si is first mapped to a feature vector Fk‚m(si) = f/b(a)gb2Ak , where A is the alphabet of 20 amino acids. The

neighborhood N k‚m(a) of a k-mer a is the set of k-mers that differs in at most m positions. The feature

vector encodes all the k-mers in the neighborhood for /b(a) = 1 if a 2 N k‚m(b), and 0 otherwise. Then the

mismatch kernel, thereby the induced pairwise similarity between two protein sequences si and sj, is

computed as W
(1)
ij =K(si‚ sj) = ÆFk‚m(si)‚Fk‚m(sj)æ. In our empirical studies, we set k = 6 and m = 1, which is

the same as in Martial et al. (2010). In our empirical studies, protein sequence data are used as the addition

biological data source, that is, W = W(1).

Protein annotation data We use the functional annotations from Gene Ontology (GO) Consortium

(Ashburner et al., 2000), which is a set of structured vocabularies organized in a rooted directed acyclic

graph (DAG), describing attributes of gene products (proteins or RNA) in three categories of ‘‘cellular

component,’’ ‘‘molecular function,’’ and ‘‘biological process.’’

Table 1. PPI Graphs of Four Species Constructed Using BioGRID Database of Version 2.0.56

S. cerevisiae D. melanogaster H. sapiens C. elegans

Proteins 5056 7294 8255 3353

Edges (number/coverage) 9439/0.738% 24960/0.094% 25929/0.076% 6449/0.114%
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4. EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1. Improved prediction capability in cross-validation

We first evaluate the proposed methods and compare their prediction capabilities against three most

recent PPI prediction methods.

(1) Tensor product pairwise kernel (TPPK) method (Ben-Hur and Noble, 2005): This method builds a

kernel for pairwise objects. In order for a fair comparison, protein sequence and protein interaction

network topology are used for kernel construction. PPI prediction is then carried out by the ranking

scores for noninteracting protein pairs yielded by an SVM on the resulted score.

(2) Metric learning pairwise kernel (MLPK) method (Qiu et al., 2007): This method represents a pair of

objects as the difference between its members, such that the resulted kernel is invariant with respect

to the order of the proteins. Again, SVM is used to compute the ranking score for putative PPIs.

(3) Nearest neighbor (NN) (Martial et al., 2010) method: NN is the simplest classification method in

machine learning. In Martial et al. (2010), a ranking score for each noninteracting protein pair is

computed as

fNN (xi) =
X

xj2(N k(xi)\E)

d(xi‚ xj) -
X

xj2(N k(xi)\((V · V)yE))

d(xi‚ xj)‚ (14)

where N k(xi) is the set of k-nearest neighbors of xi, and d ($,$) is distance function built from a kernel by

d(xi‚ xj) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K(xi‚ xi) - 2K(xi‚ xj) +K(xj‚ xj)

p
. In our evaluations, we use the mismatch kernel for protein

sequence data.

Experimental procedures For each method, we perform 20-fold cross-validation as follows. For each

trial, we remove 5% known edges (PPIs) from the input graph and try to recover them using the remaining

graph, which is repeated by 10 times. The average results over the 10 trials on every species are reported in

Figure 2. During each trial, an internal five-fold cross validation is performed for parameter selection. For

our NMTF and R-NMTF methods, the parameter is the rank k of the factor matrices H and S. For TPPK and

MLPK methods, we use the Gaussian kernel, therefore the parameters are the two regularization

FIG. 2. Precision-recall curves by 20-fold cross-validation on four species by the compared PPI prediction methods.

NMFT, nonnegative matrix tri-factorization; R-NMTF, regularized nonnegative matrix tri-factorization; TPPK, tensor

product pairwise kernel method; MLPK, metric learning pairwise kernel method; NN, nearest neighbor.
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parameters. For NN method, we select the k of NN from {1, 2, 3, 5, 10, 15}, which is the same as in Martial

et al. (2010). We fine-tune the parameters for best prediction precision for all the compared methods.

