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Abstract
Traditional distance metric learning with side in-
formation usually formulates the objectives using
the covariance matrices of the data point pairs in
the two constraint sets of must-links and cannot-
links. Because the covariance matrix computes
the sum of the squaredℓ2-norm distances, it is
prone to both outlier samples and outlier fea-
tures. To develop a robust distance metric learn-
ing method, we propose a new objective for
distance metric learning using theℓ1-norm dis-
tances. The resulted objective is challenging to
solve, because it simultaneously minimizes and
maximizes (minmax) a number of non-smooth
ℓ1-norm terms. As an important theoretical con-
tribution of this paper, we systematically derive
an efficient iterative algorithm to solve the gen-
eral ℓ1-norm minmax problem. We performed
extensive empirical evaluations, where our new
distance metric learning method outperforms re-
lated state-of-the-art methods in a variety of ex-
perimental settings.

1. Introduction

Distance metric plays a critical role in a number of ma-
chine learning algorithms. For example,K-means cluster-
ing andk-Nearest Neighbor (k-NN) classification need to
be supplied with a suitable distance metric, through which
neighboring data points can be identified. The commonly
used Euclidean distance metric assumes that every feature
of the input data is equally important and independent from
others. This assumption, however, may not be always sat-
isfied in real world applications, especially when we deal
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with high dimensional data where some features may not
be tightly related to the topic of interest. In contrast, a dis-
tance metric with good quality should identify important
features and discriminate relevant and irrelevant features.
Thus, supplying such a distance metric is highly problem-
specific and determines the success or failure of a learning
algorithm (Xing et al., 2002; Hoi et al., 2006; Xiang et al.,
2008; Weinberger et al., 2006; Davis et al., 2007).

In this paper, we address the issue of the robustness of a
distance metric in the presence of both outlier samples and
outlier features. The former is defined as the data points
that deviates significantly from the majority of the data
points, and the latter is defined as features that do not have a
regular distribution over the data points. Given the side in-
formation of the must-links and cannon-links (Xing et al.,
2002; Hoi et al., 2006; Xiang et al., 2008), traditional dis-
tance metric learning approaches often formulate the objec-
tives using the covariance matrices of the data point pairs in
the two constraint sets. However, because these estimates
are defined as the sum of the squaredℓ2-norm distances,
they could be highly influenced by outlying observations
and features. That is, these measurements become inap-
propriate on contaminated data sets, because large errors
squared dominate the sum.

Many previous works have been done to improve the ro-
bustness of machine learning models through using theℓ1-
norm formulations (Ding et al., 2006; Cayton & Dasgupta,
2006; Gao, 2008; Ke & Kanade, 2004; Kwak, 2008;
Wright et al., 2009; Nie et al., 2011; Wang et al., 2013b;a).
However, most, if not all, these methods tried to improve
the robustness of the models like Principal Component
Analysis (PCA). Thus far, to our best knowledge, there
exists no work to utilizeℓ1-norm based objective for dis-
tance metric learning. Although it is easy and straightfor-
ward to derive a robust formulation for metric learning us-
ing theℓ1-norm distances, it is non-trivial and difficult to
solve the resulted optimization problems involving theℓ1-
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norm distances. Because most metric learning objectives
(either ratio or substraction) have to simultaneously mini-
mize the distances of the point pairs in the must-links and
maximize those in the cannot-links, all current optimization
methods in sparse learning, such as gradient projection, ho-
motopy, iterative shrinkage-thresholding, proximal gradi-
ent, and augmented lagrange multiplier methods, cannot
efficiently solve theℓ1-norm based distance metric learning
objectives.Zha et al.(2009) made a successful attempt to
learn a robust distance metric, which, however, achieved its
goal by utilizing additional knowledge from auxiliary data
yet did not replace the traditional distance metric learning
objective by any new robust formulation.

In this paper, we propose a new robust distance metric
learning objective that utilizes theℓ1-norm distances and
directly provides the robustness against outlier samples and
outlier features. However, because of using theℓ1-norm
distances, the resulted objective ends up to be a simulta-
neousℓ1-norm minimization and maximization (minmax)
problem. Although there exist a large number of optimiza-
tion algorithms to solve the objectives involvingℓ1-norm
or ℓ2,1-norm minimizations, how to efficiently solve theℓ1-
norm minmax problem is scarcely studied in literature. As
an important theoretical contribution of this paper, we sys-
tematically derive an efficient iterative algorithm to solve
the generalℓ1-norm minmax problem, whose convergence
is guaranteed by the rigorous theoretical analysis. We have
performed extensive experiments to apply our new distance
metric learning method on five benchmark data sets to eval-
uate its robustness against both outlier samples and outlier
features, in which we achieved very promising results that
are consistent with our theoretical analysis.

