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Abstract

Locality preserving projection (LPP) is an effective di-
mensionality reduction method based on manifold learning,
which is defined over the graph weighted squared �2-norm
distances in the projected subspace. Since squared �2-norm
distance is prone to outliers, it is desirable to develop a ro-
bust LPP method. In this paper, motivated by existing studies
that improve the robustness of statistical learning models via
�1-norm or not-squared �2-norm formulations, we propose a
robust LPP (rLPP) formulation to minimize the p-th order of
the �2-norm distances, which can better tolerate large outly-
ing data samples because it suppress the introduced biased
more than the �1-norm or not squared �2-norm minimizations.
However, solving the formulated objective is very challeng-
ing because it not only non-smooth but also non-convex. As
an important theoretical contribution of this work, we sys-
tematically derive an efficient iterative algorithm to solve the
general p-th order �2-norm minimization problem, which, to
the best of our knowledge, is solved for the first time in
literature. Extensive empirical evaluations on the proposed
rLPP method have been performed, in which our new method
outperforms the related state-of-the-art methods in a variety
of experimental settings and demonstrate its effectiveness in
seeking better subspaces on both noiseless and noisy data.

Introduction
Dimensionality reduction (DR) algorithms seek to rep-
resent the input data in their lower-dimensional “intrin-
sic” subspace/sub-manifold, in which irrelevant features are
pruned and inherent data structures are more lucid. In the
early ages, DR algorithms assume that the input data ob-
jects are homogeneous but not relational, and thereby are
devised to deal with a set of attributes in the format of fixed
length vectors. For example, Principal Component Analy-
sis (PCA) (Jolliffe 2005) attempts to maximize the covari-
ance among data points, while Linear Discriminant Analysis
(LDA) (Fukunaga 1990) aims at maximizing the class sep-
arability. In recent years, manifold learning has motivated
many DR algorithms using pairwise similarities between
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data objects, either computed from data attributes or di-
rectly obtained from experimental observations. These algo-
rithms, such as ISOMAP (Tenenbaum, De Silva, and Lang-
ford 2000), Locally Linear Embedding (LLE) (Roweis and
Saul 2000), Laplacian Eigenmap (Belkin and Niyogi 2001),
Locality Preserving Projection (LPP) (Niyogi 2004), and
discriminant Laplacian embedding (Wang, Huang, and Ding
2010b), etc., generally assume that the observed data are
sampled from an underlying sub-manifold which is embed-
ded in a high-dimensional observation space. Due to this rea-
sonable assumption, manifold based learning methods have
achieved great success to solve problems in a large number
of real-world applications. Among these manifold learning
based projection methods, LPP has been widely accepted be-
cause it is able to learn a linear projection from the original
data, such that it can be easily applied to not only training
data but also out-of-sample data points.

In this paper, we address the issue of robustness of LPP
in the presence of outlier samples, which is defined as the
data points that deviates significantly from the rest major-
ity of the data points. In classical LPP approach, the learn-
ing objective is formulated using the squared distance in
the projected subspace, which, same as other least square
based learning objectives in statistical learning, could be
significantly influenced by outlying observations. That is,
the traditional LPP formulation becomes inappropriate at
contaminated data sets, because large errors squared dom-
inate the sum. Many previous works have been done to im-
prove the robustness of the linear dimensionality reduction
methods via using the �1-norm minimizations or not-squared
�2-norm minimizations (Baccini, Besse, and Falguerolles
1996; Ding et al. 2006; Gao 2008; Ke and Kanade 2005;
Kwak 2008; Wright et al. 2009; Nie et al. 2010; 2011;
Wang, Nie, and Huang 2014). The key motivation of these
prior works lies in that the not-squared �2-norm distance or
error functions, say ‖xi − xj‖2 for the two vectors xi and
xj , can generally better tolerate the biases caused by the out-
lying data samples, especially when the outlier data samples
are far away from the normal data distributions. Following
the same intuition, we recognize that the distance with lower
orders, e.g., ‖xi − xj‖p2 where 0 < p < 1, can achieve
the same goal for robustness with potentially better results
(Wang et al. 2013), because the bias caused by outlying data
samples can be further suppressed when p(< 1) is selected
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as a very small number. Based on this recognition, we pro-
pose a new LPP objective using the p-th order distance, and
call the resulted objective as the p-order minimization prob-
lem. Because the learned projection by our new method is
robust against outlier data samples, we call it robust locality
preserving projection (rLPP) method, which is interesting
from a number of perspectives as following.

