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Abstract

Traditional distance metric learning with side in-
formation usually formulates the objectives using
the covariance matrices of the data point pairs in
the two constraint sets of must-links and cannot-
links. Because the covariance matrix computes
the sum of the square@-norm distances, it is
prone to both outlier samples and outlier fea-
tures. To develop a robust distance metric learn-
ing method, we propose a new objective for
distance metric learning using thle-norm dis-
tances. The resulted objective is challenging to
solve, because it simultaneously minimizes and
maximizes (minmax) a number of non-smooth
£1-norm terms. As an important theoretical con-
tribution of this paper, we systematically derive
an efficient iterative algorithm to solve the gen-
eral /;-norm minmax problem. We performed
extensive empirical evaluations, where our new
distance metric learning method outperforms re-
lated state-of-the-art methods in a variety of ex-
perimental settings.

with high dimensional data where some features may not
be tightly related to the topic of interest. In contrast, s di
tance metric with good quality should identify important
features and discriminate relevant and irrelevant feature
Thus, supplying such a distance metric is highly problem-
specific and determines the success or failure of a learning
algorithm Xing et al, 2002 Hoi et al, 2006 Xiang et al,
2008 Weinberger et al2006 Davis et al, 2007).

In this paper, we address the issue of the robustness of a
distance metric in the presence of both outlier samples and
outlier features. The former is defined as the data points
that deviates significantly from the majority of the data
points, and the latter is defined as features that do not have a
regular distribution over the data points. Given the side in
formation of the must-links and cannon-linksiig et al,

2002 Hoi et al, 2006 Xiang et al, 2008, traditional dis-
tance metric learning approaches often formulate the ebjec
tives using the covariance matrices of the data point pairs i
the two constraint sets. However, because these estimates
are defined as the sum of the squafeahorm distances,
they could be highly influenced by outlying observations
and features. That is, these measurements become inap-
propriate on contaminated data sets, because large errors
squared dominate the sum.

1. Introduction _ _
Many previous works have been done to improve the ro-

Distance metric plays a critical role in a number of ma- bustness of machine learning models through usingthe
chine learning algorithms. For exampl€:means cluster- norm formulationsDing et al, 200§ Cayton & Dasgupta
ing andk-Nearest Neighbork-NN) classification need to 2006 Gag 2008 Ke & Kanade 2004 Kwak, 2008

be supplied with a suitable distance metric, through whichWright et al, 2009 Nie et al, 2011, Wang et al.2013ha).
neighboring data points can be identified. The commonlyHowever, most, if not all, these methods tried to improve
used Euclidean distance metric assumes that every featutiee robustness of the models like Principal Component
of the input data is equally important and independent fromAnalysis (PCA). Thus far, to our best knowledge, there
others. This assumption, however, may not be always saexists no work to utilize/;-norm based objective for dis-
isfied in real world applications, especially when we dealtance metric learning. Although it is easy and straightfor-
ward to derive a robust formulation for metric learning us-
ing the ¢;-norm distances, it is non-trivial and difficult to
solve the resulted optimization problems involving the
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norm distances. Because most metric learning objectivesin application context:

(either ratio or substraction) have to simultaneously mini

mize the distances of the point pairs in the must-links and| S = {(x;,x;) | x; andx; are in the same claps,
maximize those in the cannot-links, all current optimiaati D = {(xi,x;) | x; andx; are not in the same clalss,
methods in sparse learning, such as gradient projectien, ho (1)

motopy, iterative shrinkage-thresholding, proximal grad \where we callS as must-links andD as cannot-links

ent, and augmented lagrange multiplier methods, cannqiing et al, 2002. Note that it is not necessary for all data
efficiently solve the/;-norm based distance metric learning points in ' to be involved inS or D.

objectives.Zha et al.(2009 made a successful attemptto ) o
learn a robust distance metric, which, however, achieged itGiven any two data points; andx;, a Mahalanobis dis-
goal by utilizing additional knowledge from auxiliary data tance between them can be computed as following:

yet did not replace the traditional distance metric leagnin
objective by any new robust formulation. lIxi — x|y = \/(xi — xj)T M(x; —x;), (2

In th|_s baper, We propose a new robust _dlstance rnem(\5vhereM € R¥4 is the Mahalanobis distance metric, a
learning objective that utilizes thg-norm distances and

directly provides the robustness against outlier sampids a symmgtnc matrix (.)f sgel x d .Ir_1 genergl,l\/[.|s_ a val|d.
. . metric if and only ifM is a positive semi-definite matrix
outlier features. However, because of using theorm

distances, the resulted objective ends up to be a simultaIP—y satisfying the non-negativity and the triangle ineqali

o R ) conditions,i.e., M = 0. When settingVI to be the iden-
neous/;-norm minimization and maximization (minmax) tity matrix T the distance computed by E@) becomes
problem. Although there exist a large number of optimiza- dxd b y

. X L . . the Euclidean distance. Our goal in robust distance metric
tion algorithms to solve the objectives involvidg-norm - : ;