2. Learning A Robust Distance Metric

In this section, we will first develop a robust objective
for distance metric learning using theℓ1-norm distances,
which, though, is highly non-smooth and difficult to solve.
In the next section, we will present an efficient iterative so-
lution algorithm with a rigorous proof on its convergence.

Notations. Throughout this paper, we write matrices as
bold uppercase characters and vectors as bold lowercase
characters. Given a matrixM = [mij ], we denote itsi-th
row and itsj-th column asmi andmj, respectively. The
ℓ1-Norm ofM is defined as‖M‖1 =

∑
i,j |mij |.

Problem formalization. Assume that we have a set of
n data pointsX =

{
xi ∈ R

d
}n

i=1
. For convenience, we

write X = [x1, . . . ,xn] ∈ R
d×n. Besides, we are also

supplied with two sets of pairwise constraints among the
data points, which are manually labeled by users under cer-

tain application context:
{
S = {(xi,xj) | xi andxj are in the same class} ,

D = {(xi,xj) | xi andxj are not in the same class} ,

(1)
where we callS as must-links andD as cannot-links
(Xing et al., 2002). Note that it is not necessary for all data
points inX to be involved inS orD.

Given any two data pointsxi andxj , a Mahalanobis dis-
tance between them can be computed as following:

‖xi − xj‖M =

√
(xi − xj)

T
M (xi − xj) , (2)

whereM ∈ R
d×d is the Mahalanobis distance metric, a

symmetric matrix of sized × d. In general,M is a valid
metric if and only ifM is a positive semi-definite matrix
by satisfying the non-negativity and the triangle inequality
conditions,i.e., M � 0. When settingM to be the iden-
tity matrix Id×d, the distance computed by Eq. (2) becomes
the Euclidean distance. Our goal in robust distance metric
learning is to learn an optimal square matrixM from a col-
lection of data pointsX in the presence of outliers, such
that the distances between the data point pairs inS are as
small as possible, whilst those inD are as large as possible.

Learning a robust distance metric using theℓ1-norm
minmax formulation. Xing et al. (Xing et al., 2002) first
studied the problem of learning a distance metric from
must-links and cannot-links, in which the sum of the Ma-
halanobis distances between the point pairs in the must-
links is minimized under the constraints developed from the
point pairs in the cannot-links. Despite its effectiveness,
it is computationally inefficient when dealing with high-
dimensional data (Xiang et al., 2008). Relevance Com-
ponent Analysis (RCA) (Bar-Hillel et al., 2003) was then
proposed to solve the inverse matrix of the covariance
matrix of the data point pairs in the chunklets (must-
links), which, though, may not exist in high dimensional
data. Disciminative Component Analysis (DCA) and Ker-
nel DCA (Hoi et al., 2006) improved RCA by exploiting
negative constraints and aimed to capture nonlinear rela-
tionships using contextual information. Both RCA and
DCA, however, faced the singular problem when comput-
ing the covariance matrix for the data point pairs in the
must-links in the case of high dimensionality (Xiang et al.,
2008). To tackle this,Xiang et al.(2008) proposed to for-
mulate the distance metric learning problem as a trace ratio
minimization problem as following.

BecauseM is a positive semi-definite matrix, we can
reasonably writeM = WWT by eigen-decomposition,
where W ∈ R

d×r with r ≤ d. Thus the Maha-
lanobis distance under the metricM can be computed

as ‖xi − xj‖M =

√
(xi − xj)

T
WWT (xi − xj) =
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∥∥WT (xi − xj)
∥∥
2
, which indeed defines a transformation

of y = WTx under the projection matrixW. Then denote
the covariance matrix of the data point pairs in the must-
links asSw =

∑
(xi,xj)∈S (xi − xj) (xi − xj)

T and the
covariance matrix of the data point pairs in the cannot-links
as Sb =

∑
(xi,xj)∈D (xi − xj) (xi − xj)

T , Xiang et al.
(2008) proposed to learn the transformation matrixW by
solving the following objective:

min
WT W=I

tr
(

W
T
SbW

)

tr (WTSwW)
=

∑

(xi,xj)∈S

∥

∥

∥(xi − xj)
T
W

∥

∥

∥

2

2

∑

(xi,xj)∈D

∥

∥

∥
(xi − xj)

T
W

∥

∥

∥

2

2

.

