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Regression models have been widely studied to investigate the prediction power of neuroimaging
measures as biomarkers for inferring cognitive outcomes in the Alzheimer’s disease study. Most of these
models ignore the interrelated structures either within neuroimaging measures or between cognitive
outcomes, and thus may have limited power to yield optimal solutions. To address this issue, we propose
to use a new sparse multitask learning model called Group-Sparse Multi-task Regression and Feature
Selection (G-SMuRFS) and demonstrate its effectiveness by examining the predictive power of detailed
cortical thickness measures toward 3 types of cognitive scores in a large cohort. G-SMuRFS proposes a
group-level l2,1-norm strategy to group relevant features together in an anatomically meaningful manner
and use this prior knowledge to guide the learning process. This approach also takes into account the
correlation among cognitive outcomes for building a more appropriate predictive model. Compared with
traditional methods, G-SMuRFS not only demonstrates a superior performance but also identifies a small
set of surface markers that are biologically meaningful.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

With the growing prevalence of Alzheimer’s disease (AD)
worldwide, it is of great importance to identify valid biomarkers
which can help with early detection and monitoring of therapeutic
responses. Despite the 2well-known hallmarks of AD, beta-amyloid
plaques and neurofibrillary tangles, various cognitive tests remain
the most common clinical routine for diagnosis. Compared with the
binary disease status, AD-relevant cognitive outcomes may provide
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additional valuable information for studying the underlying disease
mechanisms.

The release of the large-scale imaging and biomarker data of the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort has
provided great opportunities for people to develop advanced
computational methods for better understanding of the underlying
neurodegenerative mechanism in relation to cognitive decline in
AD. For example, regression analysis has become a widely used
approach for the exploration of the relationship between imaging
measures and cognitive outcomes. Using the ADNI data, many
regression models have been used to investigate the relationships
between multimodal imaging measures and cognitive scores
(Wagner et al., 2005; Wan et al., 2012, 2014; Wang et al., 2011).
Most of the existing models have used summary statistics (e.g.,
average intensity) of each region of interest (ROI) as input features.
Although voxel-based image measures or vertex-based surface
measures could provide more detailed morphometric information
than ROI summary statistics, direct application of conventional
regression models to these measures may be inadequate to yield
biologically meaningful results. For example, standard linear or
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Table 1
Thickness measures at surface locations from the following 34 pairs of
bilateral FreeSurfer cortical regions (68 ROIs in total) were analyzed in
this study

ID ROI name

1 Banks of the superior temporal sulcus
2 Caudal anterior cingulate
3 Caudal middle frontal gyri
4 Corpus collosum
5 Cuneus
6 Entorhinal cortex
7 Fusiform gyri
8 Inferior parietal gyri
9 Inferior temporal gyri
10 Isthmus cingulate
11 Lateral occipital gyri
12 Lateral orbitofrontal gyri
13 Lingual gyri
14 Medial orbitofrontal
15 Middle temporal gyri
16 Parahippocampal gyri
17 Paracentral lobule
18 Pars opercularis
19 Pars orbitalis
20 Pars triangularis
21 Pericalcarine gyri
22 Postcentral gyri
23 Posterior cingulate
24 Precentral gyri
25 Precuneus
26 Rostral anterior cingulate
27 Rostral middle frontal gyri
28 Superior frontal gyri
29 Superior parietal gyri
30 Superior temporal gyri
31 Supramarginal gyri
32 Frontal pole
33 Temporal pole
34 Transverse temporal pole

Key: ROIs, regions of interest.
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ridge regression model typically produces nonsparse results that
are not ideal for biomarker discovery. Conventional sparse models
such as Lasso (Tibshirani, 1996) are likely to yield scattered patterns
hard to interpret, because of the lacking of proper handling of the
spatial correlation and prior anatomic knowledge in these models.
To address this issue, we propose to use a new sparse multitask
learning model called Group-Sparse Multi-task Regression and
Feature Selection (G-SMuRFS) (Wang et al., 2012) for identifying
effective surface biomarkers that can predict cognitive outcomes.
We demonstrate its effectiveness by examining the predictive po-
wer of detailed cortical thickness measures toward 3 types of
cognitive scores (Alzheimer’s Disease Assessment Scale [ADAS],
Mini-Mental State Examination [MMSE], and Rey Auditory Verbal
Learning Test [RAVLT]) in the ADNI cohort.

