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ABSTRACT

Conventional computational approaches for protein function prediction usually predict one
function at a time, fundamentally. As a result, the protein functions are treated as separate
target classes. However, biological processes are highly correlated in reality, which makes
multiple functions assigned to a protein not independent. Therefore, it would be beneficial to
make use of function category correlations when predicting protein functions. In this article,
we propose a novel Maximization of Data-Knowledge Consistency (MDKC) approach to
exploit function category correlations for protein function prediction. Our approach banks
on the assumption that two proteins are likely to have large overlap in their annotated
functions if they are highly similar according to certain experimental data. We first establish
a new pairwise protein similarity using protein annotations from knowledge perspective.
Then by maximizing the consistency between the established knowledge similarity upon
annotations and the data similarity upon biological experiments, putative functions are as-
signed to unannotated proteins. Most importantly, function category correlations are
gracefully incorporated into our learning objective through the knowledge similarity.
Comprehensive experimental evaluations on the Saccharomyces cerevisiae species have
demonstrated promising results that validate the performance of our methods.

Key words: protein function prediction, symmetric nonnegative matrix factorization.

1. INTRODUCTION

Due to its significant importance in post–genomic era, protein function prediction has been ex-

tensively studied and many computational approaches have been proposed in the past two decades.

Among numerous existing algorithms, graph-based approaches and data integration–based approaches have

demonstrated to be effective due to their clear connections to the biological facts.

Since many biological experimental data can be readily represented as networks, learning on graphs is

one of the most natural ways to predict protein functions (Sharan et al., 2007). Neighborhood-based

methods (Schwikowski et al., 2000; Hishigaki et al., 2001; Chua et al., 2006, 2007) assign functions to a

protein based on the most frequent functions within a neighborhood of the protein, and they mainly differ in

how the ‘‘neighborhood’’ of a protein is defined. Network diffusion-based methods (Nabieva et al., 2005;
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Weston et al., 2004) view the interaction network as a flow network, on which protein functions are

diffused from annotated proteins to their neighbors in various ways. Other function prediction approaches

via biological networks include graph cut–based approaches (Vazquez et al., 2003; Karaoz et al., 2004),

and those derived from kernel methods (Liang et al., 2008). Recently, two graph-based protein function

prediction methods (Wang et al., 2012, 2013) using protein–protein interaction (PPI) graphs were devel-

oped to take advantage of the function–function correlations by considering protein function prediction as a

multilabel classification problem, which took the same perspective as ours in the current work. Jiang et al.

(2008) also proposed to utilize function–function similarity, though not explicitly, through the tree ap-

proximation of gene ontology.

Experimental data from one single source are usually incomplete, sometimes even misleading (Whis-

stock and Lesk, 2004); therefore, predicting protein function using multiple biological data has also

attracted increased attention. For example, Lanckriet et al. (2004) proposed a kernel-based data fusion

approach to integrate multiple experimental data via a hybrid kernel and use support vector machine (SVM)

for classification. Tsuda and Noble (2004) presented a locally constrained diffusion kernel approach to

combine multiple types of biological networks. Artificial neural network was employed in Shi et al. (2009)

to integrate different protein interaction data.

All above conventional computational approaches usually consider protein function prediction as a

standard classification problem (Lanckriet et al., 2004; Shin et al., 2007; Sun et al., 2008). That is, these

approaches predict one function at a time, fundamentally. As a result, the classification for each functional

category is conducted independently. However, in reality most biological functions are highly correlated,

and protein functions can be inferred from one another through their interrelatedness. The function category

correlations, albeit useful, are not fully utilized in predicting protein function in the earlier works. In this

study, we explore this special characteristic of the protein functional categories and take advantage of the

function–function correlations to improve the overall predictive accuracy of protein functions.