(3)

The objective in Eq. (3) measures the ratio of the sums of
the two sets of the squaredℓ2-norm distances, one set for
the data point pairs in the must-links and the other for those
in the cannot-links. As a result, same as other least square
minimization based models in machine learning and statis-
tics, Eq. (3) is sensitive to the presence of outliers. Re-
cent progress (Gao, 2008; Ke & Kanade, 2004; Ding et al.,
2006; Kwak, 2008; Wright et al., 2009) has shown that
theℓ1-norm distance can introduce robustness against both
outlier samples as well as outlier features, which have
been widely applied to replace the squaredℓ2-norm dis-
tance in many machine learning methods, such as PCA
(Wright et al., 2009). Following the same motivations as
these prior studies, we propose to replace the squaredℓ2-
norm distances in the distance metric learning objective in
Eq. (3) by theℓ1-norm distances to promote the robustness,
which leads to the following optimization problem:

min
WTW=I

∑
(xi,xj)∈S

∥∥∥(xi − xj)
T
W

∥∥∥
1∑

(xi,xj)∈D

∥∥∥(xi − xj)
T
W

∥∥∥
1

=
‖AW‖1
‖BW‖1

,

(4)
where each row ofA is one (xi − xj)

T that satisfies
(xi,xj) ∈ S, and similarly each row ofB is one
(xi − xj)

T that satisfies(xi,xj) ∈ D.

Note that Eq. (4) can be rewritten as following:

min
WTW=I

‖AW‖1
‖BW‖1

=

∑r

i=1 ‖Awi‖1∑r

i=1 ‖Bwi‖1
, (5)

which minimizes the ratio between the overallℓ1-norm dis-
tances of the data point pairs in the must-links along all the
projecting directions and those in the cannot-links. A po-
tential problem is that the ratio between theℓ1-norm dis-
tances of the data point pairs in the must-links and those
in the cannot-links may not be minimized along each indi-
vidual projecting direction. Thus, we turn to minimize the
following better objective which emphasizes the projection
performance along every projecting direction:

min
WTW=I

r∑

i=1

‖Awi‖1
‖Bwi‖1

, (6)

Because Eq. (6) does not square the distances from either
data point or feature perspective, the outlying samples and
features will have less influence. As a result, same as other
ℓ1-norm distance based learning models, the objective in
Eq. (6) is more robust against outliers than its counterpart
defined in Eq. (3). Thus, we call Eq. (6) as the proposed
robust distance metric learningmodel.

Upon solution, the distance metric can be obtained by com-
putingM = WWT .

3. An Efficient Algorithm to Solve ℓ1-Norm
Minmax Problem

Despite the straightforward replacement from the squared
ℓ2-norm distances in Eq. (3) to the ℓ1-norm distances in
Eq. (6) to promote robustness against outliers, solving
Eq. (6) is very challenging, because it simultaneously min-
imizes and maximizes a number of non-smoothℓ1-norm
terms. Although there exist in literature a plethora of algo-
rithms (Argyriou et al., 2008; Nie et al., 2010; Wang et al.,
2011; 2012) that can minimize the objectives involvingℓ1-
norm orℓ2,1-norm terms, how to efficiently solve the objec-
tives that simultaneously minimize and maximizeℓ1-norm
terms are rarely studied. As an important theoretical con-
tribution of this paper, we will derive an efficient algorithm
to solve the generalℓ1-norm minmax problem in Eq. (6) in
the rest of this section.

Before deriving our new solution algorithm, we first intro-
duce the following useful proposition.

Proposition 1 For a linear learning model, suppose the
output projection vectoru can be linearly represented by
the input dataX, and suppose an orthonormal projec-
tion matrix V has been learned by the same model,i.e.,
VTV = I. If we learn another projection vectoru from

X̃ = X−VVTX (7)

by the same learning model, thenu is orthogonal toV.

Proof. Sinceu can be linearly represented by the input
dataX̃, we haveu = X̃α for certainα. ThusVTu =
VT

(
X−VVTX

)
α =

(
VTX−VTVVTX

)
α =(

VTX−VTX
)
α = 0, which completes the proof of

Proposition1. �

The main strength of Proposition1 lies in that it converts a
difficult orthogonally constrained optimization problem to
a series of unconstrained optimization problems by using
the reconstruction residues from the learned projections in
Eq. (7), which, fortunately, is usually much easier to solve.

Equipped with Proposition1, we derive the solution algo-
rithm to the problem in Eq. (6) in Algorithm 1.
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Algorithm 1 An efficient iterative algorithm to solve the
generalℓ1-norm minmax problem with orthogonal con-
straint in Eq. (6).

