
Globally and Locally Consistent Unsupervised Projection

Hua Wang†, Feiping Nie‡, Heng Huang‡∗
†Department of Electrical Engineering and Computer Science

Colorado School of Mines, Golden, Colorado 80401, USA
‡Department of Computer Science and Engineering

University of Texas at Arlington, Arlington, Texas 76019, USA
huawangcs@gmail.com, feipingnie@gmail.com, heng@uta.edu

Abstract
In this paper, we propose an unsupervised projection
method for feature extraction to preserve both global
and local consistencies of the input data in the pro-
jected space. Traditional unsupervised feature extrac-
tion methods, such as principal component analysis
(PCA) and locality preserving projections (LPP), can
only explore either the global or local geometric struc-
tures of the input data, but not the both at the same
time. In our new method, we introduce a new measure-
ment using the neighborhood data variances to assess
the data locality, by which we propose to learn an op-
timal projection by rewarding both the global and local
structures of the input data. The formulated optimiza-
tion problem is challenging to solve, because it ends up
a trace ratio minimization problem. In this paper, as an
important theoretical contribution, we propose a simple
yet efficient optimization algorithm to solve the trace ra-
tio problem with theoretically proved convergence. Ex-
tensive experiments have been performed on six bench-
mark data sets, where the promising results validate the
proposed method.

Dimensionality reduction is an important technique in sta-
tistical learning and pattern recognition, which has been
widely applied to solve a variety of machine learning and
computer vision problems, such as face recognition (Turk
and Pentland 1991), image annotation (Wang, Huang, and
Ding 2010b), to name a few. Dimensionality reduction algo-
rithms usually seek to represent the input data in their lower-
dimensional “intrinsic” subspace/sub-manifold, in which ir-
relevant features are pruned and inherent data structures are
more lucid.

In the early ages, under the assumption that the input
data objects are homogeneous but not relational, dimension-
ality reduction algorithms were often devised to be linear.
For example, Principal Component Analysis (PCA) (Jolliffe
2002) attempts to maximize the covariance among the in-
put data points, and Linear Discriminant Analysis (LDA)
(Fukunaga 1990) aims at maximizing the class separabil-
ity. In recent years, manifold learning motivates many non-
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linear dimensionality reduction algorithms using pairwise
similarities between data objects, either computed from
data attributes or directly obtained from experimental ob-
servations, which are nonlinear. Successful attempts include
ISOMAP (Tenenbaum, Silva, and Langford 2000), Locally
Linear Embedding (LLE) (Roweis and Saul 2000), Lapla-
cian Eigenmap (Belkin and Niyogi 2002) and Locality Pre-
serving Projection (LPP) (He and Niyogi 2004), etc. These
algorithms generally assume that the observed data are sam-
pled from an underlying sub-manifold which are embedded
in a high-dimensional observation space. Due to this reason-
able assumption, manifold learning based nonlinear projec-
tion methods have demonstrated its usefulness in a number
of real-world applications.

However, a critical problem in most existing manifold
learning techniques often hinders their applications in many
real machine learning tasks (Yang et al. 2007). That is, these
methods explore the data locality but assume that there ex-
ists only one single manifold, which, however, is not true in
reality. For example (Yang et al. 2007), although the face im-
ages of one individual person could exist on one single mani-
fold, the face images of different persons typically lie on dif-
ferent manifolds. To recognize faces, it would be necessary
to distinguish between images from different manifolds. To
achieve the optimal recognition result, the recovered embed-
dings corresponding to different face manifolds should be
as separate as possible in the final embedding space, which
calls for a new projection method that is able to take into
account the global structures of the input data as well. Yang
et al. (Yang et al. 2007) made a first attempt to propose the
unsupervised discriminant projection (UDP) method to in-
corporate both local and global geometrical information of
the input data, which, however, as analyzed in (Deng et al.
2008), was not successful because they failed to recognize
that the UDP method is a simplified version of LPP.