R - learning is to learn an optimal square mafikfrom a col-
or {2 1-norm minimizations, how to efficiently solve ttige-

. . S lection of data pointst’ in the presence of outliers, such
norm minmax problem is scarcely studied in literature. As : . .
) . oo . that the distances between the data point pait$ are as
an important theoretical contribution of this paper, we sys . . .
. . o . . small as possible, whilst thoseIhare as large as possible.
tematically derive an efficient iterative algorithm to selv
the generaf;-norm minmax problem, whose convergencelearning a robust distance metric using the/;-norm
is guaranteed by the rigorous theoretical analysis. We haveinmax formulation. Xing et al. (Xing et al, 2002 first
performed extensive experiments to apply our new distancetudied the problem of learning a distance metric from
metric learning method on five benchmark data sets to evaimnust-links and cannot-links, in which the sum of the Ma-
uate its robustness against both outlier samples and outlidnalanobis distances between the point pairs in the must-
features, in which we achieved very promising results thatinks is minimized under the constraints developed from the
are consistent with our theoretical analysis. point pairs in the cannot-links. Despite its effectiveness
it is computationally inefficient when dealing with high-
dimensional dataXjang et al, 200§. Relevance Com-
ponent Analysis (RCA)Bar-Hillel et al, 2003 was then
In this section, we will first develop a robust objective proposed to solve the inverse matrix of the covariance
for distance metric learning using thfg-norm distances, matrix of the data point pairs in the chunklets (must-
which, though, is highly non-smooth and difficult to solve. links), which, though, may not exist in high dimensional
In the next section, we will present an efficient iterative so data. Disciminative Component Analysis (DCA) and Ker-
lution algorithm with a rigorous proof on its convergence. nel DCA (Hoi et al, 200§ improved RCA by exploiting
negative constraints and aimed to capture nonlinear rela-
tionships using contextual information. Both RCA and
A, however, faced the singular problem when comput-
ing the covariance matrix for the data point pairs in the

2. Learning A Robust Distance Metric

Notations. Throughout this paper, we write matrices as
bold uppercase characters and vectors as bold lowerca
characters. Given a matrixI = [m;;], we denote it3-th

20\_'\,/\]32?1 g?,{\;r;scglel;::g da:;aMTdfli reTpgit|vely. The must-links in the case of high dimensionalifiéng et al,

! 1T Zaig M1 2008. To tackle thisXiang et al.(2008 proposed to for-
Problem formalization. Assume that we have a set of mulate the distance metric learning problem as a trace ratio
n data pointst = {x; € R?}"_ . For convenience, we minimization problem as following.

. B g .
write X = [xi,...,x,] € R™". Besides, we are als0 gecq;seM is a positive semi-definite matrix, we can

supplied with two sets of pairwise constraints among thereasonably writeM = WWT by eigen-decomposition
data points, which are manually labeled by users under ce(;are W c R¥™" with r < d. Thus the Maha-,

lanobis distance under the metidd can be computed
as xi —x; = \/(xi— %) WWT (x; —x;) =
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||WT (x; — xj)||2, which indeed defines a transformation Because Eq.6) does not square the distances from either
of y = WTx under the projection matri¥. Then denote data point or feature perspective, the outlying samples and
the covariance matrix of the data point pairs in the mustfeatures will have less influence. As a result, same as other
links asS., = 3, x yes (Xi — ;) (x; —x;)" and the  £1-norm distance based learning models, the objective in
covariance matrix of the data point pairs in the cannotdink Eq. 6) is more robust against outliers than its counterpart
asS, = Z(x“xj)ep (xi — xj) (x; — Xj)T, Xiang etal. defined _in Eq. 3). Thus, we call Eq.®) as the proposed
(2008 proposed to learn the transformation mat¥ by ~ robust distance metric learningodel.

solving the following objective: Upon solution, the distance metric can be obtained by com-

tr (W'S\W) _ 2 (i % )es H(Xi - XJ)TWHz putingM = WW™.

wiw=r ir (WIS, W)

_ 2
2 (xsx)eD H(Xi - XJ')TWH2 3. An Efficient Algorithm to Solve ¢;-Norm
®) Minmax Problem

The objective in Eq.3) measures the ratio of the sums of Despite the straightforward replacement from the squared
the two sets of the squarég-norm distances, one set for ¢,-norm distances in Eq23J to the ¢;-norm distances in
the data point pairs in the must-links and the other for thoseeq. ) to promote robustness against outliers, solving
in the cannot-links. As a result, same as other least squateq. () is very challenging, because it simultaneously min-
minimization based models in machine learning and statisimizes and maximizes a number of non-smoétiorm
tics, Eq. @) is sensitive to the presence of outliers. Re-terms. Although there exist in literature a plethora of algo
cent progresstaq 2008 Ke & Kanade 2004 Ding etal,  rithms (Argyriou et al, 2008 Nie et al, 201Q Wang et al.
2006 Kwak, 2008 Wright etal, 2009 has shown that 2011 2012 that can minimize the objectives involvirfg-
the/;-norm distance can introduce robustness against botRorm orl, 1-norm terms, how to efficiently solve the objec-
outlier samples as well as outlier features, which havejyes that simultaneously minimize and maximizenorm
been widely applied to replace the squarfgenorm dis-  terms are rarely studied. As an important theoretical con-
tance in many machine learning methods, such as PChribution of this paper, we will derive an efficient algorith