• Our new objective is defined over the p-th (0 < p ≤ 2)
order of the �2-norm distance, which is more general
and makes the traditional LPP a special case of our new
method when p = 2.

• Same as other �1-norm or not-squared �2-norm based
learning objectives, our new method is robust against out-
lier data samples, which is particularly true when p < 1.
The smaller the value of p is, the better robustness our
new method can achieve.

• Despite its clear intuitions and nice theoretical properties,
the resulted objective of the proposed rLPP method is dif-
ficult to solve, because it is not only non-smooth but also
non-convex. To solve the problem, we propose an effi-
cient iterative solution algorithm, whose convergence is
rigourously proved.

• Extensive empirical studies have been performed to eval-
uate a variety aspects of the proposed rLPP method,
which clearly demonstrate the effectiveness of the pro-
posed method on not only noiseless data sets but also
noisy data sets with outlier samples, especially for the lat-
ter case.

Motivation of the Proposed Problem
Suppose we have n data points {x1, · · · , xn ∈ R

d×1}, we
construct a graph using the data with the similarity matrix
S ∈ R

n×n. The Laplacian matrix L is defined as L = D−S,
where D is a diagonal matrix with the i-th diagonal element
as

∑
j Sij .

Recently, Locality Preserving Projection (LPP) and its
variants have been successfully applied for dimensionality
reduction. The projection matrix W ∈ R

d×m(m < d) in
LPP is obtained by solving the following problem1:

min
WTXDXTW=I

n∑

i,j=1

Sij

∥∥WTxi −WTxj

∥∥2
2
. (1)

The objective in Eq.(1) can be written as tr(WTXLXTW ).
Thus the optimal solution W to problem (1) is the m eigen-
vectors of (WTXDXTW )−1WTXLXTW corresponding
to the m smallest eigenvalues.

The basic idea of LPP is to preserve the neighborhood
relationship between data points. Specifically, as shown in
Eq.(1), LPP tries to find a embedded subspace such that the
distances of data pairs which are neighbors in the original
space are minimized.

1In practice, to ensure the learned projection W is shift-
invariant, D in Eq.(1) should be Ld = D −D11TD, or the train-
ing data X must be centered (Nie et al. 2009; Nie, Cai, and Huang
2014)

The squared distances used in Eq.(1) do not tolerate large
value of distance, thus makes the distances in the embedded
subspace tend to be even, i.e., not too large but also not too
small. Therefore, the squared distances used in LPP would
makes the method can not find the optimal subspace such
that most of the distances of local data pairs are minimized
but a few of them are large. In this paper, we propose to solve
the following problem to find the optimal subspace:

min
WTXDXTW=I

n∑

i,j=1

Sij

∥∥WTxi −WTxj

∥∥p
2
. (2)

where 0 < p ≤ 2. Obviously, LPP is a special case of the
proposed new method when p = 2. More importantly, by
setting p ≤ 1, the method will focus on minimizing most of
the distances of local data pairs.

Although the motivation of Eq. (2) is clear, it is a non-
smooth objective and difficult to be solved efficiently. Thus,
in the next section, we will introduce an iterative algorithm
to solve the problem (2). We will show that the original
weight matrix W would be adaptively re-weighted to cap-
ture clearer cluster structures after each iteration.

Optimization Algorithm to the Proposed
Method

The Lagrangian function of the problem (2) is

L(W ) =
n∑

i,j=1

Sij

∥∥WTxi −WTxj

∥∥p
2

−Tr(Λ(WTXDXTW − I)).
(3)

Denote a Laplacian matrix L̃ = D̃ − S̃, where S̃ is a re-
weighted weight matrix defined by

S̃ij =
p

2
Sij

∥∥WTxi −WTxj

∥∥p−2

2
, (4)

D̃ is a diagonal matrix with the i-th diagonal element as∑
j S̃ij . Taking the derivative of L(W ) w.r.t W , and setting

the derivative to zero, we have:

∂L(W )

∂W
= XL̃XTW −XDXTWΛ = 0, (5)

which indicates that the solution W is the eigenvectors of(
XDXT

)−1
XL̃XT . Note that

(
XDXT

)−1
XL̃XT is de-

pendent on W , we propose an iterative algorithm to obtain
the solution W such that Eq. (5) is satisfied. The algorithm
is guaranteed to converge to a local optimum, which will be
proved in the next subsection.