1.1. Multilabel correlated protein function prediction

Because a protein is usually observed to play several functional roles in different biological processes

within the same organism, it is natural to annotate it with multiple functions. Therefore, protein function

prediction is a multilabel classification (Wang et al., 2009, 2010a, 2011a) problem. The essential difference

between single-label classification and multilabel classification lies in that (Wang et al., 2009, 2010a,

2011a) classes in the former are assumed to be mutually exclusive, while those in the latter are generally

correlated to each other. Multilabel data, such as those used in protein function prediction, present a new

opportunity to improve classification accuracy through label correlations, which are absent in single-label

data. For example, when applying Functional Catalogue (FunCat) annotation scheme (version 2.1) (Mewes

et al., 1999) on Saccharomyces cerevisiae genome, we observe that there is a big overlap between the

proteins annotated to function ‘‘Cell Fate’’ (ID: 40) and those annotated to ‘‘Cell Type Differentiation’’

(ID: 43). As shown in the left panel of Figure 1, among 268 proteins annotated with function ‘‘Cell Fate’’ in

FIG. 1. (Left) Number of proteins annotated with both function ‘‘Cell Fate’’ (ID: 40) and one of the other functions.

(Right) Visualization of the correlation values defined by Equation (2) among the 17 main functions defined in FunCat

2.1 to the S. cerevisiae genome.
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S. cerevisiae genome, 168 proteins are also annotated with function ‘‘Cell Type Differentiation,’’ whereas

the average number of proteins annotated with other functions is only about 51. From this observation, we

can reasonably speculate that these two functions are statistically correlated in a stronger way. That is, if a

protein is known to be annotated with function ‘‘Cell Fate’’ by either experimental or computational

evidences, we have high confidence to annotate the same protein with function ‘‘Cell Type Differentiation’’

as well.

1.2. Data-knowledge consistency and our motivations

In protein function prediction, we need both experimental data and biological knowledge. Here we refer

to data as original experimental measurements or results, such as protein sequences, PPI networks mea-

sured by yeast two-hybrid screening, gene expression profiles, etc. On the other hand, knowledge refers to

human-curated research findings recorded in well structured databases or documented in biomedical lit-

eratures, such as human-encoded annotation databases, ontologies, etc.

In most existing approaches for protein function prediction, knowledge is routinely used as supervision

in the classification tasks, that is, protein annotations are interpreted as labels assigned to data points. In this

study, we employ knowledge information from a new perspective. Motivated by the observation that label

indications in a multilabel classification task (i.e., protein function annotations in protein function pre-

diction problems) convey important attribute information (Wang et al., 2010b), we use the function an-

notations of a protein as its description and assess pairwise protein similarities upon such descriptions. The

key assumption of our work is that two proteins are likely to have large overlap in their annotated functions,

if they are highly similar according to experimental data. More precisely, let xi and xj be the descriptions of

two proteins abstracted from experimental data, and fi and fj be annotated functions of these two proteins

respectively; we evaluate the similarity between the two proteins in the following two different ways. The

first one is based upon experimental data and denoted as SD(xi‚ xj), while the second one is based upon

biological knowledge and denoted as SK (f i‚ f j). If functions fi and fj are annotated appropriately to proteins

xi and xj—that is, the data and the knowledge are consistent—we expect that these two similarity mea-

surements appear to be close:

SD(xi‚ xj) � SK (f i‚ f j): (1)

With this assumption, we may determine the optimal function assignments to unannotated proteins by

minimizing the difference between these two sets of similarities, that is, maximizing the consistency

between experimental data and biological knowledge. In this article, we formalize this assumption by

proposing our Maximization of Data-Knowledge Consistency (MDKC) approach. Through the knowledge

similarity SK (f i‚ f j), function category correlations are incorporated such that the predictive performance is

expected to be enhanced.

1.3. Notations and problem formalization

In protein function prediction, we are given K biological functions and n proteins. Without losing

generality, we assume the first l proteins are annotated, and our goal is to predict functions of the rest n - l

unannotated proteins.