(Wright et al, 2009. Following the same motivations as to solve the generdl-norm minmax problem in Eq6J in
these prior studies, we propose to replace the squared the rest of this section.

norm distances in the distance metric learning objective in . . . o
Eq. @) by the?,-norm distances to promote the robustness,Before deriving our new solution algorithm, we first intro-

which leads to the following optimization problem: duce the following useful proposition.

Z(xi_’xj)eg H(xi - Xj)TWH |AW | Proposition 1 For a linear learning model, suppose the
L= L, output projection vecton can be linearly represented by
IBWI|, : e,
the input dataX, and suppose an orthonormal projec
4) tion matrix V has been learned by the same modlel,
where each row ofA is one (x; — xj)T that satisfies V7V = 1. If we learn another projection vectar from
(xi,x;) € S, and similarly each row ofB is one

(x; —x;)" that satisfiegx;, x;) € D. X=X-VV'X @)

o T
WITW=I Z(xi,xj)eDH(xi_xj) WH1

Note that Eq.4) can be rewritten as following:

AW Tl Aw;
AW S Al
wrw=1 [|[BW||, > ie IBwilly

by the same learning model, tharis orthogonal toV.

Proof. Sinceu can be linearly represented by the input

which minimizes the ratio between the overalnorm dis- daTtaX, we haTveu = Xa forTcertalno;. TthJSVTu =
tances of the data point pairs in the must-links along all theY (X - Vv X) o = (V X-VVV X) o =
projecting directions and those in the cannot-links. A po—(V X - V'X)a = 0, which completes the proof of
tential problem is that the ratio between thenorm dis- ~ PropositionL. u

tances of the data point pairs in the must-links and thosghe main strength of Propositidnies in that it converts a

in the cannot-links may not be minimized along each indi-gjfficult orthogonally constrained optimization problem t
vidual projecting direction. Thus, we turn to minimize the 5 series of unconstrained optimization problems by using
following better objective which emphasizes the projettio the reconstruction residues from the learned projections i
performance along every projecting direction: Eq. (7), which, fortunately, is usually much easier to solve.

min ZT: |[Awi|l, (6) Equipped with Propositiod, we derive the solution algo-
WIW=I IBw;|, rithm to the problem in Eq.6) in Algorithm 1.
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Algorithm 1 An efficient iterative algorithm to solve the
general/;-norm minmax problem with orthogonal con-
straint in Eq. 6).

Input: Input dataX’, and the must-linksS and cannot-linksD.

1. Let X; = X. ConstructA; andB; from X, S andD, and computev
by solving the problemniny, , +awils
Y solving the problemninw, Taw T, -
2.5 =2.
while 5 < r do
3. Computer = Xj71 — Wj71wf71Xj71.
4. ConstructA ; andB; from X ;, S andD.

Aiw;
5. Computew; by solving the problenmin., . Il wlly .
i Bw;ll,
6.5 =7+ 1.
end while

Output: The learned projection matriw = [wy, . . .,

In Algorithm 1, we learn one projection vector at a time.

Because we learn every projection vector on the reconndicates{™Mt) < ), = L(vi)

Algorithm 2 The algorithm to solve Eq9J.
1.t = 1. Initialize v; € C.
while not convergelo
2. Calculaten; = §§¥§§
3. Calculatev, 11 = argminyec f(v) — Arg(v).
4 t=1t+1.
end while

Theorem 2 Algorithm 2 decreases the objective value of
the problem in Eq(9) in each iteration till converges.

Proof. In Algorithm 2, from step 2 we know thaf(v;) —
Atg(v¢) = 0. According to step 3, we know thgtv, 1) —
Atg(vir1) < f(ve) — Atg(ve). Combining the above two
inequalities, we havef (vi1) — Atg(vir1) < 0, which
That is, Algorithm?2

g(vit1) g(ve)

struction residue from the previously learned projectionsjecreases the objective value of E) i each iteration,

according to Propositiofy, the learned projection vectors
w; (1 < j <r) are orthogonal to each other.

which completes the proof of Theorein |

Obviously, Step 1 and Step 5 are the key steps of Algo-heorem 3 Algorithm 2 is a Newton's method that finds

rithm 1, which solve the following problem:
A
o lAw],
w [[Bw,

In the following, we will derive the solution to Eg8). The
detailed procedures are summarized in Algorithm

(8)

3.1. Useful Theorems

Theorem 1 The global solution of the following general
optimization problem:

f(v)
min ok whereg(v) >0 (VvelC) , (9)
is computed by the root of the following function:
h(A) = min f(v) = Ag(v) . (10)

given thatf(v) — Ag(v) is lower bounded.

