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Abstract. Protein function prediction in conventional computational
approaches is usually conducted one function at a time, fundamentally.
As a result, the functions are treated as separate target classes. However,
biological processes are highly correlated, which makes functions assigned
to proteins are not independent. Therefore, it would be beneficial to make
use of function category correlations in predicting protein function. We
propose a novel Maximization of Data-Knowledge Consistency (MDKC)
approach to exploit function category correlations for protein function
prediction. Our approach banks on the assumption that two proteins
are likely to have large overlap in their annotated functions if they are
highly similar according to certain experimental data. We first establish
a new pairwise protein similarity using protein annotations from knowl-
edge perspective. Then by maximizing the consistency between the es-
tablished knowledge similarity upon annotations and the data similarity
upon biological experiments, putative functions are assigned to unan-
notated proteins. Most importantly, function category correlations are
elegantly incorporated through the knowledge similarity. Comprehensive
experimental evaluations on Saccharomyces cerevisiae data demonstrate
promising results that validate the performance of our methods.

Keywords: Protein Function Prediction, Mutli-Label Classification,
Symmetric Nonnegative Matrix Factorization.

1 Introduction

Due to its significant importance in post-genomic era, protein function predic-
tion has been extensively studied and many computational approaches have been
proposed in the past decade. Among numerous existing algorithms, graph based
approaches and data integration based approaches have demonstrated effective-
ness due to their clear connections to biological facts.
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Since many biological experimental data can be readily represented as net-
works, graph-based approaches are the most natural way to predict protein func-
tion [1]. Neighborhood-based methods [2–5] assign functions to a protein based
on the most frequent functions within a neighborhood of the protein, and they
mainly differ in how the “neighborhood” of a protein is defined. Network dif-
fusion based methods [6, 7] view the interaction network as a flow network, on
which protein functions are diffused from annotated proteins to their neighbors
in various ways. Other function prediction approaches via biological networks in-
clude graph cut based approaches [8, 9], and those derived from kernel methods
[10]. More recently, the authors developed a graph-based protein function pre-
diction method [11] using PPI graph to take advantage of the function-function
correlations by considering protein function prediction as a multi-label classifi-
cation problem, which takes the same perspective as this work. Experimental
data from one single source often incomplete and sometimes even misleading
[12], therefore predicting protein function using multiple biological data has at-
tracted increased attention. [13] proposed a kernel-based data fusion approach to
integrate multiple experimental data via a hybrid kernel and use support vector
machine (SVM) for classification. [14] presented a locally constrained diffusion
kernel approach to combine multiple types of biological networks. Artificial neu-
ral network is employed in [15] for the integration of different protein interaction
data.

Most existing computational approaches usually consider protein function pre-
diction as a standard classification problem [13, 16, 17]. Typically, these ap-
proaches make prediction one function at a time, fundamentally, i.e., the clas-
sification for each functional category is conducted independently. However, in
reality most biological functions are highly correlated, and protein functions can
be inferred from one another through their interrelatedness [11, 18]. These func-
tion category correlations, albeit useful, are seldom utilized in predicting protein
function. In this study, we explore this special characteristic of the protein func-
tional categories and make use of the function-function correlations to improve
the overall predictive accuracy of protein functions.

1.1 Multi-label Correlated Protein Function Prediction

Because a protein is usually observed to play several functional roles in differ-
ent biological processes within the same organism, it is natural to annotate it
with multiple functions. Therefore, protein function prediction is a multi-label
classification problem [19, 11, 20–22, 18]. Multi-label data, such as those used
in protein function prediction, present a new opportunity to improve classifica-
tion accuracy through label correlations, which are absent in single-label data.
For example, when applying Functional Catalogue (FunCat) annotation scheme
(version 2.1) [23] on yeast genome, we observe that there is a big overlap between
the proteins annotated to function “Cell Fate” (ID: 40) and those annotated to
“Cell Type Differentiation” (ID: 43). As shown in the left panel of Figure 1,
among 268 proteins annotated with function “Cell Fate” in yeast genome, 168
proteins are also annotated with function “Cell Type Differentiation”, whereas



Protein Function Prediction via Maximizing Data-Knowledge Consistency 313

the average number of proteins annotated with other functions is only about 51.
As a result, we reasonably speculate that these two functions are statistically
correlated in a stronger way. As a result, if a protein is known to be annotated
with function “Cell Fate” by either experimental or computational evidences,
we have high confidence to annotate the same protein with function “Cell Type
Differentiation” as well.
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(a) Number of proteins annotated to both
function “40” and one of the other functions

(b) Correlation matrix among the 17 main
functions in Funcat 2.1 to yeast genome.