Input: Input dataX , and the must-linksS and cannot-linksD.
1. Let X1 = X. ConstructA1 andB1 from X1, S andD, and computew1

by solving the problemminw1

‖Aw1‖1
‖Bw1‖1

.

2. j = 2.
while j ≤ r do

3. ComputeXj = Xj−1 − wj−1w
T
j−1Xj−1.

4. ConstructAj andBj from Xj , S andD.

5. Computewj by solving the problemminwj

‖Ajwj‖1

‖Bjwj‖1

.

6. j = j + 1.
end while
Output: The learned projection matrixW = [w1, . . . ,wr] ∈ R

d×r .

In Algorithm 1, we learn one projection vector at a time.
Because we learn every projection vector on the recon-
struction residue from the previously learned projections,
according to Proposition1, the learned projection vectors
wj (1 ≤ j ≤ r) are orthogonal to each other.

Obviously, Step 1 and Step 5 are the key steps of Algo-
rithm 1, which solve the following problem:

min
w

‖Aw‖1
‖Bw‖1

. (8)

In the following, we will derive the solution to Eq. (8). The
detailed procedures are summarized in Algorithm3.

3.1. Useful Theorems

Theorem 1 The global solution of the following general
optimization problem:

min
v∈C

f(v)

g(v)
, where g(v) > 0 (∀ v ∈ C) , (9)

is computed by the root of the following function:

h(λ) = min
v∈C

f(v)− λg(v) , (10)

given thatf(v)− λg(v) is lower bounded.

Proof. Supposev∗ is the global solution of the problem in
Eq. (9), andλ∗ is the corresponding global minimal objec-
tive value, the following holds:f(v

∗)
g(v∗) = λ∗. Thus∀ v ∈ C,

we havef(v)
g(v) ≥ λ∗. Because we know thatg(v) > 0, we

can derivef(v)− λ∗g(v) ≥ 0, which means:

min
v ∈C

f(v) − λ∗g(v) = 0 ⇐⇒ h(λ∗) = 0 . (11)

That is, the global minimal objective valueλ∗ of the prob-
lem in Eq. (9) is the root of the functionh(λ), which com-
pletes the proof of Theorem1. �

To solve the problem in Eq. (9), we propose an iterative al-
gorithm as summarized in Algorithm2, whose convergence
is guaranteed by Theorem2 and whose computational effi-
ciency is guaranteed by Theorem3.

Algorithm 2 The algorithm to solve Eq. (9).
1. t = 1. Initializevt ∈ C.
while not convergedo

2. Calculateλt =
f(vt)
g(vt)

.

3. Calculatevt+1 = argminv∈C f(v)− λtg(v).
4. t = t + 1.

end while

Theorem 2 Algorithm 2 decreases the objective value of
the problem in Eq.(9) in each iteration till converges.

Proof. In Algorithm 2, from step 2 we know thatf(vt) −
λtg(vt) = 0. According to step 3, we know thatf(vt+1)−
λtg(vt+1) ≤ f(vt) − λtg(vt). Combining the above two
inequalities, we havef(vt+1) − λtg(vt+1) ≤ 0, which
indicatesf(vt+1)

g(vt+1)
≤ λt = f(vt)

g(vt)
. That is, Algorithm2

decreases the objective value of Eq. (9) in each iteration,
which completes the proof of Theorem2. �

Theorem 3 Algorithm 2 is a Newton’s method that finds
the root of the functionh(λ) in Eq. (10).

Proof. From step 3 in Algorithm2 we know that

h(λt) = f(vt+1)− λtg(vt+1) . (12)

Thush′(λt) = −g(vt+1).

In Newton’s method, the updated solution should be

λt+1 = λt −
h(λt)

h′(λt)

= λt −
f(vt+1)− λtg(vt+1)

−g(vt+1)
=

f(vt+1)

g(vt+1)
,

(13)

which is exactly the step 2 in Algorithm2. That is, Algo-
rithm2 is a Newton’s method to find the root of the function
h(λ). �

Theorems (1–3) present a complete framework to solve the
general optimization problem in Eq. (9), where an efficient
iterative algorithm is provided in Algorithm2 with rigor-
ously proved convergence and satisfactory computational
efficiency. It is worth to noting that, besides applying it
to solve theℓ1-norm minmax problem as in our objective
in Eq. (6), we can also employ this framework to efficiently
solve many other optimization problems that widely appear
in machine learning and statistics,e.g., the trace-ratio min-
imization problem in Eq. (3) (Jia et al., 2009; Wang et al.,
2014). Therefore, Theorems (1–3) are considered as one of
the most important theoretical contribution of this paper.