Proof. Suppose/* is the global solution of the problem in
Eqg. 9), and\* is the corresponding global minimal objec-

tive value, the following holdsﬁ::) =\ ThusV v eC,
we have% > \*. Because we know thatv) > 0, we
can derivef (v) — A*g(v) > 0, which means:

mgcl f(v)=Ag(v)=0 <= h(\)=0. (11)

That is, the global minimal objective valué of the prob-
lem in Eq. Q) is the root of the functiof(\), which com-
pletes the proof of Theorefhn |

To solve the problem in Eq9J, we propose an iterative al-
gorithm as summarized in Algorith@) whose convergence
is guaranteed by Theore2and whose computational effi-
ciency is guaranteed by Theoré&n

the root of the functiof()\) in Eq. (10).
Proof. From step 3 in Algorithn2 we know that
h(Ae) = f(vir1) = Aeg(vigr) - 12)

Thush/()\t) —g(Vt+1).

In Newton’s method, the updated solution should be

_ h(Ae)
o o (13)
_ ) = Mgven) _ (Vi)
' —9(Vit1) g(vii1)

which is exactly the step 2 in Algorithia That is, Algo-
rithm 2 is a Newton’s method to find the root of the function
h(A). [ |

Theorems1-3) present a complete framework to solve the
general optimization problem in EQ)( where an efficient
iterative algorithm is provided in Algorithr2 with rigor-
ously proved convergence and satisfactory computational
efficiency. It is worth to noting that, besides applying it
to solve the/;-norm minmax problem as in our objective
in Eq. 6), we can also employ this framework to efficiently
solve many other optimization problems that widely appear
in machine learning and statistiesg, the trace-ratio min-
imization problem in Eq.3) (Jia et al, 2009 Wang et al.
20149. Therefore, Theoremd+{3) are considered as one of
the most important theoretical contribution of this paper.

3.2. Derivation of Algorithm 3

Now we derive the solution algorithm to E®)(using the
optimization framework described in Theorenis3).
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Because the problem in E@)(is a special case of the gen-

eral optimization problem in Eq9J, we can derive its solu-
tion algorithm using Algorithn2, in which the key step is
to solve the problem in Step 2. Given theomputed from
Step 1 of Algorithn2, according to Step 2 of Algorithr2,
instead of solving the original problem in E&)(we turn
to solve the following optimization problem:

min || Awl), ~ X[ Bw], (14)

Solving the problem in Eq.1¥), again, is challenging, be-
cause it is non-smooth due to involving the non-smdgth
norm terms. We derive its solution as following.

By taking the derivative of Eq.14) with respectw and
setting it as 0, we obtaln

2(ai)TaiW \
Z 2|a’w| B ;

2

T . -
b’)” b'w

Letd;; = L

2la’w| v
its diagonal entries ag;;, and lets, = % and con-
struct the vectos with its <-th element as;, we can rewrite

Eq. (15) as following:

and construct the diagonal matiix with

2A"DAw — ABTs =0 . (16)

Thus, we can computes by solving a system of linear
equations in Eq.16)%.

Note that, in Eq. 16) both D ands are dependent ow.

Algorithm 3 An efficient iterative algorithm to solve the
general;-norm minmax problem in Eq8J.

Input: MatricesA andB.
1. Initialize w by a random guess.

repeat
2. Compute\ = }\Ble .
3. Compute the diagonal matrio with its i-th diagonal entry asl;; =
1

[Awlly

2latw|’ )
4. Compute the vectas with its i-th entry ass; = ‘E::‘ .

5. Computew by solving the linear equatiorsA” DAw = AB”'s.
until Converges

Output: The learned projection vecteov.

3.3. Analysis of Algorithm 3

Convergence analysis of the algorithm.The following
theorem guarantees the convergence of Algori#am

Theorem 4 Algorithm 3 decreases the objective value of
the problem in Eq(8) in each iteration till converges.

Proof. First, it is obvious that Step 5 of Algorith@com-
putes the optimal solution of the following problem:

min w/ATDAw — A\Aw'B”s .

(17)

For each iteration, we denote lbythe updatedv by Algo-
rithm 3. According to Step 5 of Algorithr3 and Eq. L7),
we have the following inequality:

wIATDAW — W BTs <

18
w/ ATDAw — \w'BTs . (18)

Therefore they are unknown variables and can be seen a§plying the definitions ofA ands in Steps 3—4, we can

the latent variables of the objective in Eq4J, which can

equivalently rewrite Eq.18) by decoupling the computa-

be solved under the same iterative framework by alternation for each row ofA andB as following:

tively optimizing them Nie et al, 2010. Specifically, we
computeD ands upon the currentv obtained in the last

iteration. Finally, we summarize the whole computation
procedures in Algorithn3, which, to our best knowledge,

solves the/;-norm minmax problem for the first time

1

Because the ¢;-norm is non-smooth, following

(Argyriou et al, 2008, we address this by introducing a

small perturbation to repladév||, by >, \/v? + ¢, wherev is

(aiw)’ wT (b)) biw
Z 2]a’w| /\Z |biw| -
o o (19)
5 (a'w)’ S w? (b)) biw
2|aiw| |biw]| ’