To tackle this important unsupervised dimensionality re-
duction problem, in this paper we propose a novel Globally
and Locally consistent Unsupervised Projection (GLUP)
method for feature extraction by rewarding both the global
and local consistencies of the input data in the projected
space, such that both the global and local geometrical struc-
tures of the original data can be utilized. Our new method is
interesting from a number of perspectives as follows.

• We propose a new unsupervised learning objective for di-
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mensionality reduction that takes into account both the
global and local consistencies of the input data in the pro-
jected space.

• Instead of using the graph Laplacian to capture the data
locality as in many existing methods (Belkin and Niyogi
2002; He and Niyogi 2004; Yang et al. 2007), we pro-
pose a new measurement for data locality by assessing
the overall local data variance. Because this new measure-
ment only uses the neighborhood structures of the input
data, it involves less parameter, which makes it more sta-
ble and suitable for practical use.

• Despite its clear intuition, our objective is challenging to
solve, because it ends up a trace ratio minimization prob-
lem. As an important theoretical contribution of this work,
we propose a simple yet effective optimization framework
to solve a general simultaneous minimization and max-
imization problem, by which we derive an efficient iter-
ative solution algorithm to our objective with rigorously
proved convergence.

• We performed extensive experiments to evaluate a variety
of aspects of the proposed projection method under the
unsupervised settings, in which our new method outper-
forms other state-of-the-art unsupervised dimensionality
reductions methods. The promising experimental results
in our empirical studies are consistent with our theoreti-
cal analysis and validates the proposed methods.

Learning Globally and Locally Consistent
Unsupervised Projection

In this section, we will systematically develop the objective
of the proposed GLUP method, where our goal is to learn a
projection that is both globally and locally consistent with
the input data under the unsupervised setting.

Throughout this paper, we will write matrices as bold up-
percase letters and vectors as bold lowercase letters. Given
a matrix M = [mij ], its i-th column is denoted as and mi.
The Frobenius norm of the matrix M is denoted as ‖M‖F,
and the trace of M is defined as tr (M) =

∑
imii.

Learning Global and Local Consistencies for
Unsupervised Data
In this subsection, we will gradually develop the proposed
GLUP objective for projection on unsupervised data.

Learning global consistency via PCA. In the setting of
unsupervised learning, we are given a set of n data points
X = [x1, . . . ,xn] ∈ <d×n, without knowing their associ-
ated cluster memberships. Under the setting of unsupervised
learning, clustering partitions the input data into a number
of c groups (clusters), such that the data points in the same
group are similar while those in different groups are dissim-
ilar. Traditional clustering methods, such as K-means clus-
tering, usually work well when the dimensionality of the in-
put data is not very high. However, when the dimensionality
is growing, these clustering methods, as well as other un-
supervised or supervised learning methods, will fail due to
the “curse of dimensionality” and intractable computational

cost. As a result, learning a subspace with lower dimension-
ality while maintaining the original geometrical structures
of the input data is desired for practical applications. To
achieve this goal, PCA is the right tool that aims at preserv-
ing as much information as possible by learning a projec-
tion W ∈ <d×r from the input data X, which maps xi in
the high d-dimensional space to a vector yi in a lower r-
dimensional space by computing yi = WTxi where r < p,
such that the overall variance of the input data in the pro-
jected spaced <r is maximized.

Formally, denote the global mean vector of the input data
X as:

m0 =
1

n

n∑
i=1

xi , (1)

we can compute its covariance matrix SG as following:

SG =
n∑

i=1

(xi −m0) (xi −m0)
T

= X

(
I− eeT

n

)
XT ,

(2)

where the constant factor 1
n is removed for brevity. Here,

without ambiguity, I denotes the identity matrix with proper
size and e denotes a constant vector with all entries to be
1 with proper length. Therefore,

(
I− eeT

n

)
is the centering

matrix, which is idempotent. Then PCA seeks the projection
W by maximizing the following objective:

JGlobal (W) = tr
(
WTSGW

)
,

s.t. WTW = I ,
(3)

which can be solved by picking up the eigenvectors of
SG corresponding to the r largest eigenvalues. Because SG

maximizes the global variance of the input data in the pro-
jected space, the learned projection W by PCA is globally
consistent with respect to the input data.