3.2. Derivation of Algorithm 3

Now we derive the solution algorithm to Eq. (8) using the
optimization framework described in Theorems (1–3).
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Because the problem in Eq. (8) is a special case of the gen-
eral optimization problem in Eq. (9), we can derive its solu-
tion algorithm using Algorithm2, in which the key step is
to solve the problem in Step 2. Given theλ computed from
Step 1 of Algorithm2, according to Step 2 of Algorithm2,
instead of solving the original problem in Eq. (8), we turn
to solve the following optimization problem:

min
w

‖Aw‖1 − λ ‖Bw‖1 . (14)

Solving the problem in Eq. (14), again, is challenging, be-
cause it is non-smooth due to involving the non-smoothℓ1-
norm terms. We derive its solution as following.

By taking the derivative of Eq. (14) with respectw and
setting it as 0, we obtain1:

∑

i

2
(
ai
)T

aiw

2|aiw|
− λ

∑

i

(
bi
)T

biw

|biw|
= 0 . (15)

Let dii = 1
2|aiw| and construct the diagonal matrixD with

its diagonal entries asdii, and letsi = b
i
w

|biw| and con-
struct the vectors with its i-th element assi, we can rewrite
Eq. (15) as following:

2ATDAw − λBT s = 0 . (16)

Thus, we can computew by solving a system of linear
equations in Eq. (16)2.

Note that, in Eq. (16) bothD ands are dependent onw.
Therefore they are unknown variables and can be seen as
the latent variables of the objective in Eq. (14), which can
be solved under the same iterative framework by alterna-
tively optimizing them (Nie et al., 2010). Specifically, we
computeD ands upon the currentw obtained in the last
iteration. Finally, we summarize the whole computation
procedures in Algorithm3, which, to our best knowledge,
solves theℓ1-norm minmax problem for the first time3.

1 Because the ℓ1-norm is non-smooth, following
(Argyriou et al., 2008), we address this by introducing a
small perturbation to replace‖v‖

1
by

∑

i

√

v2i + ζ, wherev is
a general vector andζ is a small positive constant. Apparently,
∑

i

√

v2i + ζ reduces to‖v‖
1

when ζ → 0. In the rest of
this paper, this replacement is always implicitly applied in the
definition of‖·‖

1
, unless otherwise stated.

Similarly, given a scalar variablev, we always replace|v| by
√

v2 + ζ to address the non-smoothness of|·|.
2Note that, in real problemsAT

DA could be rank deficient,
because the number of constraints in the must-links could be
smaller than the dimensionality of the feature space. Therefore, in
practice we computew by solving

(

2AT
DA+ ζI

)

w = λBT
s,

whereI is the identity matrix andζ is a small pertubation.
3The objective of theℓ1-norm minmax problem in Eq. (14)

is non-convex, thus the algorithm is guaranteed to convergeto a

Algorithm 3 An efficient iterative algorithm to solve the
generalℓ1-norm minmax problem in Eq. (8).

Input: MatricesA andB.
1. Initialize w by a random guess.
repeat

2. Computeλ =
‖Aw‖1
‖Bw‖1

.

3. Compute the diagonal matrixD with its i-th diagonal entry asdii =
1

2|aiw|
.

4. Compute the vectors with its i-th entry assi = b
i
w

|biw|
.

5. Computew by solving the linear equations2AT
DAw = λBT

s.
until Converges
Output: The learned projection vectorw.

3.3. Analysis of Algorithm 3

Convergence analysis of the algorithm.The following
theorem guarantees the convergence of Algorithm3.

Theorem 4 Algorithm 3 decreases the objective value of
the problem in Eq.(8) in each iteration till converges.

Proof. First, it is obvious that Step 5 of Algorithm3 com-
putes the optimal solution of the following problem:

min
w

wTATDAw − λwTBT s . (17)

For each iteration, we denote bỹw the updatedw by Algo-
rithm 3. According to Step 5 of Algorithm3 and Eq. (17),
we have the following inequality:

w̃TATDAw̃ − λw̃TBT s ≤

wTATDAw − λwTBT s .
(18)

Applying the definitions ofA ands in Steps 3–4, we can
equivalently rewrite Eq. (18) by decoupling the computa-
tion for each row ofA andB as following:

∑

i

(aiw̃)
2

2|aiw|
− λ

∑

i

w̃T (bi)
T
biw

|biw|
≤

∑

i

(aiw)
2

2|aiw|
− λ

∑

i

wT (bi)
T
biw

|biw|
,

(19)

where we note thataiw̃ is a scalar and
(
aiw

)T (
aiw

)
=

|aiw̃|2 = (aiw̃)2.