%

where we note thai'w is a scalar ano{aiw)T (a'w) =

a general vector and is a small positive constant. Apparently, |aiv"(/|2 _ (ai‘;,)z_

> v/v? + ¢ reduces to||v]|; when¢( — 0. In the rest of
this paper, this replacement is always implicitly appliedthe
definition of ||-||,, unless otherwise stated.

Similarly, given a scalar variable, we always replacéy| by
\/v? + ( to address the non-smoothness-pf

2Note that, in real problemA” DA could be rank deficient,

because the number of constraints in the must-links could be

smaller than the dimensionality of the feature space. Toergin
practice we computev by solving (2A" DA + ¢I) w = AB”s,
wherel is the identity matrix and is a small pertubation.

3The objective of the/;-norm minmax problem in Eq.14)
is non-convex, thus the algorithm is guaranteed to converge

2
— _Z
=z 2a?

Because it can verified that for functian(z)
given anyz # a € R", z (x) < z («) holds, we have:

(aiw)’ (aiw)’
2]a’w|

la'w| — < |a'w]|

— : . 20
2|aiw| (20)

local optima of the objective. A proper initialization cdugffec-
tively avoid being trapped by local optima. In practice, wplace
the/,-norm in Eq. (L4) by the squared,-norm and solve it as ini-
tialization, which empirically works very well in our experents.
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In addition, according to the Cauchy-Schwarz inequality Table 1.Descriptions of the experimental data sets.

we have: . : :
‘ ‘ o Dataset Breast Diabetes Iris  Protein  ORL
(P 3 1. 3
[b'w[[btw| > (b'W)" biw (21) n 683 768 150 116 400
which implies that d 10 8 4 20 10304
. c 5 4 2 8 40
wT(b%)" b , , . r 10 8 4 16 80
W) BW i) < 0 = [biw| — [biw| : —
[biw| n: number of samples. d: input dimensionality.
o T (22) ¢: number of clusters. r: reduced dimensionality.
w' (b") bw—|biw|
[biw| '

Then by adding the three inequalities in E&9) Eq. 20) go
and Eq. 22) in the both sides, we obtain: 508_
3o
i i i i <
Z|aw|—)\Z|bw|§Z|aw|—AZ|bw|:O 2,
K3 K3 K3 1 6
[AW]], _ 2 |az‘{’VV| <\ = )D¥ |aZ‘W| _ | Aw||, . L_g)o.e-
Bwll, > biw| > [biw] Bwll,
(23) 0% 3 5 10 20 50 100 200 500 1000 2000 5000 10304

r
Note that, the equalities in Eqsl9-23) hold if and only
if the objective value converges. Therefore, the objectiveFigure 1.Clustering performance on the ORL data with respect to
value of the problemin Eq8] is decreased in each iteration 7 (the dimensionality of the projected (sub)spacewsy.
till converges, which completes the proof of Theorénll

Computational analysis of the algorithm. In Algo-  the input data sets (the labels of which are available for
rithm 3, Steps 2-4 are computationally trivial. Step 5 evaluation purpose but unavailable for clustering). If the
solves a system of linear equations, which is very welllabels of this pair of data points are the same, we gener-
studied and efficient solution algorithms exist. Moreover,ate a must link. If the labels are different, a cannot link is
according to Theorer8, Algorithm 3 implements a New- generated. We pick up 100 constraints for each data set.
ton’s method to find the root of the function defined over

the objective value of the problem in E@)( Thus, Algo- 4.2, Parameter Selection of Our Method

rithm 3 converges very fast with the quadratic convergence

rate,i.e., the difference between the current objective value! "€ Proposed method has only one parameeey; of the

and the optimal objective value is smaller thdp atthet-  reduced dimensionality of the projected (sub)space by the
th iteration, where > 1 is a certain constant. In summary, transformation ofW. In this subsection, we study its im-
Algorithm 3 scales very well to large-scale data sets, which_DaCt to the learned distance metrics by performing cluster-

adds to the practical value of the proposed method. ing on the ORL data, where we vary the valuerdirom
its minimum possible value of to its maximum possible

. value of10304. For each experimental trial, first we learn
4. Experiments a distance metric from the input data with a given value of