Learning local consistency via neighborhood variances.
Besides taking into account the global variances of an input
data set, we further consider its local geometric structures in
the projected space. Ideally, if the input data are partitioned
into a number of clusters and different clusters are clearly
separated in the projected space, nearby data points should
belong to the same cluster whilst distant data points should
belong to different clusters. Namely, in contrast to maximiz-
ing the projected global variances, we want to minimize the
local variances in the projected space as much as possible.
Mathematically, denote theK-nearest neighbors of xi asNi

and the local mean vector of xi as

mi =
1

K + 1

∑
xj∈Ni∪{xi}

xj , (4)

we can compute the overall local variances as following:

SL =
n∑

i=1

SLi , (5)
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where
SLi =

∑
xj∈Ni∪{xi}

(xj −mi) (xj −mi)
T

= Xi

(
I− eeT

K + 1

)
XT

i ,

(6)

where Xi ∈ <d×(K+1) consists of xi and the vectors in Ni

as its columns. Here, the constant factor 1
K+1 is omitted for

brevity. Therefore, we can minimize following objective to
achieve the local consistency in the projected space:

JLocal (W) = tr
(
WTSLW

)
,

s.t.WTW = I .
(7)

Note that, in Eqs. (5–7) we did not use the LPP objec-
tive (He and Niyogi 2004) to capture the localities of the
input data due to its notorious performance sensitivity with
respect to the parameters. LPP has two parameters. The first
one is the graph construction parameter, which is K when
constructing a K-nearest neighbor graph (He and Niyogi
2004) or εwhen constructing an ε-ball graph (He and Niyogi
2004). This parameter acts the same as the parameter K in
our method when we compute the local variances in Eqs. (5–
6). The second parameter is σ, when we use a Gaussian ker-
nel to compute the affinity between a pair of vertices on the
input graph. It is generally recognized that (Nie et al. 2010)
the quality of the learned projection for subsequent learn-
ing tasks is very sensitive to the parameter σ. This weakness
can be remedied in supervised and semi-supervised learning
tasks via cross-validation, which, however, is not generally
feasible in unsupervised learning tasks because of the un-
availability of data labels. As a result, our new objective in
Eq. (7) is more advantageous in that it has less parameter
and easier to fine tune, which, as the first contribution of this
work, is obviously of crucial importance in practical unsu-
pervised learning tasks.

Objective to learn the global and local consistencies.
Armed with the objectives that can capture the global and
local consistencies of an input data set separately, we can
build a combined objective to capture both of them simulta-
neously. Among several possible ways to combine the two
objectives, we choose to formulate our new objective using
the ratio of trace method (Jia, Nie, and Zhang 2009), which
minimizes the following objective:

J0 (W) =
tr
(
WTSLW

)
tr (WTSGW)

,

s.t.WTW = I .

(8)

Compared to the trace difference method (Wang, Huang, and
Ding 2010a), the ratio of trace method has less parameters;
compared to the trace of ratio method (Jia, Nie, and Zhang
2009), the ratio of trace method has better interpretability
and learning performance.

Upon solution to the optimization problem in Eq. (8), the
learned projection W not only preserves the global variance
of the input data set but also rewards its local structures,
which thereby is both globally and locally consistent. We
call Eq. (8) as the proposed Globally and Locally consistent
Unsupervised Projection (GLUP) method.

An Efficient Algorithm to Solve the General
Trace Ratio Problem

Despite its clear intuition, Eq. (8) is difficult to solve, which
ends up a trace ratio minimization problem (Jia, Nie, and
Zhang 2009). Recently, several successful attempts have
been made to solve this challenging problem (Guo et al.
2003; Wang et al. 2007; Jia, Nie, and Zhang 2009). Moti-
vated by these prior works, as one of the most important
contribution of this paper, we will derive an efficient algo-
rithm to solve the general trace ratio problem.