Enormous efforts have been made to evaluate the power of
sparse learning methods in the neuroimaging field, such as iden-
tifying structural (Avants et al., 2010; Batmanghelich et al., 2012;
Sabuncu and Van Leemput, 2012; Wan et al., 2012, 2014; Wang
et al., 2011) or functional (Grosenick et al., 2013; Jenatton et al.,
2012; Michel et al., 2011; Varoquaux et al., 2012) imaging bio-
markers associated with other imaging modality (Avants et al.,
2010), cognitive scores (Jenatton et al., 2012; Varoquaux et al.,
2012; Wan et al., 2012, 2014; Wang et al., 2011), behavior
(Grosenick et al., 2013; Michel et al., 2011), as well as diagnostic
conditions (Batmanghelich et al., 2012; Sabuncu and Van Leemput,
2012). However, using detailed cortical surface measures to predict
cognitive outcomes is an under-explored area. In this study, we
attempt to explore a novel application of G-SMuRFS to the identi-
fication of detailed surface-based cortical biomarkers that are
relevant to cognitive outcomes. G-SMuRFS proposes a group-level
l2,1-norm strategy to achieve 3 goals: (1) group relevant surface
features together in an anatomically meaningful manner (i.e., ROI
information is incorporated) and use this prior knowledge to guide
the learning process (i.e., spatial correlation within each ROI is
addressed); (2) take into account the correlation among cognitive
outcomes for building a more appropriate predictive model (i.e.,
multiple correlated cognitive scores are predicted together); and
(3) optimize the selection of cognition-relevant surface biomarkers
while maintaining high prediction accuracy. The high dimension-
ality of the vertex-based cortical surface data (e.g., 327,684 vertices
in our study) introduces major computational challenges. To
address this issue, we introduce a down-sampling technique to
merge neighboring vertices into small surface patches to reduce the
computational cost while preserving detailed surface information.
Our overarching goal is to examine and validate the predictive
power of these detailed cortical thickness measures toward
cognitive outcomes while considering the group structures defined
by anatomically meaningful ROIs. The results may provide impor-
tant information about potential surrogate biomarkers for early
detection and/or therapeutic trials in AD.

2. Methods

2.1. Neuroimaging and cognition data

All the data used in the preparation of this article were obtained
from the ADNI database (adni.loni.usc.edu) (Weiner et al., 2010).
One goal of ADNI has been to test whether serial magnetic reso-
nance imaging (MRI), positron emission tomography, other bio-
logical markers, and clinical and neuropsychological assessment
can be combined to measure the progression of mild cognitive
impairment (MCI) and early AD. For up-to-date information, we
refer interested readers to www.adni-info.org/.

We downloaded the baseline 1.5 T MRI scans, demographic in-
formation, and baseline diagnosis for all the ADNI-phase 1 (ADNI-1)
participants. We also downloaded 3 types of baseline cognitive
scores: ADAS, MMSE, and RAVLT. For each participant, FreeSurfer
V4, an automatic brain segmentation and cortical parcellation tool,
was applied to automatically label cortical and subcortical tissue
classes (Dale et al., 1999; Fischl et al., 1999) and to extract surface-
based thickness measures. We focused our study on examining the
thickness measures from surface locations labeled with any of the
34 FreeSurfer cortical ROIs (shown in Table 1) in both hemispheres.
The measures from surface locations labeled with “unknown”were
excluded in this study.