Fig. 1. Left: number of proteins annotated to both function 40 and one of the other
functions. Right: visualization of the correlation values defined by Eq. (1) among the
17 main functions in FunCat 2.1 to yeast genome.

1.2 Data-Knowledge Consistency and Our Motivations

In protein function prediction, we need both experimental data and biologi-
cal knowledge. Here we refer to data as original experimental measurements or
results, such as protein sequences, protein-protein interaction (PPI) networks
measured by yeast two-hybrid screening, gene expression profiles, etc. On the
other hand, knowledge refers to human-curated research findings recorded in well
structured databases or documented in biomedical literatures, such as human-
encoded annotation databases, ontologies, etc.

In most existing approaches for protein function prediction, knowledge are
routinely used as supervision in the classification tasks, i.e., protein annotations
are interpreted as labels assigned to data points. In this study, we employ knowl-
edge information from a new perspective. Motivated by the observation that label
indications in a multi-label classification task (i.e., protein function annotations
in protein function prediction problems) convey important attribute information
[21], we use the function annotations of a protein as its description, and assess
pairwise protein similarities upon such descriptions. The key assumption of our
work is that two proteins are likely to have large overlap in their annotated func-
tions if they are highly similar according to experimental data. More precisely,
let xi and xj be descriptions of two proteins abstracted from experimental data,



314 H. Wang, H. Huang, and C. Ding

and fi and fj be the labeling vectors that encode the annotated functions of
the same two proteins respectively, we evaluate the similarity between the two
proteins in the following two different ways. The first one is based upon exper-
imental data and denoted as SD (xi,xj), while the second one is based upon
biological knowledge and denoted as SK (fi, fj). If functions fi and fj are anno-
tated appropriately to proteins xi and xj , i.e., the data and the knowledge are
consistent, we would expect that the two similarity measurements should be close
given that they are normalized to the same scale, i.e., SD (xi,xj) ≈ SK (fi, fj).
With this assumption, we may determine the optimal function assignments to
unannotated proteins by minimizing the difference between the two sets of sim-
ilarities, i.e., maximizing the consistency between experimental data and bio-
logical knowledge. In this paper, we formalize this assumption and propose our
Maximization of Data-Knowledge Consistency (MDKC) approach. Through the
knowledge similarity SK (fi, fj), function category correlations are incorporated,
such that the predictive performance is expected to be enhanced.

1.3 Notations and Problem Formalization

In protein function prediction, we are givenK biological functions and n proteins.
Without losing generality, we assume the first l proteins are annotated, our goal
is to predict functions for the rest n− l unannotated proteins.

Let xi ∈ Rp denote a protein, which is a vector description of the i-th protein
constructed from certain biological experimental data, such as the amino acid
histogram of a protein sequence. The pairwise similarities among the proteins are
modeled as a symmetric matrix W ∈ Rn×n, where Wij measures how similar
proteins xi and xj are. W is usually seen as edge weight matrix of a graph
where proteins correspond to vertices. In the simplest case of a PPI network,
Wij = 1 if protein xi and protein xj interact, and 0 otherwise. Every protein
is assigned with a number of biological functions, which are described by a
function annotation vector yi ∈ {0, 1}K, such that yi (k) = 1 if protein xi is
annotated with the k-th function, yi (k) = 0 if it is not annotated with the k-th
function or unannotated. {yi}li=1 for the first l annotated proteins are known,
and our objective is to learn {yi}ni=l+1 for the n − l unannotated proteins. We

write Y = [y1, . . . ,yn]
T

=
[
y(1), . . . ,y(K)

]
, where y(k) ∈ Rn is a class-wise

function annotation vector. Besides the ground truth function assignment matrix
Y , we also define F = [f1, . . . , fn]

T ∈ Rn×K as the predicted function assignment
matrix, where Fik = fi (k) for l + 1 ≤ i ≤ n indicates our confidence to assign
the k-th function to an unannotated protein xi.

2 Formulation of Function Category Correlations

Before we proceed to the algorithm development of our new approach, we first
explore and formalize the function category correlations, as they are one of our
most important mechanism to boost protein function prediction performance.
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As shown in the left panel of Figure 1, proteins assigned to two different
functions may overlap. Statistically, the bigger the overlap is, the more closely
the two functions are related. Therefore, functions assigned to a protein are no
longer independent, but can be inferred from one another. In the extreme case,
such as in parent-child hierarchy of protein function annotation systems, once
we know a protein is annotated to a child function, we can immediately annotate
all the ancestor functions to the same protein.