Let xi 2 Rp denote a protein, which is a vector description of the i-th protein abstracted from certain

biological experimental data, such as the amino acid histogram of a protein sequence, etc. The pairwise

similarities among the proteins are modeled as a symmetric matrix W 2 Rn · n, where Wij measures how

similar proteins xi and xj are related. W is usually seen as edge weight matrix of a graph where proteins

correspond to vertices. In the simplest case of a PPI network, Wij = 1 indicates that proteins xi and xj

interact, and 0 otherwise. Every protein is assigned with a number of biological functions, which are

described by a function annotation vector yi 2 f0‚ 1gK
, such that yi (k) = 1 if protein xi is annotated with the

k-th function, yi (k) = 0 if it is not annotated with the k-th function or unannotated. The equation fyigl
i = 1 for

the first l annotated proteins are known, and our objective is to learn fyign
i = l + 1 for the n - l unannotated

proteins. We write Y = [y1‚ . . . ‚ yn]T = [y(1)‚ . . . ‚ y(K)], where y(k) 2 Rn is a classwise function annotation

vector. Besides the ground truth function assignment matrix Y, we also define F = [f1‚ . . . ‚ fn]T 2 Rn · K as

the predicted function assignment matrix, where Fik = fi (k) for l + 1 £ i £ n indicates our confidence to

assign the k-th function to an unannotated protein xi.
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2. FORMULATION OF FUNCTION CATEGORY CORRELATIONS

Before we proceed to the algorithm development of our new approach, we first explore and formalize the

function category correlations, because they are one of our most important mechanisms to boost protein

function prediction performance.

As shown in the left panel of Figure 1, proteins assigned to two different functions may overlap.

Statistically, the bigger the overlap, the more closely two functions are related. Therefore, functions assigned

to a protein are no longer independent. Instead, they can be inferred from one another. In the extreme case,

such as in parent–child hierarchy of protein function annotation systems, once we know a protein is

annotated to a child function, we can immediately annotate all the ancestor functions to the same protein.

Using cosine similarity, we define a function category correlation matrix, C 2 RK · K , where Ckl captures

the correlation between the k-th and l-th functions as follows:

Ckl = cos (y(k)‚ y(l)) =
Æy(k)‚ y(l)æ
ky(k)kky(l)k ‚ (2)

where Æ � ‚ � æ denotes the inner product of two vectors and k$k denotes the ‘2 norm of a vector.

Using FunCat annotation scheme on S. cerevisiae genome, function correlations defined in Equation (2)

are illustrated in the right panel of Figure 1. The high correlation value between functions ‘‘Cell Fate’’ and

‘‘Cell Type Differentiation’’ shown in the figure implies that they are highly correlated, which agrees with

the observations shown in the left panel. In addition, as can be seen in the right panel of Figure 1, some

other function pairs are also highly correlated, such as ‘‘Transcription’’ and ‘‘Protein with Binding

Function or Cofactor Requirement,’’ ‘‘Regulation of Metabolism and Protein Function,’’ and ‘‘Cellular

Communication/Signal Transduction Mechanism,’’ etc. All these observations strictly comply with the

biological truth, which firmly justifies the correctness of our formulation for function category correlations

in Equation (2) from the biological perspective.

3. MAXIMIZATION OF DATA-KNOWLEDGE CONSISTENCY
(MDKC) APPROACH

We assume that two proteins tend to have large overlap in their assigned functions if they are very

similar in terms of some experimental data. In order to predict protein functions upon this assumption, we

evaluate the similarity between two proteins in the following two ways, one by experimental data called as

data similarity, and the other by biological knowledge called as knowledge similarity. We denote the

former as SD(xi‚ xj) and the latter as SK(f i‚ f j). If functions annotated to proteins are consistent with their

experimental data, we would expect the data similarity is close to the knowledge similarity:

min
X
i‚ j

SD(xi‚ xj) -SK (f i‚ f j)
� �2

‚ (3)

s:t: f i = yi‚ 81pipl‚ (4)

where the constraint in Equation (4) fixes the functions assigned to annotated proteins to be ground truth.

The optimization objective in Equation (3) minimizes the overall difference between the two types of

similarities, which thereby maximizes the data-knowledge consistency.

3.1. Optimization framework of the MDKC approach

In protein function prediction, the data similarity is already known a priori. Namely, SD(xi‚ xj) = W , and

W depends on input experimental data. For example, when input data are a PPI network, W could be the

adjacency matrix of the PPI graph in the simplest case or any derived topological similarity; when input

data are protein sequences, W could be the inverse Euclidean distances of amino acid histogram vectors,

etc. Because W is input dependent, we defer its detailed definitions to section 4 according to the experi-

mental data used in the respective empirical evaluations.