Results Because all compared methods produce a list of ranking scores for noninteracting protein pairs,

we employ precision-recall curves to measure the prediction performance. We compute the precisions and

recalls when picking up a range of top k noninteracting protein pairs as predictions and average them over

the 10 trials. The resulted precision-recall curves of four species are reported in Figure 2. From the results,

we can see that both proposed methods, NMTF and R-NMTF, consistently outperform comparable

methods, sometimes very significantly. In addition, the prediction performances of R-NMTF method are

always better than those of NMTF method, which is consistent with our previous theoretical analysis in that

multimodal biological data, i.e., protein interaction network plus protein sequence data, offer enhanced

prediction performance. We also observe that the TPPK method achieves similar performances to the

proposed NMTF method for D. melanogaster and C. elegans species. However, our NMTF method uses

only protein interaction network data, while TPPK method exploits both network data and sequence data.

A more careful analysis on the prediction results shows that the noninteracting protein pairs (including

the noninteracting protein paris in the original PPI graphs and those removed due to cross-validation) with

high ranking scores identified by the proposed methods typically exhibit high similarities in their functional

roles. In Table 2, we list the predicted protein pairs with top 10 highest ranking scores by R-NMTF method

on S. cerevisiae species, in which the biological functions of all protein pairs are very similar to each other.

For example, ‘‘PHO91’’ works as ‘‘Low-affinity phosphate transporter of the vacuolar membrane,’’ which

is also the main functional role of its putative interacting partner ‘‘PHO90.’’ Moreover, both of them have

functionalities of ‘‘transcription independent of Pi and Pho4p activity’’ and ‘‘overexpression results in

vigorous growth.’’ These observations clearly demonstrate that these two proteins are functionally related

and tend to interact with each other, which provides concrete evidence to support that the predicted protein

interactions by the proposed R-NMTF are biologically meaningful.

Note that, in our empirical studies, we only use one additional data source (i.e., protein sequence data) for

the purpose of demonstration. In practice, more biological data, when available, could be incorporated through

a proper kernel construction under the R-NMTF prediction framework to achieve better prediction results.

4.2. Conserved functional similarity of predicted new protein interactions

It is generally believed that interacting protein pairs tend to have similar functional roles. We test this

hypothesis by evaluating the function similarities between our predicted interacting proteins on S. cere-

visiae species. We use the Resnik score (Resnik, 1995) on the GO annotation system to measure the

functional similarities between protein pairs.

Specifically, given a term t in GO, its information content is quantified as - log, where the probability of

the term is taken to be its frequency among annotations to all GO terms. If a term t is annotated to a protein,

it must be annotated with all the ancestors of the term t. Therefore, the higher the term is located in the GO

hierarchy, the less its information content. In the case of GO, a term might have multiple parent terms, so

that a pair of terms might have more than one path of common ancestors. Denoting the set of all common-

ancestor terms of t1 and t2 as A(t1, t2) we define the similarity between two terms, t1 and t2, as sim

(t1‚ t2) = maxa2A (t1‚ t2) - logp(a). Because an individual protein could have multiple functions, we com-

pute the similarity of two proteins, p1 and p2, by matching each function of p1 to its most similar

function of p2, and the average is taken over all such pairs of functions as

sim (p1 ! p2) = avg[
P

s2p1
maxt2p2

sim(s‚ t)]. As this measurement is not symmetric with respect to p1

and p2, the final semantic similarity between the two proteins is defined as sim (p1‚ p2) =
1
2

· [sim (p1 ! p2) + sim (p2 ! p1)].
The average Resnik scores of known interacting protein pairs, noninteracting protein pairs, and predicted

putative interacting protein pairs by the proposed NMTF and R-NMTF methods are reported in Table 3,

from which we have the following observations.

First, the average Resnik score of known interacting protein pairs is higher than that of noninteracting

protein pairs, which is consistent with the aforementioned assumption that the interacting protein pairs have

more similar biological functions than those not interacting.