In this section, we evaluate the proposed method in théh€ parameter, then we performi-means clustering us-
tasks of data clustering, where our goal is to examine th&19 the learned distance metric. For each different value of

robustness of our new method under the conditions whef;, W€ repeat the experiment for 100 times to eliminate the
data outliers or feature outliers are present. difference caused by the constraint pickup and the initial-

ization of K-means clustering. The clustering performance
4.1. Data Preparation measured by_ clu_stering accuracy averaged over 100 trials
are reported in Figurg.
We experiment with four benchmark data sets downloade
from the UCI machine learning data repository, including
the Breast, Diabetes Iris andProtein data sets, and one
image data set downloaded from B&L database, whose

details are summarized in Talle

9& first glance at the results in Figuieshows that the clus-
tering performance is very stable with respect to the param-
eterr in a considerably large range {0, 10304}, which
makes tuning parameter of our new method not a difficult
task. In addition, we also notice that, whers small,e.g,
Following previous research, we generate the must-linksvhenr < 50, the clustering performance is not satisfac-
and cannot-links for each data set as follows. For each cortery, which can be seen as follows. As discussed earlier,
straint, we randomly pick up one pair of data points frommetric learning can be equivalently performed as subspace
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Table 2.Clustering performances of the compared methods measyrelddiering accuracy (meah std).

Original data Noisy data Perf. diff. Original data Noisyalat Perf. diff.
Breast data Diabetes data
Eu 94.23+ 1.23 90.53+ 1.03 3.92% 55.8% 2.11 50.12+ 2.23 10.40%
Mah 95.01+ 0.21 91.42+ 0.33 3.87% 58.12 1.74 52.41+1.81 9.82%
Xing's 94.24+1.12 90.43+ 0.96 4.04% 56.61 1.88 51.11+ 1.64 9.72%
RCA 93.36+ 0.54 89.45+ 0.62 4.19% 58.3% 1.21 53.01+ 1.32 9.12%
DCA 92.07+ 0.96 89.12+ 0.88 3.59% 57.53% 1.63 50.23+ 1.44 12.69%
Xiang's 94.48+ 0.41 90.34+ 0.44 4.38% 60.9% 0.64 54.15+ 0.77 11.10%
LMNN 95.12+ 0.18 91.56+ 0.13 3.74% 60.44- 1.07 53.22+ 1.11 11.94%
ITML 93.72+ 1.01 90.24+ 0.99 3.71% 60.2% 0.81 53.67+ 1.03 10.86%
Our method 95.94+ 0.44 94.54+ 0.51 1.46% 62.14+ 0.37 60.67+ 0.42 2.37%
Iris data Protein data

Eu 85.52+ 2.45 80.41+ 2.51 5.97% 66.22- 2.11 61.54+ 2.65 7.11%
Mah 94.42+ 1.15 89.44+ 1.07 5.27% 68.02 1.35 62.37+ 1.41 8.31%
Xing's 92.36+ 1.66 88.41+ 1.95 4.27% 68.13% 1.62 63.41+ 1.50 6.93%
RCA 95.91+ 1.72 89.40+ 1.85 6.79% 68.0% 1.11 62.17+ 1.23 8.69%
DCA 96.54+ 0.34 90.15+ 0.74 6.62% 62.43% 2.11 58.41+ 1.95 6.44%
Xiang's 96.60+ 0.31 91.24+ 0.96 5.55% 73.4% 0.41 65.42+ 0.77 10.96%
LMNN 96.41+ 0.39 90.60+ 0.86 6.03% 72.15 0.56 66.10+ 0.86 8.39%
ITML 93.27+0.74 88.95+ 1.21 4.63% 73.94- 0.11 66.48+ 0.69 10.09%
Our method 97.03+ 0.15 95.17+ 0.31 1.91% 74.14+ 0.19 72.15+ 0.37 2.68%

learning, becaus®V is positive semi-definite. Therefore, implement these compared methods following their orig-
whenr is too small, the input data are projected into a veryinal papers, and fine tune their parameters to achieve the
low-dimensional subspace, which might not have sufficienbest clustering accuracy in independent preliminary exper
representative capability to properly express the cligjer iments. Again, once the distance metric is learned by a
structures of the input data and lead to inferior clusteringnethod on a data sek -means clustering is performed on
performances. the same data set using the learned distance metric.

Based upon the above observations, we tentatively draw thé/e conduct experiments in following two conditions: (1)
following conclusion. As long asg is not too small, we original data and (2) noisy data with outlier samples. To
can generally achieve decent clustering performanceg usiremulate the outlier data samples, given the input data set
the learned distance metrics. Empirically, we select X = [x1,...,%,] € R¥", we corrupt it by a noise ma-
min (d, 2¢) in all our subsequent experiments, wheris  trix X € R4*™ whose element are i.i.d. standard Gaussian
the dimensionality of the original data space and the variables. Then we carry out the same learning and clus-
cluster number of the input data. The values fifr the five  tering procedures oK + X as those on the original data,

experimental data sets are listed in the last row of Table whereo = nf ”é"'r andnf is a given noise factor. In all
.

our experiments, we setf = 0.1.