The algorithm is described in Algorithm 1. In each iter-

ation, L̃ is calculated with the current solution W , then the
solution W is updated according to the current calculated

L̃. The iteration procedure is repeated until converges. From
the algorithm we can see, the original weight matrix S is
adaptively re-weighted to minimize the objective in Eq. (2)
during the iteration.
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Input: Training data X ∈ R
d×n. The original weight

matrix S ∈ R
n×n. D is a diagonal matrix with

the i-th diagonal element as
∑

j Sij .

Initialize W ∈ R
d×m such that WTXDXTW = I ;

while not converge do
1. Calculate L̃t = D̃t − S̃t, where

S̃ij =
p
2Sij

∥∥WTxi −WTxj

∥∥p−2

2
, D̃ is a diagonal

matrix with the i-th diagonal element as
∑

j(S̃)ij ;

2. Update Q. The columns of the updated Q are the

first m eigenvectors of
(
XDXT

)−1
XL̃XT

corresponding to the first m smallest eigenvalues ;

end
Output: W ∈ R

d×m.

Algorithm 1: The algorithm to solve the problem (2).

Convergence Analysis
To prove the convergence of the Algorithm 1, we need the
following lemmas:

Lemma 1 For any scalar x, when 0 < p ≤ 2, we have
2|x|p − px2 + p− 2 ≤ 0.

Proof: Denote f(x) = 2x
p
2 − px+ p− 2, then we have

f ′(x) = p(x
p−2
2 − 1), (6)

and

f ′′(x) =
p(p− 2)

2
x

p−4
2 . (7)

Obviously, when x > 0 and 0 < p ≤ 2, then f ′′(x) ≤ 0 and
x = 1 is the only point that f ′(x) = 0. Note that f(1) = 0,
thus when x > 0 and 0 < p ≤ 2, then f(x) ≤ 0. Thus
f(x2) ≤ 0, which indicates 2|x|p − px2 + p− 2 ≤ 0. �
Lemma 2 For any nonzero vectors v, v0, when 0 < p ≤ 2,
the following inequality holds:

‖v‖p2 −
p

2
‖v0‖p−2

2 ‖v‖22 ≤ ‖v0‖p2 −
p

2
‖v0‖p−2

2 ‖v0‖22 . (8)

Proof:

2
( ‖v‖2

‖v0‖2

)p

− p
( ‖v‖2

‖v0‖2

)2

+ p− 2 ≤ 0

⇒ 2 ‖v‖p2 − p ‖v0‖p−2
2 ‖v‖22 ≤ (2− p) ‖v0‖p2

⇒ ‖v‖p2 − p
2
‖v0‖p−2

2 ‖v‖22 ≤ ‖v0‖p2 − p
2
‖v0‖p−2

2 ‖v0‖22 ,
where the first inequality is true according to Lemma 1. �

Now we have the following theorem:

Theorem 1 The Algorithm 1 will monotonically decrease
the objective of the problem (2) in each iteration, and con-
verge to a local optimum of the problem.

Proof: Suppose the updated W is W̃ . According to the step
2 in the Algorithm 1, we know that

W̃ = arg min
WTXDXTW=I

Tr(WTXL̃XTW )

= arg min
WTXDXTW=I

n∑
i,j=1

S̃ij

∥∥WTxi −WTxj

∥∥2
2
.

(9)

Note that S̃ij =
p
2Sij

∥∥WTxi −WTxj

∥∥p−2

2
, so we have

n∑
i,j=1

p
2Sij

∥∥WTxi −WTxj

∥∥p−2

2

∥∥∥W̃Txi − W̃Txj

∥∥∥
2

2

≤
n∑

i,j=1

p
2Sij

∥∥WTxi −WTxj

∥∥p−2

2

∥∥WTxi −WTxj

∥∥2
2
.