Second, the average Resnik score of the predicted putative interacting protein pairs by the proposed

NMTF and R-NMTF methods are close to that of known interacting protein pairs. Namely, the proteins in
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Table 2. Comparisons of Biological Functionalities of the Predicted Protein Interactions

LAT1 PDX1

Dihydrolipoamide acetyltransferase component (E2) of

pyruvate dehydrogenase complex, which catalyzes the

oxidative decarboxylation of pyruvate to acetyl-CoA—

Lat1p; protein coding

Dihydrolipoamide dehydrogenase (E3)-binding protein

(E3BP) of the mitochondrial pyruvate dehydrogenase

(PDH) complex, plays a structural role in the complex by

binding and positioning E3 to the dihydrolipoamide

acetyltransferase (E2) core—Pdx1p; protein coding

PHO91 PHO90

Low-affinity phosphate transporter of the vacuolar

membrane; deletion of pho84, pho87, pho89, pho90, and

pho91 causes synthetic lethality; transcription independent

of Pi and Pho4p activity; overexpression results in

vigorous growth—Pho91p; protein coding

Low-affinity phosphate transporter; deletion of pho84,

pho87, pho89, pho90, and pho91 causes synthetic lethality;

transcription independent of Pi and Pho4p activity;

overexpression results in vigorous growth—Pho90p;

protein coding

PHO91 PHO87

Low-affinity phosphate transporter of the vacuolar

membrane; deletion of pho84, pho87, pho89, pho90, and

pho91 causes synthetic lethality; transcription independent

of Pi and Pho4p activity; overexpression results in

vigorous growth—Pho91p; protein coding

Low-affinity inorganic phosphate (Pi) transporter,

involved in activation of PHO pathway; expression is

independent of Pi concentration and Pho4p activity;

contains 12 membrane-spanning segments—Pho87p;

protein coding

PHO87 PHO89

Low-affinity inorganic phosphate (Pi) transporter, involved in

activation of PHO pathway; expression is independent of Pi

concentration and Pho4p activity; contains 12 membrane-

spanning segments—Pho87p; protein coding

Na + /Pi cotransporter, active in early growth phase;

similar to phosphate transporters of Neurospora crassa;

transcription regulated by inorganic phosphate

concentrations and Pho4p—Pho89p; protein coding

COY1 SVP26

Coy1p—Golgi membrane protein with similarity to

mammalian CASP; genetic interactions with GOS1

(encoding a Golgi snare protein) suggest a role in Golgi

function; protein coding

Integral membrane protein of the early Golgi apparatus and

endoplasmic reticulum, involved in COP II vesicle transport;

may also function to promote retention of proteins in the early

Golgi compartment—Svp26p; protein coding

HOM3 HOM2

Aspartate kinase (L-aspartate 4-P-transferase); cytoplasmic

enzyme that catalyzes the first step in the common pathway for

methionine and threonine biosynthesis; expression regulated

by Gcn4p and the general control of amino acid synthesis—

Hom3p; protein coding

Aspartic beta semi-aldehyde dehydrogenase, catalyzes the

second step in the common pathway for methionine and

threonine biosynthesis; expression regulated by Gcn4p and

the general control of amino acid synthesis—Hom2p;

protein coding

REC114 REC102

Protein involved in early stages of meiotic recombination;

possibly involved in the coordination of recombination and

meiotic division; mutations lead to premature initiation of the

first meiotic division—Rec114p; protein coding

Protein involved in early stages of meiotic recombination;

required for chromosome synapsis; forms a complex with

Rec104p and Spo11p necessary during the initiation of

recombination—Rec102p; protein coding

PCF11 REF2

Pcf11p—mRNA 3’ end processing factor, essential

component of cleavage and polyadenylation factor IA (CF

IA), involved in pre-mRNA 3’ end processing and in

transcription termination; binds C-terminal domain of

largest subunit of RNA pol II (Rpo21p); protein coding

RNA-binding protein involved in the cleavage step of

mRNA 3’-end formation prior to polyadenylation, and in

snoRNA maturation; part of holo-CPF subcomplex APT,

which associates with 3’-ends of snoRNA- and mRNA-

encoding genes—Ref2p; protein coding

DIM1 IMP4

Dim1p—Essential 18S rRNA dimethylase

(dimethyladenosine transferase), responsible for conserved

m6(2)Am6(2)A dimethylation in 3’-terminal loop of 18S

rRNA, part of 90S and 40S pre-particles in nucleolus,

involved in pre-ribosomal RNA processing; protein coding

Component of the SSU processome, which is required for

pre-18S rRNA processing; interacts with Mpp10p;

member of a superfamily of proteins that contain a

sigma(70)-like motif and associate with RNAs—Imp4p;

protein coding The BioGRID Database Seperator

FCY22 FCY2

Fcy22p—Putative purine-cytosine permease, very similar to

Fcy2p but cannot substitute for its function; protein coding

Fcy2p—Purine-cytosine permease, mediates purine

(adenine, guanine, and hypoxanthine) and cytosine

accumulation; protein coding The BioGRID Database

Seperator
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the predicted PPIs are highly functionally similar, which confirms the correctness of the proposed methods

from protein function similarity perspective.