Using cosine similarity, we define a function category correlation matrix, C ∈
RK×K , where Ckl captures the correlation between the k-th and l-th functions
as following:

Ckl = cos(y(k),y(l)) =
〈y(k),y(l)〉
‖y(k)‖ ‖y(l)‖ , (1)

where 〈·, ·〉 denotes the inner product of two vectors and ‖·‖ denotes the �2 norm
of a vector.

Using FunCat annotation scheme on yeast genome, function correlations de-
fined in Eq. (1) are illustrated in the right panel of Figure 1. The high correlation
value between functions “Cell Fate” and “Cell Type Differentiation” shown in
the figure implies that they are highly correlated, which agrees with the obser-
vations shown in the left panel. In addition, as can be seen in the right panel of
Figure 1, some other function pairs are also highly correlated, such as “Transcrip-
tion” and “Protein With Binding Function or Cofactor Requirement”, “Regula-
tion of Metabolism and Protein Function” and “Cellular Communication/Signal
Transduction Mechanism”, etc. All these observations strictly comply with the
biological truths, which justifies the correctness of our formulation for function
category correlations in Eq. (1) from biological perspective.

3 The Maximization of Data-Knowledge Consistency
(MDKC) Approach

We assume that two proteins tend to have large overlap in their assigned func-
tions if they are very similar in terms of some experimental data. In order to
predict protein functions upon this assumption, we evaluate the similarity be-
tween two proteins in the following two ways, one by experimental data called
as data similarity, and the other by biological knowledge called as knowledge
similarity. We denote the former as SD (xi,xj), and the latter as SK (fi, fj). If
the functions annotated to proteins are consistent with their experimental data,
we would expect the data similarity is close to the knowledge similarity:

min
∑

i,j

[SD (xi,xj)− SK (fi, fj)]
2
,

s.t. fi = yi, ∀ 1 ≤ i ≤ l,

(2)

where the constraint fixes the functions assigned to annotated proteins to be
ground truth. The optimization objective in Eq. (2) minimizes the overall differ-
ence between the two types of similarities, which thereby maximizes the data-
knowledge consistency.
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3.1 Optimization Framework of the MDKC Approach

In protein function prediction, the data similarity is already known in a priori.
Namely, SD (xi,xj) = W , and W depends on input experimental data. For
example, when input data are a PPI network, W could be the adjacency matrix
of the PPI graph in the simplest case or any derived topological similarity; when
input data are protein sequences, W could be the inverse Euclidean distances of
amino acid histogram vectors; etc. Because W is input dependent, we defer its
detailed definitions to Section 4 according to the experimental data used in the
respective empirical evaluations.

Now we consider knowledge similarity. The simplest method is to count the
number of common annotated functions of two proteins, i.e. fTi fj . However, the
problem of this straightforward similarity measurement lies in that it considers
all the biological functions to be independent and is unable to explore the cor-
relations among them. In particular, it will give zero similarity whenever two
proteins do not share any annotated functions, although they could be strongly
related if their annotated functions are highly correlated. For example, given a
pair of proteins, one annotated with function “Cell Fate” and the other anno-
tated with function “Cell Type Differentiation”, although they may not share
any common functions, they may still have certain similarities, either biologically
or statistically, as illustrated in Figure 1. In the extreme case, in the parent-child
annotation system, such as FunCat scheme used in this work, if protein xi is an-
notated with one of the ancestor function of protein xj ’s annotated function, the
two proteins are closely related even they do not share any common functions.
Therefore, in order to capture correlations among different functions, instead of
the simple dot product, we compute the knowledge similarity as following:

SK (fi, fj) = fTi C−1fj = fTi Afj , (3)

where, for notation simplicity, we denote A = C−1 in the sequel.
Note that, compared to the dot product similarity defined by fTi fj based on

the Euclidean distance, the knowledge similarity computed by Eq. (3) is based on
the Mahalanobis distance, where C acts as the covariance matrix encoding the
human-curated prior knowledge for the biological species of interest. Statistically
speaking, because the Euclidean distance is independent of input data while the
Mahalanobis distance captures the second-order statistics of the input data, the
latter is able to better characterize the relationships between the data points of a
given input data set when its distribution is known in a priori. In protein function
prediction, the Euclidean distance based knowledge similarity is independent
of the concerned biological species, whereas the Mahalanobis distance based
knowledge similarity is specific to the biological species of interest thereby has
increased statistical power. Most importantly, function-function correlations, the
most important advantage of a multi-label data set over the traditional single-
label data set, are exploited for the later protein annotations tasks, which is an
important contribution of the proposed method.
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Utilizing the knowledge similarity defined in Eq. (3), we can formalize the
data-knowledge consistency assumption in Eq. (2) by the following optimization
problem:

argmin
F

n∑

i,j=1

(Wij −
K∑

k,l=1

FikAklFjl)
2, (4)

s.t. Fik = Yik, ∀ 1 ≤ i ≤ l, 1 ≤ k ≤ K. (5)