Because it can verified that for functionz (x) = x − x2

2α ,
given anyx 6= α ∈ Rn, z (x) ≤ z (α) holds, we have:

|aiw̃| −
(aiw̃)

2

2|aiw|
≤ |aiw| −

(aiw)
2

2|aiw|
. (20)

local optima of the objective. A proper initialization could effec-
tively avoid being trapped by local optima. In practice, we replace
theℓ1-norm in Eq. (14) by the squaredℓ2-norm and solve it as ini-
tialization, which empirically works very well in our experiments.
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In addition, according to the Cauchy-Schwarz inequality
we have:

∣∣biw̃
∣∣ ∣∣biw

∣∣ ≥
(
biw̃

)T
biw , (21)

which implies that

w̃T (bi)
T
biw

|biw|
− |biw̃| ≤ 0 = |biw| − |biw| =

wT (bi)
T
biw

|biw|
− |biw| .

(22)

Then by adding the three inequalities in Eq. (19), Eq. (20)
and Eq. (22) in the both sides, we obtain:
∑

i

|aiw̃| − λ
∑

i

|biw̃| ≤
∑

i

|aiw| − λ
∑

i

|biw| = 0

=⇒
‖Aw̃‖1
‖Bw̃‖1

=

∑
i |a

iw̃|∑
i |b

iw̃|
≤ λ =

∑
i |a

iw|∑
i |b

iw|
=

‖Aw‖1
‖Bw‖1

.

(23)

Note that, the equalities in Eqs. (19–23) hold if and only
if the objective value converges. Therefore, the objective
value of the problem in Eq. (8) is decreased in each iteration
till converges, which completes the proof of Theorem4. �

Computational analysis of the algorithm. In Algo-
rithm 3, Steps 2–4 are computationally trivial. Step 5
solves a system of linear equations, which is very well
studied and efficient solution algorithms exist. Moreover,
according to Theorem3, Algorithm 3 implements a New-
ton’s method to find the root of the function defined over
the objective value of the problem in Eq. (8). Thus, Algo-
rithm 3 converges very fast with the quadratic convergence
rate,i.e., the difference between the current objective value
and the optimal objective value is smaller than1

cc
t at thet-

th iteration, wherec > 1 is a certain constant. In summary,
Algorithm 3 scales very well to large-scale data sets, which
adds to the practical value of the proposed method.

4. Experiments

In this section, we evaluate the proposed method in the
tasks of data clustering, where our goal is to examine the
robustness of our new method under the conditions when
data outliers or feature outliers are present.

4.1. Data Preparation

We experiment with four benchmark data sets downloaded
from the UCI machine learning data repository, including
the Breast, Diabetes, Iris andProtein data sets, and one
image data set downloaded from theORL database, whose
details are summarized in Table1.

Following previous research, we generate the must-links
and cannot-links for each data set as follows. For each con-
straint, we randomly pick up one pair of data points from

Table 1.Descriptions of the experimental data sets.

Data set Breast Diabetes Iris Protein ORL

n 683 768 150 116 400
d 10 8 4 20 10304
c 5 4 2 8 40
r 10 8 4 16 80

n: number of samples. d: input dimensionality.
c: number of clusters. r: reduced dimensionality.
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Figure 1.Clustering performance on the ORL data with respect to
r (the dimensionality of the projected (sub)space byW).

the input data sets (the labels of which are available for
evaluation purpose but unavailable for clustering). If the
labels of this pair of data points are the same, we gener-
ate a must link. If the labels are different, a cannot link is
generated. We pick up 100 constraints for each data set.

4.2. Parameter Selection of Our Method

The proposed method has only one parameter,i.e., r of the
reduced dimensionality of the projected (sub)space by the
transformation ofW. In this subsection, we study its im-
pact to the learned distance metrics by performing cluster-
ing on the ORL data, where we vary the value ofr from
its minimum possible value of1 to its maximum possible
value of10304. For each experimental trial, first we learn
a distance metric from the input data with a given value of
the parameterr, then we performK-means clustering us-
ing the learned distance metric. For each different value of
r, we repeat the experiment for 100 times to eliminate the
difference caused by the constraint pickup and the initial-
ization ofK-means clustering. The clustering performance
measured by clustering accuracy averaged over 100 trials
are reported in Figure1.

A first glance at the results in Figure1 shows that the clus-
tering performance is very stable with respect to the param-
eterr in a considerably large range of[50, 10304], which
makes tuning parameter of our new method not a difficult
task. In addition, we also notice that, whenr is small,e.g.,
whenr < 50, the clustering performance is not satisfac-
tory, which can be seen as follows. As discussed earlier,
metric learning can be equivalently performed as subspace
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Table 2.Clustering performances of the compared methods measured by clustering accuracy (mean± std).