Last, but not least, the predicted protein interactions by R-NMTF method have higher semantic score

than those by NMTF method. Therefore, prediction by R-NMTF method using multimodal biological data

sources is more advantageous than that by NMTF method using only one data source.

4.3. Capability to predict new protein interactions

The ultimate goal of computational methods to predict protein interactions is to discover new interacting

protein pairs that can be served as potential targets for experimental screening. Therefore, we predict

protein interactions on S. cerevisiae species by the proposed R-NMTF method on the PPI graph using

BioGRID data of version 2.0.56 (published on August 31, 2009).

We examine the prediction results and find that among the top 200 putative PPIs predicted by our R-

NMTF method, 87 protein pairs are consistent with other evidence (i.e., they are verified by experimental

results and appear in recent published literatures). For example, protein ‘‘BNI1’’ and protein ‘‘CTF3’’ are

not documented as a PPI in BioGRID data of version 2.0.56 but predicted to be interacting by our method.

By a careful document survey, we notice that the experimental supporting document to this protein pair

only appears in early 2010 (Vizeacoumar et al., 2010). This result firmly confirms the effectiveness of our

method in predicting new protein interactions. Other predicted putative protein pairs together with the

PubMed document IDs for their supporting literatures are listed in Appendix Table 5. Most them are also

incorporated in the most recent BioGRID data of version 3.1.69 (published on September 30, 2010). The

high overlaps between our predictions and the results in existing literature give a solid support of the

usefulness of the proposed method.

4.4. Improved protein function prediction using predicted PPI networks

Protein interaction networks are broadly used in various biological applications, whose performances are

inevitably determined by the quality input PPI graphs. Therefore, we assess the quality of predicted PPI

networks in protein function prediction on S. cerevisiae species.

We predict protein functions on the original PPI graph constructed from the BioGRID database, the PPI

graph filled by the top 1000 putative interacting protein pairs predicted by NMTF method, and that by R-

NMTF method. We make predictions using the following three benchmark graph-based protein function

prediction methods:

(1) Majority voting (MV) (Schwikowski et al., 2000) method: This method assigns functions to a

protein via its connecting neighbors in certain ranges.

(2) Iterative majority voting (IMV) (Vazquez et al., 2003) method: This method is the same as the MV

method, but iteratively repeats the function assignment process until certain conditions are satisfied.

Table 4. Performance of Protein Function Prediction by Involved Method on Compared PPI Graphs

MV IMV FF

Original PPI graph 30.12% 30.92% 32.99%

Predicted PPI graph by NMTF method 34.85% 35.21% 36.02%

Original PPI graph by R-NMTF method 35.98% 36.33% 38.19%

PPI, protein–protein interaction; MV, majority voting; IMV, iterative majority voting; FF, function flow.

Table 3. Resnik Scores of Different Protein Pairs

Average – standard deviation

Known interacting protein pairs 7.160 – 1.321

Noninteracting protein pairs 3.481 – 1.129

Predicted putative interacting protein pairs by NMTF method 6.246 – 1.031

Predicted putative interacting protein pairs by R-NMTF method 6.737 – 0.927

NMTF, nonnegative matrix tri-factorization; R-NMTF, regularized nonnegative matrix tri-factorization.
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(3) Function flow (FF) (Nabieva et al., 2005) method: This method formulates the annotation problem as

a minimum multiway-cut problem, where the goal is to assign a unique function to all unannotated

proteins so as to minimize the cost of edges connecting proteins with different assignments.

We implement these methods following the details in the original literatures. Because FF method

produces a ranking list of predicted protein functions, we select a threshold such that the prediction

precision is maximized. Five-fold cross-validation is performed to predict the functions in ‘‘biological

process’’ of GO. The average prediction precision over all test functions and five trials of cross-validation

of the involved methods on different PPI graphs are reported in Table 4.