4.3. Clustering on Data with Outlier Samples
_ _ For every experimental case, the clustering performance
We evaluate the proposed method on noisy data with outy, o5 reqd by clustering accuracy are averaged over 100 tri-

lier samples using the four UCI data sets. We comparg s 14 ejliminate the difference caused picking up the con-

our method lagainst_ its two closest counterparts, ir‘Clljdin%traints and initializing thé&-means clustering procedures,
(1) the Euclidean distanc&) that setsM = I and (2) which are reported in Tab

the standard Mahalanobis distantéaf) that sets the dis- o _

tance metric as the inverse of the sample covariance mdrom Table2 we have the following interesting obser-
trix, i.e. M = (COV(X))*l_ We also compare our method vations. First, our method is consistently better than all
against several related and most recent metric learningther compared methods on all four experimental data sets,
methods, including (3Xing’s method King etal, 2009,  which demonstrate that our method is able to learn an
(4) RCA method Bar-Hillel et al, 2003, (5)DCA method  €effective distance metric that can improve the clustering
(Hoi et al, 2008, (6) Xiang’s method Kiang et al, 2009, performance. Second, although the improvements by our
(7) Large Margin Nearest NeighbolLNINN) method method over the competing methods on the original data
(Weinberger et a). 200§ and (8) Information-Theoretic are mediocre, the improvements by our method on the con-
Metric Learning (TML ) method Davis et al, 2007. We  taminated data with outlier data samples are considerably
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. . Figure 3.Running time of the compared methods to learn the dis-
Figure 2.Clustering performance of the compared methods on . . .
. tance metric matrix on the ORL image data set.
ORL image data set.

the features are contaminated, compared to other methods,

the performance degradations of our new method is very

distance metric learning method improves the clusterin . . .
; . . all, which provide one more concrete evidence to sup-
performance over the simplest Euclidean distance metho . . ;
port the usefulness of thig-norm distance in metric learn-

by 21.05% = (60.67 — 50.12)/50.12 and outperforms Xi- . :
ang’s method (with the best performance on the data sewg and confirm the correctness of the proposed method.

by 12.04% = (60.67 — 54.15)/54.15. Finally, by a more . .

cgreful exami(nation on the )e/xperimental }r/esa/lts, we aIsé"S' Computational Efficiency of Our Method
notice that the clustering performances for all the methodginauy, we evaluate the computational efficiency of the
are degraded due to introducing outlier data samples, howsroposed method, because, as analyzed earlier, it is one of
ever, as shown in the columns of “Perf. diff.” in Tal¢  the most important advantage of the proposed method. We
the degradations of the proposed method are much less thagport in Figure3 the running time of the compared meth-
those of the other compared methods. The degradations @fys on the ORL image data set, where we experiment on
our method on all the four data sets are less 8fanThis 3 Dell PowerEdge 2900 server, which has two quad-core
important observation clearly demonstrates the robustnesntel Xeon 5300 CPUs at 3.0 GHz and 48G bytes memory.
of our method against outlier data samples and empiricallBecause the Euclidean distance (EU) method and the Ma-
justifies our motivation to use the-norm distance to im-  halanobis distance (Mah) do not learn the distance metric

prove the distance metric learning. matrices, they are not involved in this experiment. From
Figure3 we can see that our new metric learning method
4.4, Clustering on Data with Outlier Features requires significantly less time to learn the distance roetri

matrix, which firmly demonstrates the computational ad-

Because we replace the traditional squafedorm dis- vantage of the proposed method.

tance by the;-norm distance in our learning objective, the
learned distance metric is robust against not only outlier )
samples but also outliers features. Thus in this subsectio®. Conclusions
we evaluate the robustness against feature outliers of tk\ﬁ/e proposed a robust distance metric learning method us-
proposed method on the ORL image data. The ORL data

setincludes 40 distinct individuals and each individuai ha |9 1€ f1-norm distances, which formulated a simulta-
: . . ) . neous/;-norm minimization and maximization (minmax)
10 gray images with different expressions and facial de-

tails. The size of each image in this data setig8 x 92. problem. The new objective uses thienorm bgtween
; . X - both data points and features, thus our method is more ro-
Besides performing clustering on the original ORL data

. . . bust to outliers. However, the new objective is much more
following the same procedures as in the previous subsec- . o . .
challenging to optimize, to solve which we derived an ef-

tion, we also emulate corrupted features by occluding th(?icient algorithm and rigorously proved its convergence.

images. For each image, we first randomly pick up a loca; . . X
. : We have performed extensive experiments on both noise-
tion and place a black square of sZex 25 onto the image. . :
) . less and noisy data, which have shown that the proposed
Then we perform clustering on the corrupted images. We . g .
: . . methods are more effective and more robust against outlier
still compare our method against the 8 competing methods . o
. ; . ; .~ Samples and outlier features than traditional methods.
using the same experimental settings as described in the
previous subsection. We repeat each test case for 100 times

and report the average clustering accuracy in Figure Acknowledgments

Figure2 shows that our method is superior to all other com-Corresponding Author: Heng Huang (heng@uta.edu).
peting methods on both the original images and the imageshis work was partially supported by US NSF IIS-
with occlusions. Moreover, on the occluded images wherel 117965, 11S-1302675, 11S-1344152.