Following aprevious imaging genetics study (Shenet al., 2010), in
this work, we concentrated our analyses on the Caucasian subjects
determined by population stratification analysis using the ADNI
genetics data (Saykin et al., 2010). A total of 718 of 745 Caucasian
participants with no missing MRI morphometric and the cognitive
outcome information were included in the study. The 718 partici-
pants were categorized by 3 baseline diagnostic groups: healthy
control (HC, n¼197),MCI (n¼349), andAD (n¼172).Demographics
information of these subjects can be found inTable 2. All the imaging
and cognitive outcome measurements were adjusted for age,
gender, education, and handedness, although intracranial volume
was applied as an extra covariate for imaging measurements.

2.2. Group-sparse multitask regression and feature selection

Throughout this section, we write matrices as boldface upper-
case letters and vectors as boldface lowercase letters. Given a ma-
trixM¼ (mi,j), its i-th row and j-th column are denoted asmi andmj,
respectively. The Frobenius norm and l2,1-norm (also called as l2,1-
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Table 2
Participant characteristics

Category HC MCI AD

Number of subjects 197 349 172
Gender (M/F) 107/90 224/125 94/78
Handedness (R/L) 183/14 316/33 160/12
Baseline age (y, mean � SD) 76.2 � 5.0 75 � 7.3 75.6 � 7.5
Education (y, mean � SD) 16.2 � 2.7 15.7 � 3 14.9 � 3.1

Key: AD, Alzheimer’s disease; F, female; HC, healthy control; L, left; M, male; MCI,
mild cognitive impairment; R, right; SD, standard deviation.

Fig. 1. Illustration of the G-SMuRFS method. Two regularization terms, group l2,1-norm
(kWkG2;1

) and l2,1-norm (kWk2;1), are integrated to group surface vertices by ROIs and to
jointly select prominent vertices across all cognitive scores. Abbreviations: G-SMuRFS,
group-sparse multitask regression and feature selection; ROIs, regions of interest.
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norm) of a matrix are defined as kMkF ¼
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This study is centered on the multitask learning paradigm,
where multimodal imaging measures are used to predict one or
more cognitive outcomes. Let fx1; x2; .; xng4 <d be imaging
measures and fy1; y2; .; yng4<c cognitive outcomes, where n is
the number of samples, d is the number of predictors (feature
dimensionality), and c is the number of response variables (tasks).
Let X ¼ [x1,x2,.,xn] and Y ¼ [y1,y2,.yn].

To investigate the correlation between imaging measures and
cognitive outcomes, linear and ridge regression models are 2
standard methods. Whereas linear regression (least square) may
yield unstable results for correlated predictors, ridge regression
have one more regularization term, the Frobenius norm of trained
weights, to successfully solve the problem and ascertain the nu-
merical stability simultaneously (Equation (1)).

minw

���WTX � Y
���2
F
þ g kWk2F (1)

where, the entry wij of weight matrix W measures the relative
importance of the i-th predictor in predicting the j-th response, and
g > 0 is a tradeoff parameter.

Regression weights brought by Frobenius norm are typically
nonsparse, which makes the results hard to interpret and unsuit-
able for biomarker discovery. To produce sparse solutions, the
following traditional Lasso model (Tibshirani, 1996) can be used:

minw

���WTX � Y
���2
F
þ gkWk1

However, this multitask Lasso model is equivalent to applying
Lasso to each outcome variable independently and ignores the
correlation among the outcome variables. As a result, although
the outcome variables are correlated, the features selected by the
previously mentioned Lasso model could be relevant to some out-
comes (i.e., regression weights s 0) but not to others (i.e., regres-
sion weights ¼ 0).

l2,1-norm (Equation (2), motivated by ridge and Lasso, is pro-
posed as follows.

minw

���WTX � Y
���2
F
þ g kWk2;1 (2)

where kWk2;1 ¼ Pd
i¼1

��wi
��
2 (see also Fig. 1). l2,1-norm is one of

the advanced techniques that addresses both the outcome corre-
lation and sparsity issues, by enforcing an l2-norm across the tasks
and an l1-norm across the features. Although the l2-norm ascertains
the similarity pattern across the tasks, the l1-norm ascertains the
sparsity across the features.