In standard classification problems in machine learning, Fik (1 ≤ i ≤ l) are
fixed for labeled data points. Specifically, a big Fik indicates that data point xi

belongs to the k-th class, while a small Fik indicates that xi does not belong
the k-th class. However, this assumption does not hold in the problem of protein
function prediction. For an annotated protein, its associated functions refer to
those who have certain experimental supports for the associations between this
protein and its associated functions. On the other hand, the non-association be-
tween a protein and a function only means that we currently do not have any
biological or computational evidence for the corresponding association. In real-
ity, however, the protein could have the concerned function. And the exact goal
of computational methods for protein function prediction is to identify putative
protein functions, which could work as the candidates for further experimental
screening. As a result, instead of using the hard constraints in Eq. (5), it is rea-
sonable to relax the confidence variables Fik (1 ≤ i ≤ l) for annotated proteins
to be dynamic variables, which approximate the ground truth function assign-
ments. The constraint in Eq. (5) hence can be written to minimize the following
penalty function:

α
l∑

i=1

K∑

k=1

(Yik − Fik)
2 , (6)

where α > 0 controls the relative importance of the penalty. Following the
experiences in graph-based semi-supervised learning, we empirically set α = 0.1
in all our experiments.

Finally, we write our objective in a more compact way using matrices to
minimize the following:

JMDKC (F ) = ‖W − FAFT ‖2F + 2α tr
(
(Y − F )

T
V (Y − F )

)
,

s.t. F ≥ 0, (7)

where ‖ · ‖F denotes the Frobenius norm of a matrix and tr (·) denotes the trace
of a matrix. Here V ∈ Rn×n is a diagonal indicator matrix, whose diagonal entry
Vii = 1 if the i-th protein is an annotated protein, while Vii = 0 indicates that
the i-th protein is unannotated. In Eq. (7), the constraint F ≥ 0 is naturally
enforced because W is nonnegative by definition. Most importantly, with this
nonnegative constraint Eq. (7) will be enriched with clustering interpretation as
detailed soon later, which makes the mathematical formulation of the proposed
method more biologically meaningful.
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We call Eq. (7) as our proposed Maximization of Data-Knowledge Consistency
(MDKC) approach. Upon the solution of Eq. (7), we assign putative functions
to unannotated proteins.

3.2 Computational Algorithm of MDKC Approach

Mathematically, Eq. (7) is a regularized NMF problem [24–26]. Although the
optimization techniques for the NMF problem and its variants have been exten-
sively studied in literature [27, 28, 24–26, 29, 30], solving Eq. (7) is challenging.
Most, if not all, existing algorithms to solve NMF problems are only able to deal
with rectangle input matrices (the number of rows of a matrix is different from
that of columns) or asymmetric square matrices, but not symmetric input ma-
trices such as the one used in our objective in Eq. (7). This is because the latter
involves a fourth-order term due to the symmetric usage of the factor matrix F ,
which inevitably complicates the problem (More detailed analyses can be found
in our earlier works [31, 32]). Traditional solutions to symmetric NMF typically
rely on heuristics [27, 33], thus we introduce Algorithm 1 to solve Eq. (7) in a
principled way. Due to space limit, the proofs of its correctness and convergence
will be provided in the extended journal version.

Algorithm 1. Algorithm to solve Eq. (7)

Data: 1. Data similarity matrix W .
2. Function-function correlations matrix C.
3. Indication matrix Y derived from labels of annotated proteins.
Result: Factor matrices F .
1. Computer A = C−1.
2. Initialize F following [27].
repeat

3. Compute Fij ← Fij [
(WFA+αV Y )ij

(FAFTFA+αV F )ij
]
1
4 .

until Converges

4 Results and Discussion

We evaluate the proposed MDKC approach on Saccharomyces cerevisiae genome
data. We apply the proposed method on protein sequence data, and an integra-
tion of protein sequence data and PPI network data, respectively.