The results in Table 4 show that the function prediction performance for all three methods are improved

when the predicted PPI graphs are used. Such results experimentally prove that the predicted PPI graphs

have higher quality than the original one, which demonstrates that the filled putative protein interactions by

the proposed methods are largely biologically meaningful. Thus, we can tentatively conclude that the

proposed NMTF and R-NMTF indeed can improve the protein interaction networks. Again, multimodal

biological data sources based R-NMTF method is better than single data source-based NMTF method.

5. CONCLUSIONS

In this article, instead of considering protein–protein interaction as a binary classification problem, as in

many existing works, we formulated it as a matrix completion problem. Taking this different perspective,

the difficulty of selecting negative training samples in classification-based methods is averted. Moreover,

because the number of protein interaction types is small, recovery of missing PPIs from an incomplete

observed protein interaction network can be suitably solved under the framework of matrix completion. We

first proposed to use NMF approach to predict PPIs from protein interaction network data, and then

extended it through manifold regularization to incorporate multimodal biological data sources. We have

conducted extensive empirical studies to evaluate different aspects of the proposed methods on four

genomic species including S. cerevisiae, D. melanogaster, H. sapiens, and C. elegans. Promising results in

the experiments validate our methods, which are consistent with our theoretical analysis.

6. APPENDIX

6.1. Predicted new protein interactions with highest-ranking scores by R-NMTF method

In Table 5, we list a subset (87 out of 200) of the predicted putative protein interactions with highest

ranking scores on the original S. cerevisiae PPI graph by the proposed R-NMTF method. These protein

pairs are already discovered to be interacting in existing literatures. The document ID in PubMed of the

supporting literatures are listed in the third column of Table 5.

Table 5. Predicted PPIs with Highest Ranking Scores by R-NMTF Method

Interacting protein A Interacting protein B PubMed ID of the supporting literature

BNI1 CTF3 20065090

ACS2 RTC1 18676811

BNA4 VHS3 20093466

ALG3 ERG2 19325107

APQ12 NUR1 20093466

AVT5 ELP2 20093466

BOS1 YDR186C 20093466

BMS1 IPT1 20093466

ATP5 PTC1 20093466

ATP5 CHK1 20093466

ARF1 GET2 16269340

AFT1 RPN4 20439772

BCY1 NFT1 20093466

(continued)
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Table 5. (Continued)

Interacting protein A Interacting protein B PubMed ID of the supporting literature

ANP1 VID22 20093466

ANP1 MKK1 20093466

BEM1 UBP14 20093466

BNI1 MXR2 20065090

ATG8 APE2 20093466

ARP8 BUD13 20041197

ARP8 ESC2 20041197

ARO7 CSF1 20093466

ARP8 GSG1 20041197

ALG8 SPF1 19325107

ALP1 ARG1 16941010

ATP14 MDM35 20093466

AFG3 PET8 20093466

BIM1 RAD55 20065090

ARP9 PYC2 20093466

BAT1 SGF29 20093466

BRE2 ESBP6 20093466

ANP1 HXK2 20093466

APC5 RPN10 20093466

ABD1 MET6 20093466

ACT1 RIM101 20093466

ARO2 DTD1 20093466

BRE5 RPS10A 20508643

BUD14 PIG1 19841731

ABD1 PAC1 20093466

BET5 GSG1 19416478

BNI1 YPL066W 20093466

ARF1 IST2 20093466

BRE2 NUP188 20093466

ACH1 CIT1 20093466

AMD1 YJL070C 18719252

ARC18 PTC6 20093466

ATP18 ATP18 16716082

ARL1 MRN1 20093466

BNI4 VAC14 20093466

ARP1 KEM1 20093466

ALG8 APM3 20093466

BIM1 SAC6 20065090

ATP18 AEP2 20093466

BNI1 RTT109 20065090

ARP9 YJR079W 20093466

ALG9 SAP155 20093466

AHA1 SPT3 20093466

BCK1 MTC5 20093466

AAD3 MDM12 20093466

ALG9 SPT4 19325107

AIM22 IMP2 20093466

BRE5 TIF1 20508643

AVO1 GAA1 20101242

ARP8 URE2 20041197

BAT1 BCH1 20093466

BRR2 RAX1 20093466

AIM26 BCK1 14764870

APC5 MUM2 20093466

(continued)
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