In all the previously mentioned methods, imaging features were
all treated separately, where the underlying brain structures were
not taken into account. Inmany cases, different brain structuresmay
be responsible for different brain functions. Therefore, it would be
much more meaningful to include the structural information in the
regression procedure. G-SMuRFS (Wang et al., 2012), a newly pro-
posed regression model derived from the l2,1-norm, takes into ac-
count the group information in the regression procedure and has
yielded promising results in a previous imaging genetics study
(Wang et al., 2012). In this work, we apply this algorithm to group all
the vertices within each ROI together and incorporate the anatomic
boundary information into the regression procedure. As illustrated
in Fig.1, thismethod can be applied to address this issue bygrouping
cortical vertices using ROI boundary information (i.e., group l2,1-
norm, or G2,1-norm), where cortical measures from the same ROI
tend to be selected together as joint predictors and yield an
anatomically meaningful biomarker discovery result. On the other
hand, the l2,1-norm can help select imaging features that can predict
all or most of the cognitive outcomes. As a result, the learned
regression model and the selected cortical biomarkers should be
more biologically meaningful and more informative.

Mainly motivated by sparse learning, such as Lasso (Tibshirani,
1996) and group Lasso (Yuan and Lin, 2006), the new regulariza-
tion term was applied in G-SMuRFS to consider both the group
sparsity through the G2,1-norm and the individual biomarker
sparsity for joint learning via an l2,1-norm regularization (Puniyani
et al., 2010). In the objective function Equation (3), whereas the
second term couples all the regression coefficients of a group of
features across all the c tasks together, the third term penalizes all c
regression coefficient of each individual feature as whole to select
features across multiple learning tasks.

minw

���WTX � Y
���2
F
þ g1 kWkG2;1

þ g2kWk2;1 (3)

where kWkG2;1
¼ Pk
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is the G2,1-norm, and

kWk2;1 ¼ Pd
i¼1

��wi
��
2 is the l2,1-norm (see also Fig.1). The solution

of the objective function (Equation (3) can be obtained through an
iterative optimization procedure. By setting the derivative with
respect to W to zero, W can be solved as in (Equation (4).

W ¼
�
XXT þ g1D1 þ g2D2

��1
XYT (4)

where D1 is a block diagonal matrix with the k-th diagonal block as
1

2kWkkF
Ik, Ik is an identity matrix with size of mk, mk is the total



Table 3
Cross-validation performance comparison of linear regression, ridge regression, PLS, l2,1-norm, and G-SMuRFS; performance is measured by the root mean squared error
(RMSE) and correlation coefficient (CC) between the actual and predicted scores of the test subjects. The average (avg) and standard deviation (std) of performance measures
across 5 cross-validation trials are shown as “avg � std” for each experiment

ADAS MMSE RAVLT

TOTAL T30 RECOG

Performance comparison using RMSE
G-SMuRFS 0.7663 � 0.0375 0.8325 � 0.0399 0.8490 � 0.0654 0.8776 � 0.0701 0.9167 � 0.0471
l2,1-norm 0.7631 � 0.0346 0.8322 � 0.0411 0.8464 � 0.0697 0.8807 � 0.0657 0.9215 � 0.0440
PLS 0.8844 � 0.0425 0.8999 � 0.0453 0.9246 � 0.0533 0.9515 � 0.0578 0.9706 � 0.0512
Ridge 0.7859 � 0.0327 0.8579 � 0.0332 0.8453 � 0.0697 0.8977 � 0.0553 0.9315 � 0.0430
Linear 1.0524 � 0.0559 1.1342 � 0.0739 1.1726 � 0.0956 1.3042 � 0.0803 1.2775 � 0.1168