(10)
According to Lemma 2, we have

n∑
i,j=1

Sij

∥∥∥W̃Txi − W̃Txj

∥∥∥
p

2
−

n∑
i,j=1

p
2Sij

∥∥WTxi −WTxj

∥∥p−2

2

∥∥∥W̃Txi − W̃Txj

∥∥∥
2

2

≤
n∑

i,j=1

Sij

∥∥WTxi −WTxj

∥∥p
2
−

n∑
i,j=1

p
2Sij

∥∥WTxi −WTxj

∥∥p−2

2

∥∥∥W̃Txi − W̃Txj

∥∥∥
2

2
.

(11)
Summing Eq. (10) and Eq. (11) in the two sides, we arrive
at

n∑
i,j=1

Sij

∥∥∥W̃Txi − W̃Txj

∥∥∥
p

2

≤
n∑

i,j=1

Sij

∥∥WTxi −WTxj

∥∥p
2
.

(12)

Thus the Algorithm 1 will monotonically decrease the ob-
jective of the problem (2) in each iteration t until the algo-
rithm converges. In the convergence, the equality in Eq. (12)

holds, thus W and L̃ will satisfy Eq. (5), the KKT condition
of problem (2). Therefore, the Algorithm 1 will converge to
a local optimum of the problem (2). �

Experimental Results
In this section, we empirically study the proposed robust lo-
cality preserving projection (rLPP) method, where our goal
is to examine its robustness under the conditions when data
outliers are present.

Data Descriptions
We evaluate the proposedmethods on five widely used
benchmark data sets in machine learning studies. The data
descriptions are summarized in Table 1. The first two data
sets are obtained from the UCI machine learning data repos-
itory. For the CMU PIE (Face Pose, Illumination, and Ex-
pression) face data set, all the face images are resized to
32 × 32 following standard computer vision experimen-
tal conventions to reduce the misalignment effects. For the
two document data sets, following previous studies, for
Reuters21578 data set, we remove the keywords appearing
less than 50 times and end up with 1599 features; for TDT2
corpus data set, we remove the keywords appearing less than
100 times, and end up with 3157 features, respectively.

Study of the Parameter of the Proposed Method
The proposed method has only one parameter, i.e., p in
Eq. (2), which controls to which extent we suppress the bias
introduced by the outlier data samples. Thus, we first evalu-
ate its impacts to the learned projections.
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Table 1: Data sets used in our experiments.

Data set Number Dimension Classes

Coil20 1440 1024 20
Vehicle 946 18 4
PIE face 3329 1024 68
Reuters21578 8293 1599 65
TDT2 corpus 9394 3157 30
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Figure 1: Clustering accuracy in the learned projected spaces
by the proposed method vs. p on the Coil20 data set.

Experimental setups. We experiment with the Coil20 data
set. An important property of the Coil20 data set is that the
pictures in the data set were taken repeatedly for one same
object from different viewing angles. As a result, the im-
ages for the same object indeed reside on an intrinsical man-
ifold. Our goal is to cluster the object images in the pro-
jected space learned by the proposed method, by which we
examine whether the manifold structures can be discovered
such that the clustering performance can be improved. We
vary p of the proposed objective in the range of 0.1 to 2 to
study its impacts to the clustering performance. We perform
the clustering using the K-means clustering method in the
projected subspaces, where K is set to the true cluster num-
bers. The clustering performances with different parameter
settings measured by the clustering accuracies are reported
in Figure 1. To alleviate the randomness due to the initial-
izations for the K-means clustering method, we repeat the
experiment at each parameter setting for 50 times and report
the average clustering accuracy in Figure 1.

Experimental results. From Figure 1 we can see that,
smaller p leads to better clustering accuracy, i.e., the pro-
jected subspace learned by our new method with smaller
p can better find the intrinsic data structures, which clearly
confirms the correctness to use p-order minimization to learn
the locality preserved projections. We also notice that when
p is very small, e.g., when p = 0.1 and p = 0.2, the clus-
tering performances is not as good as that when p = 0.3.
This can be attributed that, when p is too small, the dis-
tance measurement will be compromised, i.e., the relative
difference between different distances become smaller. In
the extreme case, when p → 0, the distance between any
data pairs will turn to be the same. Theoretically, p should
take a small value to improve the robustness of the proposed

objective against outlier data samples; meanwhile p should
not be too small to invalidate the distance measurement in
the Euclidean space. Upon the results in Figure 1, empir-
ically, we set p = 0.3 in all our subsequent experiments,
unless otherwise stated.