Original data Noisy data Perf. diff. Original data Noisy data Perf. diff.

Breast data Diabetes data

Eu 94.23± 1.23 90.53± 1.03 3.92% 55.83± 2.11 50.12± 2.23 10.40%
Mah 95.01± 0.21 91.42± 0.33 3.87% 58.12± 1.74 52.41± 1.81 9.82%
Xing’s 94.24± 1.12 90.43± 0.96 4.04% 56.61± 1.88 51.11± 1.64 9.72%
RCA 93.36± 0.54 89.45± 0.62 4.19% 58.33± 1.21 53.01± 1.32 9.12%
DCA 92.07± 0.96 89.12± 0.88 3.59% 57.53± 1.63 50.23± 1.44 12.69%
Xiang’s 94.48± 0.41 90.34± 0.44 4.38% 60.91± 0.64 54.15± 0.77 11.10%
LMNN 95.12± 0.18 91.56± 0.13 3.74% 60.44± 1.07 53.22± 1.11 11.94%
ITML 93.72± 1.01 90.24± 0.99 3.71% 60.21± 0.81 53.67± 1.03 10.86%
Our method 95.94± 0.44 94.54± 0.51 1.46% 62.14± 0.37 60.67± 0.42 2.37%

Iris data Protein data

Eu 85.52± 2.45 80.41± 2.51 5.97% 66.22± 2.11 61.54± 2.65 7.11%
Mah 94.42± 1.15 89.44± 1.07 5.27% 68.02± 1.35 62.37± 1.41 8.31%
Xing’s 92.36± 1.66 88.41± 1.95 4.27% 68.13± 1.62 63.41± 1.50 6.93%
RCA 95.91± 1.72 89.40± 1.85 6.79% 68.09± 1.11 62.17± 1.23 8.69%
DCA 96.54± 0.34 90.15± 0.74 6.62% 62.43± 2.11 58.41± 1.95 6.44%
Xiang’s 96.60± 0.31 91.24± 0.96 5.55% 73.47± 0.41 65.42± 0.77 10.96%
LMNN 96.41± 0.39 90.60± 0.86 6.03% 72.15± 0.56 66.10± 0.86 8.39%
ITML 93.27± 0.74 88.95± 1.21 4.63% 73.94± 0.11 66.48± 0.69 10.09%
Our method 97.03± 0.15 95.17± 0.31 1.91% 74.14± 0.19 72.15± 0.37 2.68%

learning, becauseW is positive semi-definite. Therefore,
whenr is too small, the input data are projected into a very
low-dimensional subspace, which might not have sufficient
representative capability to properly express the clustering
structures of the input data and lead to inferior clustering
performances.

Based upon the above observations, we tentatively draw the
following conclusion. As long asr is not too small, we
can generally achieve decent clustering performances using
the learned distance metrics. Empirically, we selectr =
min (d, 2c) in all our subsequent experiments, whered is
the dimensionality of the original data space andc is the
cluster number of the input data. The values ofr for the five
experimental data sets are listed in the last row of Table1.

4.3. Clustering on Data with Outlier Samples

We evaluate the proposed method on noisy data with out-
lier samples using the four UCI data sets. We compare
our method against its two closest counterparts, including
(1) the Euclidean distance (EU) that setsM = I and (2)
the standard Mahalanobis distance (Mah) that sets the dis-
tance metric as the inverse of the sample covariance ma-
trix, i.e. M = (Cov(X))

−1. We also compare our method
against several related and most recent metric learning
methods, including (3)Xing’s method (Xing et al., 2002),
(4) RCA method (Bar-Hillel et al., 2003), (5)DCA method
(Hoi et al., 2006), (6)Xiang’s method (Xiang et al., 2008),
(7) Large Margin Nearest Neighbor (LMNN ) method
(Weinberger et al., 2006) and (8) Information-Theoretic
Metric Learning (ITML ) method (Davis et al., 2007). We

implement these compared methods following their orig-
inal papers, and fine tune their parameters to achieve the
best clustering accuracy in independent preliminary exper-
iments. Again, once the distance metric is learned by a
method on a data set,K-means clustering is performed on
the same data set using the learned distance metric.