Performance comparison using CC
G-SMuRFS 0.6438 � 0.0258 0.5552 � 0.0078 0.5277 � 0.0539 0.4753 � 0.0591 0.3985 � 0.0533
l2,1-norm 0.6468 � 0.0175 0.5548 � 0.0058 0.5301 � 0.0544 0.4692 � 0.0522 0.3889 � 0.0588
Partial least square 0.4608 � 0.0551 0.4339 � 0.0406 0.3782 � 0.0591 0.3037 � 0.0565 0.2390 � 0.0382
Ridge 0.6167 � 0.0171 0.5127 � 0.0272 0.5296 � 0.0540 0.4364 � 0.0416 0.3632 � 0.0681
Linear 0.4902 � 0.0544 0.3779 � 0.0246 0.3685 � 0.1005 0.2958 � 0.1359 0.2533 � 0.0726

Key: G-SMuRFS, group-sparse multitask regression and feature selection; PLS, partial least square; RAVLT, Rey Auditory Verbal Learning Test; RECOG, RAVLT recognition score;
T30, RAVLT 30 minutes delay score; TOTAL, RAVLT total score.
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feature numbers included in group k, D2 is a diagonal matrix with
the i-th diagonal element as 1

2kW ik2
. Detailed optimization procedure

and algorithm can be found in Wang et al. (2012).
Generally, the advantage of this model is 3-fold, namely: (1) it

addresses the highly correlated nature of the cortical verticeswithin
each surface ROI; (2) takes into account the correlation of multiple
scores of the same cognitive function test; and (3) achieves both the
global biomarker sparsity as well as the ROI group sparsity.
3. Experimental results and discussion

3.1. Experimental setting

In this study, we examined all the cortical thickness measures
across 34 pairs of bilateral cortical surface ROIs (68 ROIs in total)
(Table 1) regarding their power for predicting the ADAS, MMSE, and
RAVLT cognitive scores. Our cortical surface data, generated by
FreeSurfer, contains 327,684 vertices per surface. For the efficiency
purpose, we completed a preprocessing step to downsample
327,684 vertex-based thickness measures to 3133 surface-patch-
based measures using the following approach. First, we randomly
selected cortical surface data from 50 HC participants. Second, for
each ROI (say, with m vertices), we performed the k-mean clus-
tering using this preselected HC subset to partition the ROI into
roughly m/100 surface patches, where each patch was formed by a
set of neighboring vertices with similar thickness. As a result, 3133
patches were defined on the cortical surface. Third, excluding 320
patches from the region labeled as “unknown,”we got 2813 patches
from the ROIs shown in Table 1. Finally, we applied this patch
scheme to the entire data set. The cortical thickness measures of all
vertices within one patch were averaged to represent the patch-
level thickness measure. These 2813 patch-level measures were
used as predictors in our regression analysis.

The response variables in the multivariate multiple regression
analysis included the following 5 cognitive scores: ADAS-cog total
score (ADAS), MMSE score (MMSE), RAVLT total score (TOTAL),
RAVLT 30 minutes delay score (T30), and RAVLT recognition score
(RECOG). To provide an unbiased estimate of the prediction per-
formance of each method tested in the experiments, we used a 5-
fold cross-validation, where each fold contained a similar portion of
AD, MCI, and HC participants. We calculated the following 2metrics
to compare the prediction performance across different methods:
(1) root mean square error (RMSE) between the actual and pre-
dicted scores of all the test subjects; and (2) Pearson correlation
coefficient (CC) between the actual and predicted scores of all the
test subjects.