Now we consider knowledge similarity. The simplest method to evaluate the knowledge similarity is to

count the number of common annotated functions of two proteins: fT
i f j. However, the problem of this
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straightforward similarity measurement lies in that it considers all the biological functions to be independent and

is unable to explore the correlations among them. In particular, it will give zero similarity whenever two

proteins do not share any annotated functions, although they could be strongly related if their annotated

functions are highly correlated. For example, given a pair of proteins, one annotated with function ‘‘Cell Fate’’

and the other annotated with function ‘‘Cell Type Differentiation,’’ although they may not share any common

functions, they should still have certain similarities, either biologically or statistically, as illustrated in Figure 1.

In the extreme case, in the parent–child annotation system, such as the FunCat scheme used in this work, if

protein xi is annotated with one of the ancestor functions of protein xj’s annotated function, the two proteins are

closely related even though they do not share any common functions. Therefore, in order to capture correlations

among different functions, instead of the dot product, we compute the knowledge similarity as following:

SK(f i‚ f j) = fT
i C - 1f j = fT

i Af j‚ (5)

where, for notation brevity, we denote A = C - 1 in the sequel.

Note that compared to the inner product similarity defined by fT
i f j based on the Euclidean distance,1 the

knowledge similarity computed by Equation (5) is based on the Mahalanobis distance,2 where C acts as the

covariance matrix that encodes the human-curated prior knowledge for the biological species of interest.

Statistically speaking, because the Euclidean distance is independent of input data while the Mahalanobis

distance captures the second-order statistics of the input data, the latter is able to better characterize the

relationships between the data points of a given input data set when its distribution is known a priori. In protein

function prediction, the Euclidean distance based knowledge similarity is independent of the concerned

biological species. In contrast, the Mahalanobis distance based knowledge similarity is specific to the bio-

logical species of interest, which thereby has increased statistical power. Most importantly, function–function

correlations, the most important advantage of a multilabel data set over the traditional single-label data set, are

exploited for the later protein annotations tasks, which is an important contribution of the proposed method.

Utilizing the knowledge similarity defined in Equation (5), we can formalize the data-knowledge con-

sistency assumption in Equation (3) by the following optimization problem:

min
F

Xn

i‚ j = 1

Wij -
XK

k‚ l = 1

FikAklFjl

 !2

‚ (6)

s:t: Fik = Yik‚ 81pipl‚ 1pkpK: (7)

In standard classification problems in machine learning, Fik (1 £ i £ l)are fixed for labeled data points.

Specifically, a big Fik indicates that data point xi belongs to the k-th class, while a small Fik indicates that xi

does not belong the k-th class. However, this assumption does not hold in the problem of protein function

prediction. For an annotated protein, its associated functions refer to those who have certain experimental

supports for the associations between this protein and the functions. On the other hand, the non-association

between a protein and a function only means that we currently do not have any biological or computational

evidence for the corresponding association. In reality, however, the protein could be annotated with the

concerned function. And the exact goal of computational methods for protein function prediction is to identify

putative protein functions, which could work as the candidates for further experimental screening. As a result,

instead of using the hard constraints in Equation (7), it is reasonable to relax the confidence variables Fik

(1 £ i £ l)for annotated proteins to be dynamic variables, which approximate the ground truth function as-

signments. The constraint in Equation (7) hence can be written to minimize the following penalty function:

a
Xl

i = 1

XK

k = 1

(Yik - Fik)2‚ (8)

1The Euclidean distance between two vectors fi and fj is defined as d(i‚ j) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(f i - f j)

T (f i - f j)
q

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fT

i f i + fT
j f j - 2fT

i f j

q
.