Robust Distance Metric Learning via Simultaneous/;-Norm Minimization and Maximization

References Wang, Hua, Nie, Feiping, Huang, Heng, Risacher, Shan-
non, Saykin, Andrew J, and Shen, Li. ldentifying ad-
sensitive and cognition-relevant imaging biomarkers via
joint classification and regression. Medical Image
Computing and Computer-Assisted Intervention (MIC-

Bar-Hillel, A., Hertz, T., Shental, N., and Weinshall, D. ~ CAl 2011) pp. 115-123. Springer, 2011.

Learning distance functions using equivalence relations, : - -
In ICML. 2003, S'\Nang, Hua, Nie, Feiping, Huang, Heng, Yan, Jingwen,

Kim, Sungeun, Risacher, Shannon L, Saykin, Andrew J,
Cayton, L. and Dasgupta, S. Robust euclidean embedding. @1d Shen, Li. High-order multi-task feature learning to
In ICML, pp. 169-176, 2006. |Qent|fy Iongltudm.al phenqtyplc markers for alzheimer’s
disease progression prediction.NiPS pp. 1286-1294,
Davis, J.V., Kulis, B., Jain, P., Sra, S., and Dhillon, 1.S. 2012.
Information-theoretic metric learning. Proceedings of
the 24th international conference on Machine learning
pp. 209-216. ACM, 2007.

Argyriou, A., Evgeniou, T., and Pontil, M. Convex multi-
task feature learning.Machine Learning 73(3):243—
272, 2008.

Wang, Hua, Nie, Feiping, and Huang, Heng.  Semi-
Supervised Robust Dictionary Learning via Efficient
l3,0+-Norms Minimization . InProceedings of the

Ding, C., Zhou, D., He, X., and Zha, H. R1-pca: rotational ~14th IEEE International Conference on Computer Vision
invariant | 1-norm principal component analysis for ro- (ICCV 2013) pp. 1145-1152, 2013a.

bust subspace factorization. laML, 2006. Wang, Hua, Nie, Feiping, and Huang, Heng. Robust and

Gao, J. Robust I1 principal component analysis and its discriminative self-taught learning. IRroceedings of
bayesian variational inferenclleural Computation20: The 30th International Conference on Machine Learning
555-572, 2008. (ICML 2013) pp. 298-306, 2013b.

Hoi, S.C.H., Liu, W,, Lyu, M.R., and Ma, W.Y. Learning Weinberger, K.Q., Blitzer, J., and Saul, L K. Distance met-
distance metrics with contextual constraints for image ¢ learning for large margin nearest neighbor classifica-

retrieval. INCVPR 2006. tion. InNIPS Citeseer, 2006.

Jia, Y., Nie, F., and Zhang, C. Trace ratio problem revisited W"ght, John, Ganesh, Arvind, Rao, Shankar, Peng, Yi-
IEEE Transactions on Neural Networks (TNK)O(4): gang, and Ma, Yi. Robust principal component analysis:
729-735. 2009. Exact recovery of corruptedddvances in Neural Infor-

mation Processing Systeppp. 116, 2009.
Ke, Q. and Kanade, T. Robust |1 norm factorization in
the presence of outliers and missing data by alternativ
convex programminglEEE Conf. Computer Vision and
Pattern Recognitiofpp. 592-599, 2004.

%(iang, S., Nie, F., and Zhang, C. Learning a maha-
lanobis distance metric for data clustering and classifi-
cation. Pattern Recognitiop41(12):3600-3612, 2008.

- . Xing, E.P., Ng, A.Y., Jordan, M.I., and Russell, S. Distance
Kwak, N. Principal component analysis based on |1-norm . . ; L : o
metric learning, with application to clustering with side-

maximization. IEEE Transactions on Pattern Analysis . .
and Machine Intelligenge30:1672-1680, 2008. information. InNIPS 2002.
Zha, Z.J., Mei, T., Wang, M., Wang, Z., and Hua, X.S. Ro-

N'E’ F;{’ Euing, |_S| Ica'cl" X, "?m(‘j] D”j{glzci NEfflClen,t/Ign_d RO' bust distance metric learning with auxiliary knowledge.
ust Feature Selection via Joint [2,1-Norms Minimiza- | ' 5~ pp. 1327-1332, 2009.

tion. INNIPS 2010.

Nie, Feiping, Huang, Heng, Ding, Chris, Luo, Dijun, and
Wang, Hua. Robust principal component analysis with
non-greedy/; -norm maximization. InProceedings of
the Twenty-Second international joint conference on Ar-
tificial Intelligence-Volume Volume Typp. 1433-1438.
AAAI Press, 2011.

Wang, H., Nie, F., and Huang, H. Globally and Locally
Consistent Unsupervised Projection. Rioceedings
of the 28th AAAI Conference on Atrtificial Intelligence
(AAAI 2014) 2014.