In our experiments, we compared G-SMuRFS with 4 competing
multivariate regression methods: (1) l2,1-norm; (2) partial least
square (PLS); (3) ridge; and (4) linear regression. Parameters for
these models were optimally tuned using a nested cross-validation
strategy on the training data, with search grid in the range of 5 �
10�3 to 5 � 103. For these regression analyses, the input data
included 2813 surface patch-level thickness measures as predictors
and cognitive scores as response variables. We also performed
univariate surface-based analysis using SurfStat (Chung et al., 2010)
to cross check whether univariate and multivariate methods could
yield similar patterns.
3.2. Results and discussion

Prediction performance, measured by RMSE and CC, of the
cortical thickness measurement under 5 different regression
models is shown in Table 3, where the average (avg) and standard
deviation (std) of performance measures across 5 cross-validation
trials are shown as “avg � std” for each experiment. The predic-
tion performances using those features selected by G-SMuRFS and
l2,1-norm are higher (i.e., lower RMSE and higher CC) than those of
linear, ridge, and PLS regression models. In particular, G-SMuRFS
demonstrates clear performance improvement over PLS and linear
regression on predicting all 5 scores and over ridge regression on
predicting MMSE and RAVLT-RECOG. Prediction performances of G-
SMuRFS and l2,1-norm are similar. Fig. 2 shows scatter plots of
actual and predicted (by G-SMuRFS) cognitive scores.

Fig. 3 shows the histogram of regressionweights associatedwith
all the cortical measures for each method, in an example cross-
validation trial, and the cortical maps of these regression weights
are shown in Fig. 4AeE. Note that all the PLS weights are very small,
and thus, a different color scale is used. From these plots, we
observe the following: (1) PLS, ridge, and linear regression models
yielded nonsparse results where most surface measures shared
relatively similar impact on the prediction performance; and (2) G-
SMuRFS and l2,1-norm presented a much better sparsity across all
the cortical measures, where a small portion of the cortical surface
was identified to be relevant to the outcome.

Besides the sparsity at the cortical patch level, we also examined
the group sparsity of all 5 models at the ROI level. In Fig. 5, ROI level
sparsity is demonstrated through the histogram of “high impact”
(i.e., top 50) cortical markers against each of the 34 pairs of bilateral
ROIs for: (1) G-SMuRFS; (2) l2,1-norm; (3) PLS; (4) ridge regression;



Fig. 2. Scatter plots of actual (on y-axis) and predicted (by G-SMuRFS, on x-axis) cognitive scores. Note that the actual cognitive scores are pre-adjusted and thus may have negative
values. The testing samples across 5 cross-validation trials were pulled together to calculate the correlation coefficients (CC) and the p-values. Thus, the CCs shown here are slightly
different from the CCs shown in Table 3 that were calculated separately for each cross-validation trial. Abbreviations: ADAS, Alzheimer’s Disease Assessment Scale; MMSE, Mini-
Mental State Examination; RAVLT, Rey Auditory Verbal Learning Test.

Fig. 3. Histogram of regressionweights of all cortical measures for predicting the RAVLT total score in an example cross-validation trial. Shown from left to right are the results of (A)
G-SMuRFS, (B) l2,1-norm, (C) PLS, (D) ridge regression, and (E) linear regression. The top row shows the complete histograms, and the bottom row shows the zoom in view of the
partial histograms for y ˛ [0, 100]. Abbreviations: G-SMuRFS, group-sparse multitask regression and feature selection; RAVLT, Rey Auditory Verbal Learning Test.
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Fig. 4. Cortical map of regression weights for predicting the RAVLT total score in an example cross-validation trial using 5 different models: (A) G-SMuRFS, (B) l2,1-norm, (C) PLS, (D)
ridge regression, and (E) linear regression. The red color indicates regions where the thickness is positively correlated with the RAVLT total score, and the blue color indicates regions
where the thickness is negatively correlated with the score. Shown in (F) are 34 pairs of color-coded bilateral cortical ROIs. Abbreviations: G-SMuRFS, group-sparse multitask
regression and feature selection; PLS, partial least square; RAVLT, Rey Auditory Verbal Learning Test; ROIs, regions of interest. (For interpretation of the references to color in this
Figure, the reader is referred to the web version of this article.)
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and (5) linear regression, respectively. Each vertical bar here in-
dicates an ROI in the brain. Although the top 50 biomarkers iden-
tified by G-SMuRFS are associated with a small number of ROIs, the
same number of high impact biomarkers identified through l2,1-
norm, ridge regression, and linear regression are scattered across a
large portion of cortical surface regions, making the result hard to
interpret. G-SMuRFS yielded sparse patterns at the ROI level that
have the potential for identifying relevant biomarkers. Although
PLS also yielded sparse patterns, the predictive power of its top 50
markers (RMSE ¼ 1.045, CC ¼ 0.377) is lower than that of
G-SMuRFS’s (RMSE ¼ 0.938, CC ¼ 0.46).