Following the standard way to convert a distance measurement to a similarity measurement, we can consider fT
i f j to be

a similarity measurement between the two vectors fi and fj, which are based on the Euclidean distance.
2Given a covariance matrix C of a data distribution, the Mahalanobis distance between two vectors fi and fj is defined

as dC(i‚ j) =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(f i - f j)

T C - 1(fi - f j

q
) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fT

i C - 1f i + fT
j C - 1f j - 2fT

i C - 1f j

q
. Thus, fT

i C - 1f j defines a similarity between the

two vectors fi and fj, which is based on the Mahalanobis distance specific to the input data.
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where a > 0 controls the relative importance of this penalty. Following the experiences in graph-based

semi-supervised learning (Wang et al., 2009, 2012), we empirically set a = 0.1 in all our experiments.

Finally, we write our objective in a more compact way using matrices to minimize the following:

JMDKC(F) = kW - FAFTk2 + 2atr ((Y - F)T V(Y - F))‚

s:t: Fq0‚
(9)

where k � k denotes the Frobenius norm of a matrix and tr ($) denotes the trace of a matrix. Here V 2 Rn · n

is a diagonal indicator matrix, whose diagonal entry Vii = 1 if the i-th protein is an annotated protein, while

Vii = 0 indicates that the i-th protein is unannotated. In Equation (9), the constraint F ‡ 0 is naturally

enforced because W is nonnegative by definition. Most importantly, with this nonnegative constraint,

Equation (9) will be enriched with clustering interpretation as detailed later, which makes the mathematical

formulation of the proposed method more meaningful from the machine learning perspective.

We call Equation (9) as our proposed Maximization of Data-Knowledge Consistency (MDKC)

approach. Upon solving Equation (9), we can assign putative functions to an unannotated protein—say, the

i-th protein—via fi.

3.1.1. A more in-depth look at MDKC approach. Equation (9) reveals the insight of our MDKC

approach, that is, we attempt to approximate the data similarity using the knowledge similarity. The former

is already known in biological experiments thereby fixed, while only part of the latter is known for

annotated proteins and our task to identify the part for unannotated proteins. When non-negativity is

enforced to F, min kW – FCFTk2 is a non-negativity matrix factorization (NMF) problem (Lee and Seung,

2001; Ding et al., 2010) as Wij > 0 by definition.

The true power of our approach lies in that NMF is equivalent to spectral clustering when W is the edge

weight matrix of a graph. This equivalence has been proved by Ding et al. (2006, 2010). Therefore, our

approach can be seen to seek the shared structures of function assignments upon the topological modularity

of an input graph from experimental data. Compared to traditional spectral clustering algorithms, which are

unsupervised and their annotation information cannot be used, our approach is able to exploit the infor-

mation conveyed by both labeled and unlabeled data. Most importantly, function category correlations are

taken into account, thereby more information is used for protein function prediction.

3.2. Computational algorithm of the MDKC approach

Mathematically, Equation (9) is a regularized NMF problem (Cai et al., 2008; Gu and Zhou, 2009; Cai et al.,

2010). Although the optimization techniques for the NMF problem and its variants have been extensively

studied in literature (Ding et al., 2006, 2010; Cai et al., 2008; Gu and Zhou, 2009; Cai et al., 2010), solving

Equation (9) is very challenging. Most, if not all, existing algorithms to solve NMF problems are only able to

deal with rectangle input matrices (a rectangle matrix is a matrix whose number of the rows is different from

that of its columns) or asymmetric square matrices, but not symmetric input matrices such as the one used in

our objective in Equation (9). This is because the latter involves a fourth-order term due to the symmetric usage

of the factor matrix F (Wang et al., 2011b,c), which inevitably complicates the problem. Traditional solutions

to symmetric NMF typically rely on heuristics (Ding et al., 2006; Li et al., 2007), hence we propose a

principled solution via proving a new generic matrix inequality as presented below. We introduce a new

algorithm to solve Equation (9) in Algorithm 1. We prove its correctness and convergence as follows.

Algorithm 1: Algorithm to solve Eq. (9)

Data: 1. Data similarity matrix W.

2. Function–function correlations matrix C.

3. Indication matrix Y derived from labels of annotated proteins.

Result: Factor matrices F.