Convergence Study of the Solution Algorithm
Because the proposed rLPP method employs an iterative so-
lution algorithm, an important issue is its convergence prop-
erty. We have theoretically proved the convergence of the
algorithm, and now we empirically study the convergence
property of the proposed iterative algorithm. The objective
values of our algorithm on the five data sets in each itera-
tion are plotted in the sub-figures of Figure 2, which show
that the objective values of our algorithm keep to decrease
along with iterative processes, which is perfectly in accor-
dance with our earlier theoretical analysis. Moreover, the al-
gorithm typically converges to the asymptotic limit within
7 iterations, which demonstrates that our solution algorithm
is very computationally efficient. As a result, our new algo-
rithm scales well to large-scale data sets and adds its value
for practical use. Upon these experimental results, empiri-
cally, we select a stopping threshold of 10−5 in all our fol-
lowing experiments, which is sufficient to achieve satisfac-
tory results in terms of convergence.

Experimental Results on Benchmark Noiseless
Data

Experimental setups. When we construct the data graph
only using data similarity, the proposed rLPP method is
an unsupervised method. Thus we compare it against the
following unsupervised dimensionality reduction methods:
(1) principal component analysis (PCA) (Jolliffe 2005),
(2) robust principal component analysis (rPCA) (Wright
et al. 2009) (this method is the most recently published
robust PCA method with better performance than others
(Gao 2008; Ke and Kanade 2005; Ding et al. 2006; Kwak
2008)), (3) locality preserving projections (LPP) (Niyogi
2004) which is the non-robust counterpart of the proposed
method, and (4) the Kernel Laplacian Embedding (KLE)
method (Wang, Huang, and Ding 2010a). In addition, as a
baseline, we also report the clustering results by (5) the K-
means clustering method in the original feature space. For
PCA, we reduce the dimensionality of the input data such
that 90% of data variance is preserved. For rPCA, follow-

ing (Wright et al. 2009), we set λ = d−1/2. We empiri-
cally select the reduced dimensionality of LPP method to be
c − 1 where c is the number of clusters of a data set, and
use the codes published by the authors (Niyogi 2004). The
KLE method is one of the most recent unsupervised learning
method by integrating attribute data and pairwise similarity
data, and has demonstrated state-of-the-art dimensionality
reduction performance. We implement the KLE method fol-
lowing its original work (Wang, Huang, and Ding 2010a).
For the proposed method, as well as the KLE method and
the LPP method, we construct the nearest-neighbor graph for
each data set and set the neighborhood size for graph con-
struction as 10 following (Niyogi 2004). Except for rPCA,
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(a) Yale face.
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(b) Vehicle.
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(c) PIE face.
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(d) Reuters21578.
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(e) TDT2.

Figure 2: Number of iterations vs. the objective value of the proposed rLPP method.

once the projection matrix is obtained by a dimensionality
reduction method, K-means clustering method is used to
cluster the data points in the projected subspace, where we
set K as the true class numbers. Because rPCA method does
not produce the projection matrix but the projected data, we
use its immediate output for clustering.

For our method, we experiment with two different setting,
where we set the parameter p to be 0.3 and 1. Note that, when
p = 2, the proposed method is exactly the traditional LPP
method proposed in (Niyogi 2004); when p = 1 or p = 0.3,
the proposed method is expected to suppress the impacts of
the outlier data samples.

Because the results of the K-means clustering algorithm
depend on the initialization, to reduce the statistical vari-
ety, we independently repeat the clustering procedures in
the projected subspaces learned by all compared methods
for 50 times with random initializations, and then we report
the results corresponding to the best objective values. The
clustering performance measured by clustering accuracy are
reported in Table 2.

Experimental results. From the experimental results in Ta-
ble 2 we can see that our method consistently outperforms
all other compared methods, which demonstrate the effec-
tiveness of our methods in discovering the inherent manifold
structures of the input data and thereby improving the clus-
tering performance. Most importantly, as expected, when
p is smaller, the clustering performance of the proposed
method is better, which again demonstrate the effectiveness
of using p-order minimization in learning LPP subspace.