Fig. 6 shows example of G-SMuRFS regressionweights that were
averaged over the 5 cross-validation trials and were then mapped
back onto the cortical surface. Our multitask regression experiment
was performed to identify thickness measures for jointly predicting
ADAS, MMSE, RAVLT TOTAL, RAVLT RECOG, and RAVLT T30 scores.
Theweightmaps for ADAS (Fig. 6A), MMSE (Fig. 6B), TOTAL (Fig. 6C),
RECOG (Fig. 6D), and T30 (not shown) are very similar to one another
except that the ADAS pattern is in the opposition direction.
Thicknessmeasures fromleft and right entorihnal cortex, leftmiddle
temporal gyri, left inferior parietal gyri, right medial orbitofrontal
gyri, and right precunes are positively correlated to the MMSE and
RAVLTscores, and negatively correlated to ADAS. Themeasures from
left fusiform are correlated to ADAS,MMSE, TOTAL, and T30, and the
measures from right middle temporal gyri are correlated to ADAS,
MMSE, and RECOG. These patterns identified by our multivariate G-
SMuRFS regression analysis match well with the weight map pat-
terns computed by the univariate SurfStat analysis shown in Fig. 7.

The ROIs identified in this work are either related to AD or in
accordance with findings in similar prior studies. For example,
entorihnal cortex (part ofmedial temporal cortex) and precuneus are
among the cortical signature of AD studied in (Bakkour et al., 2009;
Dickerson et al., 2009). Wan et al. (2012), (2014) and Wang et al.
(2011) performed similar regression studies for predicting cognitive
outcomes using MRI measures. However, they examined only sum-
mary statistics (volume, thickness, or gray matter density) of both
cortical and subcortical ROIs instead of detailed cortical thickness
measures. The mean thickness of entorihnal cortex was found to be
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Fig. 5. Number of “high impact” (i.e., top 50) cortical markers for predicting the RAVLT total score, in an example cross-validation trial, is plotted against the corresponding ROI (34
ROIs in total). The x-axis shows the ROI IDs (see Table 1 for the corresponding ROI names). The y-axis shows the number of top markers in the left hemisphere ROI (top row) or the
right hemisphere ROI (bottom row). Shown from left to right are the results of (A) G-SMuRFS, (B) l2,1-norm, (C) PLS, (D) ridge regression, and (E) linear regression. The cross-
validation performance using these top 50 markers measured by root mean square error (RMSE) and correlation coefficient (CC) between the actual and predicted RAVLT total
scores of all the test subjects is shown in each panel. Abbreviations: G-SMuRFS, group-sparse multitask regression and feature selection; PLS, partial least square; RAVLT, Rey
Auditory Verbal Learning Test; ROIs, regions of interest.