We use MIPS Functional Catalogue (FunCat) system [23] to annotate pro-
teins, which is an annotation scheme for the functional description of proteins
from prokaryotes, unicellular eukaryotes, plants and animals. Taking into account
the broad and highly diverse spectrum of known protein functions, FunCat (ver-
sion 2.1) consists of 27 main functional categories that cover general fields such
as cellular transport, metabolism, cellular communication, etc. 17 main function
categories in FunCat annotation scheme are involved to annotate yeast genome,
which are listed in Table 1.
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Table 1. Main functional categories in FunCat annotation scheme (version 2.1) and
the corresponding number of annotated proteins to yeast species

Function ID Function Description Size

01 Metabolism 1397
02 Energy 336
10 Cell Cycle and DNA Processing 981
11 Transcription 1009
12 Protein Synthesis 476
14 Protein Fate 1125
16 Protein with Binding Function 1019
18 Regulation of Metabolism and Protein Function 246
20 Transport Facilitation and Transport Routes 995
30 Cellular Communication and Signal Transduction 231
32 Cell Rescue, Defense and Virulence 515
34 Interaction with the Environment 446
38 Transposable Elements, Viral and Plasmid Proteins 59
40 Cell Fate 268
41 Development 67
42 Biogenesis of Cellular Components 827
43 Cell Type Differentiation 437

4.1 Evaluation on Protein Sequence Data

Because sequence is the most fundamental form to describe a protein, which
contains important structural, characteristic and genetic information, we first
evaluate the proposed MDKC approach using protein sequences. We compare
the predictive accuracy of our approach against functional similarity weight (FS)
approach [4] and kernel-based data fusion (KDF) approach [13]. We also report
the performance of majority voting (MV) approach [2] as a baseline. We employ
broadly used average precision and average F1 score [4] as performance metrics.

Adaptive Decision Boundary for Prediction. To predict specific putative
functions for unannotated proteins we need a decision boundary (threshold) for
learned ranking values, say y(k), of each class. In many semi-supervised learn-
ing algorithms, the threshold for classification is usually selected as 0, which,
however, is not necessary to be the best choice. We use an adaptive decision
boundary to achieve better predictive performance, which is adjusted such that
the weighted training errors on annotated proteins are minimized.

Considering the binary classification problem for the k-th functional cate-
gory, we denote bk as the decision boundary, S+ and S− as the sets of positive
and negative samples for the k-th class, and e+(bk) and e−(bk) as the numbers
of misclassified positive and negative training samples. The adaptive (optimal)
decision boundary is given as following [19, 11]:

boptk = argmin
bk

[
e+(bk)

|S+| +
e−(bk)
|S−|

]
. (8)
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And the decision rule to assign a function to protein xi is given by:
{
xi is annotated with the k-th function if F ∗

ik > boptk ;

xi is not annotated with the k-th function if F ∗
ik ≤ boptk ;

(9)

Data Preparation. We obtain sequence data from GenBank [34], and describe
a protein sequence through one kind of its elementary constituents, i.e., trimers
of amino acids. Trimer, a type of k-mer (when k = 3) broadly used in sequence
analysis, considers the statistics of one amino acid and its vicinal amino acids,
and regards any three consecutive amino acids as a unit to preserve order in-
formation, e.g., “ART” is one unit, and “MEK” is another one. The trimer
histogram of a sequence hence can be used to characterize a protein xi, which
is denoted as Pi. Because histogram indeed is a probability distribution, we use
Kullback-Leibler (KL) divergence [35], a standard way to assess the difference
between two probability distributions, to measure the distance between two pro-
teins, which is defined as:

DKL (Pi ‖ Pj) =
∑

k

Pi (k) log
Pi (k)

Pj (k)
, (10)

where k denotes the index of the k-th trimer. Because KL divergence is non-
symmetric, i.e., DKL (Pi ‖ Pj) 
= DKL (Pj ‖ Pi), we use the symmetrized KL
divergence as following:

DS-KL (i, j) =
DKL (Pi ‖ Pj) +DKL (Pj ‖ Pi)

2
. (11)

Finally, the pairwise data similarity W is defined by converting the symmetrized
KL divergences through the standard way:

Wij = DS-KL (i, i) +DS-KL (j, j)− 2DS-KL (i, j)

= − [DKL (Pi ‖ Pj) +DKL (Pj ‖ Pi)] .
(12)

Improved Predictive Capability. We perform standard 5-fold cross valida-
tion to evaluate the compared approaches and report the average performance of
5 trials in Table 2. For FS approach, because it does not supply a threshold, we
use the one giving best F1 score to make prediction. We implement two versions
of our method to evaluate the contributions of each of its components. First, we
solve Eq. (7) by Algorithm 1, which is the proposed method. Second, we solve
a degenerate version of the problem in Eq. (7) by not incorporating the corre-
lations between functional categories. Specifically, we replace FAFT in Eq. (7)
by FFT , which is denoted by MDKC-S.