1. Computer A = C - 1.

2. Initialize F following (Ding et al., 2006).

repeat

3. Compute Fij)Fij
(WFA + aVY)ij

(FAFT FA + aVF)ij

h i1
4

.

until Converges
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3.2.1. Correctness of the algorithm. The following theorem guarantees the correctness of Algorithm 1.

Theorem 1 If the update rules of F in Algorithm 1 converges, the final solution satisfies the Karush-

Kuhn-Tucker (KKT) conditions.

Proof. First, JMDKC can be written as follows:

JMDKC(F) = tr (WT W - 2FAFT W + FAFTFAFT )

+ 2atr (YT VY - 2FT VY + FT VF)‚
(10)

where we exploit the properties of W = WT, A = AT, VT = V, and for any matrix M we have tr (M) = tr (MT).

Then by removing the constant terms, we take the derivative of JMDKC (F) with respect to F as follows:

dJMDKC

dF
= 4WFA + 4FAFT FA + 4aVY + 4aVF: (11)

Then the Karush-Kuhn-Tucker (KKT) conditions for nonnegativity of F is

(4WFA + 4FAFT FA + 4aVY + 4aVF)ijFij = 0‚ (12)

which is the fixed point relationship that the solution must satisfy.

On the other hand, at the convergence of Algorithm 1, F(N) = F(t + 1) = F(t), thus we can derive:

(4WFA + 4FAFT FA + 4aVY + 4aVF)ijF
4
ij = 0‚ (13)

which is identical to Equation (12) and proves Theorem 1. -

3.2.2. Convergence of the algorithm. We use the auxiliary function approach (Lee and Seung,

2001) to prove the convergence of Algorithm 1. Here, we first introduce the definition of auxiliary function

(Lee and Seung, 2001).

Lemma 1 (Lee and Seung, 2001) Z (h, h0) is an auxiliary function of F (h) if the conditions Z (h, h0) ‡
F (h) and Z (h, h0) = F (h) are satisfied. (Lee and Seung, 2001) If Z is an auxiliary function for F, then F is

nonincreasing under the update h(t + 1) = argminh Z (h, h0).
The following inequality is also useful in our following proofs.

Lemma 2 (Ding et al., 2006) For any matrices A 2 Rn · n
+ ‚ B 2 Rk · k

+ ‚ S 2 Rn · k
+ ‚ and S0 2 Rn · k

+ ‚ and A

and B are symmetric, the following inequality holds:

X
ip

(AS0B)ipS2
ip

S0ip
qtr (ST ASB): (14)

Lemma 2 can only be used to deal with NMF with rectangle matrices or asymmetric square matrices, but

not symmetric matrices, such as those used in our objective in Equation (9). As one of our theoretical

contributions, we prove the following generic matrix inequality in Equation (15) to analyze objective

functions involving fourth order matrix polynomials.

Lemma 3 For any nonnegative symmetric matrices A 2 Rk · k
+ and B 2 Rk · k

+ ‚ for H 2 Rn · k
+ the fol-

lowing inequality holds:

tr (HAHT HBHT )p
X

ik

H0AH0T H0B + H0BH0T H0A

2

� �
ik

H4
ik

H03ik
: (15)

Proof. Let Hik = H0ikuik. The first term in RHS of Equation (15) is

X
ik

(H0AH0T H0B)ik

H4
ik

H03ik
=
X
ijkrpq

H0jrArkH0ikH0ipBpqH0jqu4
jq (16)
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Now, switching indexes: i 5 j, p 5 q, r 5 k, we obtain

X
ik

(H0AH0T H0B)ik

H4
ik

H03ik
=
X
ijkrpq

H0ikAkrH
0
jrH
0
jqBqpH0ipu4

ip (17)

The second term in RHS of Equation (15) is

X
ik

(H0BH0T H0A)ik

H4
ik

H03ik
=
X
ijkrpq

H0ipBpqH0jqH0jrArkH0iku4
ik: (18)

Now, switching indexes: i 5 j,p 5 q, and r 5 k, we obtain

X
ik

(H0BH0T H0A)ik

H4
ik

H03ik
=
X
ijkrpq

H0jqBqpH0ipH0ikAkrH
0
jru

4
jr (19)