Robustness Against Outlier Samples

Experimental setups. Because the main advantage of the

proposed rLPP method lies in its robustness against outlier
data samples, we further evaluate the it on noisy data with
outlier samples.

To emulate the outlier samples, given the input data ma-
trix X , we corrupt it by a noise matrix M whose element
are i.i.d. standard Gaussian variables. Then we carry out the
same procedures as those in the previous subsection for pro-

jection learning on X + δM , where δ = nf ‖X‖F

‖M‖F
and nf is

a given noise factor. We set nf = 0.1 in all our studies. We
compare our new rLPP method against the same unsuper-
vised dimensionality reduction methods as before and report
the clustering results in Table 3.

Experimental results. First, the proposed rLPP method is
consistently better than all other compared methods on all
five experimental data sets, which demonstrate that our new
method is able to effectively learn a subspace to improve
the clustering performance on noisy data with outlier data
samples. Second, although the improvements by our method
over the competing methods on the original data without
noise are mediocre as shown in Table 2 in the last sub-
section, the improvements by our new method on the con-
taminated data with outlier data samples in this subsection
are considerably large. For example, on the Coil20 data
set with outlier samples, our new rLPP method improves
the clustering accuracy over the baseline PCA method by
42.49% = (0.721− 0.506)/0.506. In contrast, the improve-
ment of clustering accuracy on the same data set by our
method over the PCA method under the noiseless condition
is only 13.44% = (0.751− 0.662)/0.662. The same obser-
vations can be seen on all the other experimental data sets,
which show that the proposed method has better capability
to learn a more effective subspace for clustering on contam-
inated data, and confirms its robustness against outlier data
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Table 2: Clustering accuracy of the compared methods on the four benchmark data sets without noise.

Data PCA rPCA LPP KLE rLPP (p = 1) rLPP (p = 0.3)

Coil20 0.662 0.659 0.694 0.704 0.749 0.751
Vehicle 0.666 0.675 0.709 0.712 0.724 0.741
PIE face 0.669 0.676 0.675 0.681 0.694 0.715
Reuters21578 0.868 0.883 0.910 0.907 0.921 0.933
TDT2 corpus 0.894 0.932 0.947 0.927 0.964 0.971

Table 3: Clustering accuracy of the compared methods on the four benchmark data sets with outlier data samples.

Data PCA rPCA LPP KLE rLPP (p = 1) rLPP (p = 0.3)

Coil20 0.506 0.699 0.694 0.691 0.704 0.721
Vehicle 0.589 0.633 0.525 0.611 0.673 0.720
PIE face 0.591 0.649 0.614 0.611 0.647 0.689
Reuters21578 0.801 0.869 0.852 0.841 0.884 0.912
TDT2 corpus 0.813 0.918 0.878 0.907 0.923 0.944

samples.
Finally, we also notice that when p takes smaller value,

the proposed method can achieve better clustering results,
which provide one more concrete evidence to support the
usefulness of the p-order minimization when learning a LPP
subspaces.

In summary, the proposed method is able to achieve better
clustering performance on not only noiseless data but also
noisy data with outlier samples, which is particularly true
for the latter case. These observations are consistent with
our motivations to theoretically formulate our new objective
in that the p-order minimization can alleviate the negative
impacts of outliers data samples.

Conclusions
We proposed a robust LPP method based on the p-th order
of �2-norm distance, which formulated a non-smooth non-
convex minimization problem. The new objective imposes
the p-th order �2-norm distance when computing the pair-
wise data affinities, which makes the resulted objective very
robust against outlier data samples. However, the new objec-
tive brings the much more challenging optimization prob-
lem than that in traditional LPP. To solve the problem, we
introduced an efficient iterative algorithm and provided the
rigorous theoretical analysis on the convergence of our algo-
rithm. The new algorithm is easy to be implemented and fast
to converge in practice, because we have closed form solu-
tion in each iteration. We performed extensive experiments
on both noiseless and noisy data, and all results have clearly
shown that the proposed method is more effective and robust
to outlier samples than traditional methods.
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