The results in Table 2 show that the MDKC-S and MDKC approaches clearly
outperform the other compared approaches, which concretely quantify the ad-
vantage of our approaches. The improvement on classification performance of
MDKC approach over MDKC-S approach clearly justify the usefulness of
function-function correlations in predict putative protein functions.
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Table 2. Average precision and average F1 score by the compared approaches in 5-fold
cross validation on the main functional categories of FunCat annotation scheme

Approaches Average Precision Average F1 score

FS 33.65% 22.78%
KDF 53.45% 38.10%
MV 32.07% 29.46%

MDKC-S 56.51% 39.04%
MDKC 61.38% 42.17%

4.2 Evaluation on Integrated Biological Data

As mentioned earlier, biological data from one single experimental source only
convey information for a certain aspect, which are usually incomplete and some-
times misleading. For example, similar sequences do not always have similar
functions. In the extreme case, proteins with 100% sequence identity could per-
form different functional roles [12]. Therefore, integration of different biological
data is necessary for more robust and complete protein function inferences. In
general, results learned from a combination of different types of data are likely to
lead to a more coherent model by consolidating information on various aspects of
the same biological process. In this subsection, we evaluate the predictive perfor-
mance using the integrated data from both PPI networks and protein sequences.

Data Preparation.We download PPI data for Saccharomyces cerevisiae species
from BioGRID (version 2.0.56) [36]. By removing the proteins connected by only
one PPI, we end up with 4403 annotated proteins with 86167 PPIs. We represent
the protein interaction network as a graph, with vertices corresponding to the
proteins, and edges corresponding to PPIs. The adjacency matrix of the graph
is denoted as B ∈ {0, 1}n×n where n = 4403, such that Bij = 1 if proteins xi

and xj interact, and 0 otherwise.
The adjacency matrix B itself measures the similarity among proteins in

the sense that two proteins are related if they interact. However, two critical
problems prevent us from directly using B as data similarity SD (xi,xj) to pre-
dict protein function. First, B only measures the local connectivity of a graph,
and contains no information for connections via more than one edge. Therefore
the important information contained in the global topology is simply ignored.
Second, PPI data suffer from high noise due to the nature of high-throughput
technologies, e.g., false positive rate in yeast two-hybrid experiments is esti-
mated as high as 50% [37]. Therefore, we use the Topological Measurement
(TM) method [38] to compute the data similarity matrix WPPI, which takes into
consideration paths with all possible lengths on a network and weights the influ-
ence of every path by its length. Specifically, (WPPI)ij between proteins xi and
xj is computed as:
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(WPPI)ij =

|V |−2∑

k=2

PRk (i, j) ,

PRk (i, j) =
PSk (i, j)

MaxPSk (i, j)
, (13)

where |V | is the number of vertices in the PPI graph, PRk (i, j) is the path
ratio of the paths of length k between proteins xi and xj , and PSk (i, j) and

MaxPSk (i, j) are defined as following:

PSk (i, j) =
(
Ak

)
ij
, (14)

where (·)ij denotes the ij-th entry of a matrix, and

MaxPSk (i, j) =

⎧
⎪⎨

⎪⎩

√
didj , if k = 2,

didj , if k = 3,
∑

k∈N(i),l∈N(j) MaxPSk−2 (k, l) , if k > 3.

(15)

where di =
∑

j Bij is the degree of the i-th vertex, and N (i) denotes its neigh-
boring vertices. The detailed explanation of TM measurement can be referred
to [38].

We compute the sequence data similarity following the same ways in Sec-
tion 4.1, which is denoted as and Wsequence respectively. The integrated data
similarity W is hence computed as following:

W = WPPI + γWsequence, (16)

where γ is a parameter to balance the two data sources and we empirically select
it as:

γ =

∑
i,,i�=j WPPI (i, j)

∑
i,,i�=j Wsequence (i, j)

. (17)

We compare the predictive performance of our MDKC approach to two data
integration based protein function prediction approaches: kernel-based data fu-
sion (KDF) approach [13] and locally constrained diffusion kernel (LCDK) ap-
proach [14], and two baseline approaches: majority voting (MV) approach [2]
and iterative majority voting (IMV) approach [8]. The function-wise prediction
performance measured by average precision and average F1 score in standard
5-fold cross validation are reported in Figure 2.

From the results in Figure 2(a) and Figure 2(b), we can see that the pro-
posed MDKC approach consistently better than other compared approaches,
sometimes very significantly, which again demonstrate the superiority of our
approach.

A more careful examination on the results in Figure 2 shows that, although our
approach outperforms the compared approaches in most functional categories,
but not always, e.g., the average precision for function “Transposable Elements,
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Fig. 2. Performance of 5-fold cross validation for the 17 main functional categories in
FunCat annotation scheme (version 2.1) by KDF, LCDK, MV, GMV and the proposed
MDKC approach

Viral and Plasmid Proteins” (ID: 38). By scrutinizing the function category
correlations, defined in Eq. (1) and illustrated in the right panel of Figure 1,
we can see the average correlation of function “Transposable Elements, Viral
and Plasmid Proteins” with other functional categories is among the lowest. As
a result, the presence/absence of this function category can not benefit from
other functional categories, because it only has weak correlations with them. In
contrast, prediction for the function categories with high correlations to others
generally can benefit from our approach. This observation firmly testify the
importance of function category correlations in predicting protein function.