Careful examination of the RHS of Equations (16) (19) shows that they are identical except u4 terms. Thus,

the RHS of Equation (15) is

X
ijkrpq

H0ipBpqH0jqH0jrArkH0ik
u4

ik + u4
jr + u4

jq + u4
ip

4
: (20)

The LHS of Equation (15) is
P

ijkrpq H0ipBpqH0jqH0jrArkH0ikuikujrujquip. For any a, b, c, d > 0, we have

a4 + b4 + c4 + d4 ‡ 2(a2b2 + c2d2) ‡ 4(ab) (cd), thus uikujrujquipp(u4
ik + u4

jr + u4
jq + u4

ip)=4‚ which proves

Lemma 3. -

Based on Lemmas 1–3, now we prove the convergence of Algorithm 1 by the following theorem.

Theorem 2 Let

J(F) = tr( - 2WFAFT + FAFTFAFT - 4aFT VY + 2aFT VF)‚

then the following function

Z(F‚ F0) = - 2
X
ijkl

F0jiAjkF0klWli 1 + log
FjiFkl

F0ijF
0
kl

 !
+
X

ij

(F0AF0T A0)ij

F4
ij

F03ij

- 4a
X

ij

(VY)ijF
0
ij 1 + log

Fij

F0ij

 !
+ 2a

X
ij

(VF0)ijF
2
ij

F0ij

is an auxiliary function of J (G). Furthermore, it is a convex function in G and its global minimum is

Fij = Fij
(WFA + aVY)ij

(FAFT FA + aVF)ij

" #1
4

(21)

Proof. First, by removing constant terms, the objective of the proposed method can be written as

following:

JMDKC(F) = tr ( - 2FAFT W + FAFT FAFT - 4aFT VY + 2aFT VF) (22)

By Lemma 3, we have

tr (FAFT FAFT )p
X

ij

F0AF0T F0A
� �

ij

F4
ij

F03ij
: (23)

Because of Lemma 2 and the inequality 2ab £ a2 + b2, we have

tr(FT VF)p
X

ij

(VF0)ijF
2
ij

F0ij
: (24)
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Because z £ 1 + log z, c z > 0, we have

tr (FAFT W)q
X
ijkl

F0jiAjkF0klWli 1 + log
FjiFkl

F0ijF
0
kl

 !
(25)

tr (FT VY)q
X

ij

(VY)ijF
0
ij 1 + log

Fij

F0ij

 !
(26)

Summing over all these bounds, we get Z (F, F0), which clearly satisfies (1) Z (F, F0) ‡ J (F) and (2) Z (F,

F) = J (F).

Following the same derivations as in Ding et al. (2010, 2006) and Gu and Zhou (2009), the Hessian

matrix of Z (F, F) is positive definite. Thus Z (F, F0) is a convex function of F. We obtain the global

minimum of Z (F, F0) by setting dZ (F, F0) / dFij = 0 and solving for F, from which we can get Equation (10)

in the main text. This completes the proof of Theorem 2. -

Because J (F) in Eq. (9) is obviously lower bounded by 0, Lemma 1 and Theorem 2 guarantee the

convergence of Algorithm 1.

Note that Lemma 3 and Equation (23) is the key step to prove the convergence of the proposed algorithm.

Due to the symmetric usage of the side factor matrix F, the optimization objective Equation (9) involves a

fourth-order term of F. Compared to the quadratic term involved in traditional NMTF for rectangle

(asymmetric) input matrix, optimizing Equation (9) is definitely much harder. As a result, in existing works

Ding et al. (2005, 2006;) and Li et al. (2007), heuristics are routinely used to tackle this difficulty. Only until

our recent works (Wang et al., 2011b,c), by proving the generic matrix inequality in Lemma 3, we are able to

rigorously derive an iterative algorithm as in Algorithm 1 and prove its convergence.

4. RESULTS AND DISCUSSION

We evaluate the proposed MDKC approach on S. cerevisiae genome data and apply it on PPI network

data, protein sequence data, and an integration of these two types of experimental data, respectively.