Useful Theorems
Before we proceed to deriving the solution algorithm to our
objective in Eq. (8), we first prove the following useful the-
orems.
Theorem 1 The global solution of the following general op-
timization problem:

min
v∈C

f(v)

g(v)
, where g(v) ≥ 0 (∀ v ∈ C) , (9)

is given by the root of the following function:
h(λ) = min

v∈C
f(v)− λg(v) . (10)

Proof . Suppose v∗ is the global solution of the problem in
Eq. (9), and λ∗ is the corresponding global minimal objec-
tive value, the following holds

f(v∗)

g(v∗)
= λ∗ . (11)

Thus ∀ v ∈ C, we can derive:
f(v)

g(v)
≥ λ∗ . (12)

Because we know that g(v) ≥ 0, we have:
f(v)− λ∗g(v) ≥ 0 , (13)

which means:
min
v ∈C

f(v)− λ∗g(v) = 0 ⇐⇒ h(λ∗) = 0 . (14)

That is, the global minimal objective value λ∗ of the problem
in Eq. (9) is the root of the function h(λ), which completes
the proof of Theorem 1. �

Theorem 2 Algorithm 1 decreases the objective value of the
problem in Eq. (9) in each iteration till converges.

Proof. In Algorithm 1, from step 1 we know that
f(vt)− λtg(vt) = 0 . (15)

According to step 2, we know that
f(vt+1)− λtg(vt+1) ≤ f(vt)− λtg(vt) . (16)

Combining the above two inequalities, we have:
f(vt+1)− λtg(vt+1) ≤ 0 , (17)

which indicates
f(vt+1)

g(vt+1)
≤ λt =

f(vt)

g(vt)
. (18)

That is, Algorithm 1 decreases the objective value of Eq. (9)
in each iteration, which completes the proof of Theorem 2.
�
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Algorithm 1: The algorithm to solve Eq. (9).
t = 1. Initialize vt ∈ C.
while not converge do

1. Calculate λt =
f(vt)
g(vt)

.
2. Calculate

vt+1 = argmin
v∈C

f(v)− λtg(v) . (19)

3. t = t+ 1.

Theorem 3 Algorithm 1 is a Newton’s method to find the
root of the function h(λ) in Eq. (10).

Proof. From step 2 in Algorithm 1 we know that

h(λt) = f(vt+1)− λtg(vt+1) . (20)

Thus
h′(λt) = −g(vt+1) . (21)

In Newton’s method, the updated solution should be

λt+1 = λt −
h(λt)

h′(λt)

= λt −
f(vt+1)− λtg(vt+1)

−g(vt+1)

=
f(vt+1)

g(vt+1)
,

(22)

which is exactly the step 1 in Algorithm 1. That is, Algo-
rithm 1 is a Newton’s method to find the root of the function
h(λ). �

Theorem 3 indicates that Algorithm 1 converges very fast
and the convergence rate is quadratic convergence, i.e., the
difference between the current objective value and the op-
timal objective value is smaller than 1

cct
(c > 1 is a certain

constant) at the t-th iteration. Therefore, Algorithm 1 scales
well to large data sets in real world learning tasks, which
adds to its practical value.

Theorem 1–3 present a complete framework to solve the
general optimization problem in Eq. (9), where an efficient
iterative algorithm is supplied in Algorithm 1 with rigor-
ously proved convergence and satisfactory computational ef-
ficiency. It is worth to noting that, besides applying it to
solve the general trace ratio minimization problem as in our
objective in Eq. (8), we can also employ this framework
to efficiently solve many other more complicated optimiza-
tion problem in machine learning, such as the simultaneous
`1-norm minimization and maximization problem by which
a robust distance metric can be learned (Wang, Nie, and
Huang 2014). Therefore, we consider Theorem 1–3 as the
most important theoretical contribution of this work.

Derivation of the Solution Algorithm to Eq. (8)
Equipped with the optimization framework of Theorem 1–
3, we can derive the solution algorithm to the optimization
problem in Eq. (8).