5 Conclusions

In this paper, we presented a novel Maximization of Data-Knowledge Consis-
tency (MDKC) approach to predict protein function, which attempts to make
use of function category correlations to improve the predictive accuracy. Dif-
ferent from traditional approaches in predicting protein function, we employed
annotation knowledge in a novelly different way to measure pairwise protein sim-
ilarities. By maximizing consistency between the knowledge similarity computed
from annotations and the data similarity computed from biological experimen-
tal data, optimal function assignments to unannotated proteins are obtained.
Most importantly, function category correlations are incorporated in a natural
way through the knowledge similarity. Comprehensive empirical evaluations have
been conducted on Saccharomyces cerevisiae genome, promising results in the
experiments justified our analysis and validated the performance of our methods.

References

1. Sharan, R., Ulitsky, I., Shamir, R.: Network-based prediction of protein function.
Mol. System Biol. 3(1) (2007)

2. Schwikowski, B., Uetz, P., Fields, S.: A network of protein- protein interactions in
yeast. Nat. Biotech. 18, 1257–1261 (2000)



324 H. Wang, H. Huang, and C. Ding

3. Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., Takagi, T.: Assessment of
prediction accuracy of protein function from protein-protein interaction data.
Yeast 18(6), 523–531 (2001)

4. Chua, H., Sung, W., Wong, L.: Exploiting indirect neighbours and topological
weight to predict protein function from protein-protein interactions. Bioinformat-
ics 22(13), 1623–1630 (2006)

5. Chua, H., Sung, W., Wong, L.: Using indirect protein interactions for the prediction
of Gene Ontology functions. BMC Bioinformatics 8(suppl. 4), S8 (2007)

6. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., Singh, M.: Whole-proteome pre-
diction of protein function via graph-theoretic analysis of interaction maps. Bioin-
formatics 21, 302–310 (2005)

7. Weston, J., Elisseeff, A., Zhou, D., Leslie, C., Noble, W.: Protein ranking: from
local to global structure in the protein similarity network. Proc. Natl. Acad. Sci.
USA 101(17), 6559 (2004)

8. Vazquez, A., Flammini, A., Maritan, A., Vespignani, A.: Global protein function
prediction from protein-protein interaction networks. Nat. Biotechnol. 21, 697–700
(2003)

9. Karaoz, U., Murali, T., Letovsky, S., Zheng, Y., Ding, C., Cantor, C., Kasif, S.:
Whole-genome annotation by using evidence integration in functional-linkage net-
works. Proc. Natl Acad. Sci. USA 101(9), 2888–2893 (2004)

10. Liang, S., Shuiwang, J., Jieping, Y.: Adaptive diffusion kernel learning from bio-
logical networks for protein function prediction. BMC Bioinformatics 9, 162 (2008)

11. Wang, H., Huang, H., Ding, C.: Function-function correlated multi-label protein
function prediction over interaction networks. In: Chor, B. (ed.) RECOMB 2012.
LNCS, vol. 7262, pp. 302–313. Springer, Heidelberg (2012)

12. Whisstock, J., Lesk, A.: Prediction of protein function from protein sequence and
structure. Q. Rev. Biophysics 36(3), 307–340 (2004)

13. Lanckriet, G., Deng, M., Cristianini, N., Jordan, M., Noble, W.: Kernel-based data
fusion and its application to protein function prediction in yeast. In: Proc. of Pacific
Symp. on Biocomputing, vol. 9, pp. 300–311 (2004)

14. Tsuda, K., Noble, W.: Learning kernels from biological networks by maximizing
entropy. Bioinformatics 20, 326–333 (2004)

15. Shi, L., Cho, Y., Zhang, A.: ANN Based Protein Function Prediction Using Inte-
grated Protein-Protein Interaction Data. In: Proc. of International Joint Conf. on
Bioinformatics, Systems Biol. and Intelligent Comp., pp. 271–277 (2009)

16. Shin, H., Lisewski, A., Lichtarge, O.: Graph sharpening plus graph integration:
a synergy that improves protein functional classification. Bioinformatics 23(23),
3217 (2007)

17. Sun, L., Ji, S., Ye, J.: Adaptive diffusion kernel learning from biological networks
for protein function prediction. BMC Bioinformatics 9(1), 162 (2008)