We conduct experiments in following two conditions: (1)
original data and (2) noisy data with outlier samples. To
emulate the outlier data samples, given the input data set
X = [x1, . . . ,xn] ∈ R

d×n, we corrupt it by a noise ma-
trix X̃ ∈ Rd×n whose element are i.i.d. standard Gaussian
variables. Then we carry out the same learning and clus-
tering procedures onX+σX̃ as those on the original data,
whereσ = nf

‖X‖F

‖X̃‖
F

andnf is a given noise factor. In all

our experiments, we setnf = 0.1.

For every experimental case, the clustering performance
measured by clustering accuracy are averaged over 100 tri-
als to eliminate the difference caused picking up the con-
straints and initializing theK-means clustering procedures,
which are reported in Table2.

From Table2 we have the following interesting obser-
vations. First, our method is consistently better than all
other compared methods on all four experimental data sets,
which demonstrate that our method is able to learn an
effective distance metric that can improve the clustering
performance. Second, although the improvements by our
method over the competing methods on the original data
are mediocre, the improvements by our method on the con-
taminated data with outlier data samples are considerably
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Figure 2.Clustering performance of the compared methods on
ORL image data set.

large. For example, on the noisy Diabetes data set, our new
distance metric learning method improves the clustering
performance over the simplest Euclidean distance method
by 21.05% = (60.67− 50.12)/50.12 and outperforms Xi-
ang’s method (with the best performance on the data set)
by 12.04% = (60.67 − 54.15)/54.15. Finally, by a more
careful examination on the experimental results, we also
notice that the clustering performances for all the methods
are degraded due to introducing outlier data samples, how-
ever, as shown in the columns of “Perf. diff.” in Table2,
the degradations of the proposed method are much less than
those of the other compared methods. The degradations of
our method on all the four data sets are less than3%. This
important observation clearly demonstrates the robustness
of our method against outlier data samples and empirically
justifies our motivation to use theℓ1-norm distance to im-
prove the distance metric learning.

4.4. Clustering on Data with Outlier Features

Because we replace the traditional squaredℓ2-norm dis-
tance by theℓ1-norm distance in our learning objective, the
learned distance metric is robust against not only outlier
samples but also outliers features. Thus in this subsection,
we evaluate the robustness against feature outliers of the
proposed method on the ORL image data. The ORL data
set includes 40 distinct individuals and each individual has
10 gray images with different expressions and facial de-
tails. The size of each image in this data set is112 × 92.
Besides performing clustering on the original ORL data
following the same procedures as in the previous subsec-
tion, we also emulate corrupted features by occluding the
images. For each image, we first randomly pick up a loca-
tion and place a black square of size25×25 onto the image.
Then we perform clustering on the corrupted images. We
still compare our method against the 8 competing methods
using the same experimental settings as described in the
previous subsection. We repeat each test case for 100 times
and report the average clustering accuracy in Figure2.

Figure2 shows that our method is superior to all other com-
peting methods on both the original images and the images
with occlusions. Moreover, on the occluded images where

Xing's RCA DCA Xiang's LNMM ITML
Our

method

Running time (second) 264.1 45.1 55.2 51.5 121.4 133.7 14.5
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200.0
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Figure 3.Running time of the compared methods to learn the dis-
tance metric matrix on the ORL image data set.

the features are contaminated, compared to other methods,
the performance degradations of our new method is very
small, which provide one more concrete evidence to sup-
port the usefulness of theℓ1-norm distance in metric learn-
ing and confirm the correctness of the proposed method.

4.5. Computational Efficiency of Our Method

Finally, we evaluate the computational efficiency of the
proposed method, because, as analyzed earlier, it is one of
the most important advantage of the proposed method. We
report in Figure3 the running time of the compared meth-
ods on the ORL image data set, where we experiment on
a Dell PowerEdge 2900 server, which has two quad-core
Intel Xeon 5300 CPUs at 3.0 GHz and 48G bytes memory.
Because the Euclidean distance (EU) method and the Ma-
halanobis distance (Mah) do not learn the distance metric
matrices, they are not involved in this experiment. From
Figure3 we can see that our new metric learning method
requires significantly less time to learn the distance metric
matrix, which firmly demonstrates the computational ad-
vantage of the proposed method.

5. Conclusions

We proposed a robust distance metric learning method us-
ing the ℓ1-norm distances, which formulated a simulta-
neousℓ1-norm minimization and maximization (minmax)
problem. The new objective uses theℓ1-norm between
both data points and features, thus our method is more ro-
bust to outliers. However, the new objective is much more
challenging to optimize, to solve which we derived an ef-
ficient algorithm and rigorously proved its convergence.
We have performed extensive experiments on both noise-
less and noisy data, which have shown that the proposed
methods are more effective and more robust against outlier
samples and outlier features than traditional methods.
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