Fig. 6. Example G-SMuRFS regression weights are color coded and mapped onto the cortical surface. The red color indicates regions where the thickness is positively correlated with
the corresponding cognitive score ((A) ADAS, (B) MMSE, (C) RAVLT-TOTAL, or (D) RAVLT-RECOG), and the blue color indicates regions where the thickness is negatively correlated
with the score. Abbreviations: ADAS, Alzheimer’s Disease Assessment Scale; MMSE, Mini-Mental State Examination; RAVLT, Rey Auditory Verbal Learning Test. (For interpretation of
the references to color in this Figure, the reader is referred to the web version of this article.)
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Fig. 7. Example SurfStat t-statistic map: t-statistics for ADAS (A), MMSE (B), RAVLT Total (C) and RAVLT Recog (D) are color coded and mapped onto the cortical surface. Abbre-
viations: ADAS, Alzheimer’s Disease Assessment Scale; MMSE, Mini-Mental State Examination; RAVLT, Rey Auditory Verbal Learning Test.
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correlatedwithADAS (Wanet al., 2014),MMSE (Wanet al., 2014), and
RAVLT (Wanet al., 2014;Wanget al., 2011) scores. Themean thickness
of inferior parietal gyri was found to be correlated with ADAS (Wan
et al., 2014) and RAVLT (Wang et al., 2011) scores. The mean thick-
ness of middle temporal gyri was found to be correlated with RAVLT
scores (Wan et al., 2012). Partly because of the detailed cortical
analysis, this work identified some additional ROIs associated with
the studied cognitive scores. Replication of these results in indepen-
dent samples will remain of critical importance for confirmation.

The computational cost of G-SMuRFS was similar to that of the
l2,1-norm model but more expensive than linear, ridge, and PLS
regressions. We implemented all the regression models using
Matlab. For 1 cross-validation trial in our experiments, G-SMuRFS
and l2,1-norm took 75e77 seconds, whereas linear regression took
48 seconds, and ridge and PLS took <2 seconds. One interesting
future direction is to develop more efficient implementation of
G-SMuRFS andmake it applicable to the analysis of larger scale data
sets.

To sum up, our empirical results are very encouraging and have
demonstrated the promise of the G-SMuRFS method in the
application of relating cortical morphology to cognitive outcomes:
(1) G-SMuRFS regression model outperformed linear, ridge, and
PLS regression models and performed similarly to the multitask
l2,1-norm model in terms of overall RMSE and CC (Table 3); (2) the
biomarkers identified by the G-SMuRFS method were sparser at
the patch level than linear regression and ridge regression, and
yielded a more stable performance for predicting cognitive scores;
and (3) both G-SMuRFS and l2,1 methods yielded sparse results at
the vertex level (Fig. 3 and Fig. 4); however, the G-SMuRFS model
presented a sparser pattern at the ROI level (Fig. 5) than the l2,1-
norm model. Taking into account, the spatial information makes
the best use of the detailed surface information yet leading to a
clustered group level result instead, which is more visible and
interpretable.
4. Conclusions

We have investigated the power of detailed cortical thickness
measurements for predicting ADAS, MMSE, and RAVLT cognitive
scores using the data fromtheADNI cohort.Wehaveproposed touse
a newly developed sparse multitask learning algorithm called
G-SMuRFS and have observed the following strengths of this
approach that couldgreatly improve thepredictionperformance: (1)
seamless integration of anatomic knowledge in the learning process
by coupling cortical measures from the same ROI together; (2)
sparsity at both patch level and ROI level; and (3) multitask learning
scheme for addressing correlation among response variables.

Compared with linear, ridge, PLS, or l2,1-norm regression,
combining the group l2,1-norm in the regularization term has not
only helped select the potential biomarkers in a few ROIs but also
improved overall predictive power. Its application to multimodal
imaging data would be promising future directions for biomarker
discovery and better mechanistic understanding in AD research.
Exploration of other imaging modalities as well as the combination
of multiple modalities warrants further investigation. Further effort
may be made to include more complicated prior structure, like
multiple layer groups or networks, to guide the learning procedure.
Another possible future topic could be to investigate whether
nonlinear models can help improve the prediction rates as well as
derive biologically meaningful results.
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