18. Wang, H., Huang, H., Ding, C.: Protein function prediction via laplacian network
partitioning incorporating function category correlations. In: Proceedings of the
Twenty-Third International Joint Conference on Artificial Intelligence, pp. 2049–
2055. AAAI Press (2013)

19. Wang, H., Huang, H., Ding, C.: Image Annotation Using Multi-label Correlated
Green’s Function. In: Proc. of IEEE ICCV 2009, pp. 2029–2034 (2009)

20. Wang, H., Ding, C., Huang, H.: Multi-label linear discriminant analysis. In: Dani-
ilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part VI. LNCS, vol. 6316,
pp. 126–139. Springer, Heidelberg (2010)



Protein Function Prediction via Maximizing Data-Knowledge Consistency 325

21. Wang, H., Huang, H., Ding, C.: Multi-label feature transform for image classifi-
cations. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV.
LNCS, vol. 6314, pp. 793–806. Springer, Heidelberg (2010)

22. Wang, H., Huang, H., Ding, C.: Image annotation using bi-relational graph of
images and semantic labels. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition 2011 (CVPR 2011), pp. 793–800 (2011)

23. Mewes, H., Heumann, K., Kaps, A., Mayer, K., Pfeiffer, F., Stocker, S., Frishman,
D.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 27(1),
44 (1999)

24. Cai, D., He, X., Wu, X., Han, J.: Non-negative matrix factorization on manifold.
In: Proc. of ICDM (2008)

25. Gu, Q., Zhou, J.: Co-clustering on manifolds. In: Proc. of SIGKDD (2009)
26. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized non-negative matrix

factorization for data representation. IEEE Trans. Pattern Analysis Mach. Intell. 99
(2010)

27. Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-
factorizations for clustering. In: SIGKDD (2006)

28. Ding, C., Li, T., Jordan, M.: Convex and semi-nonnegative matrix factorizations.
IEEE Transactions on Pattern Analysis and Machine Intelligence 32(1), 45–55
(2010)

29. Wang, H., Nie, F., Huang, H., Makedon, F.: Fast nonnegative matrix
tri-factorization for large-scale data co-clustering. In: Proceedings of the
Twenty-Second International Joint Conference on Artificial Intelligence, vol. 2,
pp. 1553–1558. AAAI Press (2011)

30. Wang, H., Nie, F., Huang, H., Ding, C.: Dyadic transfer learning for cross-domain
image classification. In: Proc. of ICCV, pp. 551–556. IEEE (2011)

31. Wang, H., Nie, F., Huang, H., Ding, C.: Nonnegative matrix tri-factorization based
high-order co-clustering and its fast implementation. In: Proceedings of ICDM
(2011)

32. Wang, H., Huang, H., Ding, C., Nie, F.: Predicting protein-protein interactions
from multimodal biological data sources via nonnegative matrix tri-factorization.
In: Chor, B. (ed.) RECOMB 2012. LNCS, vol. 7262, pp. 314–325. Springer, Hei-
delberg (2012)

33. Li, T., Ding, C., Jordan, M.: Solving consensus and semi-supervised clustering
problems using nonnegative matrix factorization. In: Proc. of ICDM (2007)

34. Benson, D., Karsch-Mizrachi, I., Lipman, D.: GenBank. Nucleic Acids Res. 34,
D16–D20 (2006)

35. Kullback, S., Leibler, R.: On information and sufficiency. The Annals of Mathe-
matical Statistics, 79–86 (1951)

36. Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers,
M.: BioGRID: a general repository for interaction datasets. Nucleic Acids
Res. 34(database issue), D535 (2006)

37. Deane, C., Salwinski, L., Xenarios, I., Eisenberg, D.: Protein Interactions Two
Methods for Assessment of the Reliability of High Throughput Observations. Mol.
& Cellular Proteomics 1(5), 349–356 (2002)

38. Pei, P., Zhang, A.: A topological measurement for weighted protein interaction
network. In: Proceedings of the 2005 IEEE Computational Systems Bioinformatics
Conference, pp. 268–278 (2005)


	Correlated Protein Function Prediction via Maximizationof Data-Knowledge Consistency
	1 Introduction
	1.1 Multi-label Correlated Protein Function Prediction
	1.2 Data-Knowledge Consistency and Our Motivations
	1.3 Notations and Problem Formalization

	2 Formulation of Function Category Correlations
	3 The Maximization of Data-Knowledge Consistency (MDKC) Approach
	3.1 Optimization Framework of the MDKC Approach
	3.2 Computational Algorithm of MDKC Approach

	4 Results and Discussion
	4.1 Evaluation on Protein Sequence Data
	4.2 Evaluation on Integrated Biological Data

	5 Conclusions
	References