Because the problem in Eq. (8) is a special case of the
general optimization problem in Eq. (9), we can derive the
solution algorithm to Eq. (8) using Algorithm 1, in which
the key step is to solve the problem in step 2. Given a com-
puted λt by step 1 of Algorithm 1, according to step 2 of
Algorithm 1 we turn to solve the following problem for our
target optimization problem in Eq. (8):

min tr
(
WTSLW

)
− λt tr

(
WTSGW

)
s.t.WTW = I ,

(23)

which is known to have optimal solution with eigenvalue
decomposition of SL − λtSG.

Finally, the whole algorithm to solve our objective in
Eq. (8) is summarized in Algorithm 2. Obviously, Algo-
rithm 2 is guaranteed to converge due to Theorem 2 and
converge fast due to Theorem 3.

Algorithm 2: An efficient iterative algorithm to solve the
general trace ratio minimization problem in Eq. (8).
Input: Matrices SL and SG.
1. Set t = 1 and initialize Wt by a random guess.
while not converge do

2. Compute

λt =
tr
(
WT

t SLWt

)
tr
(
WT

t SGWt

) . (24)

3. Compute the solution of Eq. (23) by the eigenvalue
decomposition of SL − λtSG.
4. t = t+ 1.

Output: The learned projection matrix W.

Experimental Results
In this section, we experimentally study a variety of aspects
of the proposed GLUP method in clustering tasks. Our goal
is to evaluate the dimensionality reduction capability of the
proposed method in unsupervised learning.

Data Sets and Experimental Procedures
Six benchmark data sets are used in our experiments, includ-
ing:
• two UCI data sets: the Dermatology and Ecoli data sets;
• one object data set: the COIL-20 data set;
• one digit and character data sets: the Binalpha data set;
• and two face data sets: the UMIST and AR data sets.
The images in the two face data sets are resized following the
standard experimental procedures in computer vision stud-
ies. Table 1 summarizes the details of the six experimental
data sets used in this study. We use PCA as a preprocessing
to remove the null space of all the data sets.

For each data set, we first learn the projections by our
method as well as the compared methods. Then we map the
data onto the learned subspaces/submanifolds, on which we
perform clustering using the K-means clustering algorithm.
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Table 1: Description of the experimental data sets.
DATA SET NUMBER DIMENSION CLASS

DERMATOLOGY 366 34 6
ECOLI 336 343 8
COIL20 1440 1024 20
BINALPHA 1854 256 10
UMIST 575 644 20
AR 840 768 120
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Figure 1: Clustering performance on the Dermatology data
set in the projected subspace learned by the proposed GLUP
method when the value of K varies.

Study of Parameter K for Local Variance
Before empirically evaluating the clustering performance of
the proposed GLUP method, we first study its parameter
K. The parameter K controls to which extent we measure
the overall local variance defined by SL in Eq. (5). When
K = 1, SLi computes the covariance over each data point
and its nearest neighbor, which is of smallest granularity. Al-
though data variance over small granularity should be more
smooth, it also can be dominated by outlier samples. There-
fore, a biggerK could potentially lead to a better assessment
of the local variances. However, on the other hand, when K
grows, the local variances start to approach the global vari-
ance. At the extreme case, when K = n, the SL computed
by Eq. (5) is very close to the global variance. As a result,
the local property of input data can no longer be captured.
Theoretically, an optimal K can be select to be smaller than
nk, where nk is the number of data points of the smallest
data cluster. To verify this hypothesis, we perform cluster-
ing on the Dermatology data set by varying the value of K
over a large range from 1 to 300. The former is the small-
est possible value of K, while the latter is a very big value
with respect to the size of the Dermatology data set, because
the number of data point of this data set is 366. We repeat
the experiments for 100 times to alleviate the impact of the
random initialization of both our iterative algorithm and the
K-means clustering method. The average clustering perfor-
mances for different values of K measured by clustering ac-
curacy are reported in Figure 1.

A first glance at the results in Figure 1 shows that the clus-
tering performance of the proposed GLUP method is very
stable in a considerably large parameter selection range of
K, which makes the parameter fine tuning of our method is

easy and adds to its value for practical use. By a more care-
ful examination on the results shown in Figure 1, we can
see that the clustering performance on the Dermatology data
set reaches its maximum when K is selected in the range of
[5, 100], which is the proximal to 366/6 = 61, i.e., the aver-
age number of data points in each cluster. This observation
clearly justifies our hypothesis, which is also consistent with
our theoretical analysis as discussed above.

Based upon the above observations, in practice we empir-
ically set K = 30 for simplicity, because we usually do not
know the number of data points in each clusters of an input
data set in a priori.

Clustering Performance of the Proposed GLUP
Method
Now we experimentally evaluate the dimensionality reduc-
tion capability of the proposed method under the setting of
unsupervised learning. Besides comparing our new method
to its most closely related method, i.e., the UDP method
(Yang et al. 2007), we also compare our method against the
Kernel Laplacian Embedding (KLE) method (Wang, Huang,
and Ding 2010b), which is one of the most recent unsuper-
vised learning method by integrating attribute data and pair-
wise similarity data, and has demonstrated state-of-the-art
dimensionality reduction performance. In addition, we also
report the clustering results in the PCA subspace (Jolliffe
2002) and LPP subspace (He and Niyogi 2004) as baselines.
For KLE method and LPP method, we construct nearest-
neighbor graph for each data set and set the neighborhood
size for graph construction as 10 following (He and Niyogi
2004). The reduced dimension of all the compared data are
searched in the range of [1, d/2] and we report the best clus-
tering performance, where d is dimensionality of the original
experimental data set. Note that, we do not compare our new
method to supervised dimensionality reduction methods, be-
cause our method is designed for unsupervised settings.

Because the results of the K-means clustering algorithm
depend on the initialization, to reduce the statistical variety,
we independently repeat the clustering procedures on the
projected subspaces learned by all compared methods for
100 times with random initializations, and then we report
the results corresponding to the best objective values.

The clustering performance measured by clustering accu-
racy and normalized mutual information (NMI) are reported
in Table 2 and Table 3 respectively. From these experimen-
tal results we can see that the proposed method outperforms
the compared methods with obvious margins, which demon-
strate its effectiveness in the task of data clustering.

Conclusions
In this paper, we proposed an unsupervised projection
method for feature extraction to maintain the both global and
local consistencies of the input data. Different from tradi-
tional unsupervised feature extraction methods such as Prin-
cipal Component Analysis (PCA) and Locality Preserving
Projections (LPP) that can only explore either the global or
local geometric structure in the data, our new method learns
an optimal projection to maximize the global covariance
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Table 2: Comparison of clustering performances measured by clustering accuracy

DATA SET PCA LPP UDP KLE GLUP

DERMATOLOGY 78.64% 76.86% 73.58% 83.98% 85.78%
ECOLI 65.83% 64.91% 63.88% 45.24% 67.51%
COIL20 66.22% 69.45% 63.81% 79.98% 81.61%
BINALPHA 44.45% 48.34% 48.48% 47.97% 49.81%
UMIST 47.69% 47.87% 49.89% 62.15% 66.26%
AR 28.45% 30.19% 25.57% 39.24% 40.12%

Table 3: Comparison of clustering performances measured by NMI.

DATA SET PCA LPP UDP KLE GLUP

DERMATOLOGY 88.24% 88.01% 87.92% 85.34% 89.26%
ECOLI 50.84% 56.97% 53.86% 37.54% 59.74%
COIL20 79.15% 79.23% 77.54% 88.31% 89.91%
BINALPHA 60.14% 61.24% 61.17% 59.02% 62.88%
UMIST 67.58% 67.94% 66.33% 78.64% 77.61%
AR 63.64% 65.03% 60.84% 73.19% 74.38%

matrix and minimize the newly proposed local covariance
matrices simultaneously. To solve the formulated objective
which is a trace ratio minimization problem, we presented a
simple yet effective optimization method to solve this prob-
lem, whose convergence is rigorously guaranteed. Promis-
ing experimental results on six benchmark data sets with a
variety of experimental settings have demonstrated the ef-
fectiveness of the proposed method.
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