We use MIPS Functional Catalogue (FunCat) system (Mewes et al., 1999) to annotate proteins, which is

an annotation scheme for the functional description of proteins from prokaryotes, unicellular eukaryotes,

Table 1. Main Functional Categories in FunCat Annotation

Scheme (Version 2.1) and the Corresponding Number

of Annotated Proteins to Yeast Species

ID Function description

Number of proteins

(yeast) annotated

01 Metabolism 1397

02 Energy 336

10 Cell cycle and DNA processing 981

11 Transcription 1009

12 Protein synthesis 476

14 Protein fate 1125

16 Protein with binding function 1019

18 Regulation of metabolism and protein function 246

20 Transport facilitation and transport routes 995

30 Cellular communication and signal transduction 231

32 Cell rescue, defense, and virulence 515

34 Interaction with the environment 446

38 Transposable elements, viral, and plasmid proteins 59

40 Cell fate 268

41 Development 67

42 Biogenesis of cellular components 827

43 Cell type differentiation 437

554 WANG ET AL.



plants, and animals. Taking into account the broad and highly diverse spectrum of known protein functions,

FunCat (version 2.1) consists of 27 main functional categories that cover general fields such as cellular

transport, metabolism, cellular communication, etc. The main branches exhibit a hierarchical and treelike

structure with up to six levels of increasing specificity; 17 main function categories in FunCat annotation

scheme are involved to annotate the yeast genome as listed in Table 1.

4.1. EVALUATION ON PPI NETWORK DATA

We first evaluate our MDKC approach on PPI network data, as they are the most popularly used experi-

mental data for protein function prediction (Sharan et al., 2007). We compare our MDKC approach to four

broadly used graph-based protein function prediction approaches: (1) Majority Voting (MV) approach

(Schwikowski et al., 2000), (2) Iterative Majority Voting (IMV) approach (Vazquez et al., 2003), (3) v2 approach

(Hishigaki et al., 2001), and (4) Functional Flow (FF) approach (Nabieva et al., 2005). We use precision-recall

curves to assess prediction performance, which is the most widely used performance metric in existing literature.

4.1.1. Data preparation. We download PPI data for the S. cerevisiae species from BioGRID (ver-

sion 2.0.56) (Stark et al., 2006). By removing the proteins connected by only one PPI, we end up with 4403

annotated proteins with 86167 PPIs. We represent the protein interaction network as a graph, with vertices

corresponding to the proteins and edges corresponding to PPIs. The adjacency matrix of the graph is

denoted as B ˛ {0, 1}n · n where n = 4403, such that Bij = 1 if proteins xi and xj interact, and 0 otherwise.

The adjacency matrix B itself measures the similarity among proteins in the sense that two proteins are

related if they interact. However, two critical problems prevent us from directly using B as data similarity

SD (xi‚ xj) to predict protein function. First, B only measures the local connectivity of a graph and contains

no information for connections via more than one edge. Therefore the important information contained in

the global topology is simply ignored. Second, PPI data suffer from high noise due to the nature of high-

throughput technologies, for example, false positive rate in yeast two-hybrid experiments is estimated as

high as 50% (Deane et al., 2002). Therefore, we use the Topological Measurement (TM) method (Pei and

Zhang, 2005) to compute the data similarity matrix W, which takes into consideration paths with all

possible lengths on a network and weights the influence of every path by its length. Specifically, Wij

between proteins xi and xj is computed as Pei and Zhang (2005):

Wij =
XjV j - 2

k = 2

PRk(i‚ j)‚ and PRk(i‚ j) =
PSk(i‚ j)

MaxPSk(i‚ j)
‚ (27)

where jV j is the number of vertices in the PPI graph, PRk (i, j) is the path ratio of the paths of length k

between proteins xi and xj, and PSk (i, j) and MaxPSk (i, j) are defined as follows (Pei and Zhang, 2005):

PSk(i‚ j) = (Ak)ij‚ (28)

where ($)ij denotes the ij-th entry of a matrix, and the following (Pei and Zhang, 2005)

MaxPSk(i‚ j) =

ffiffiffiffiffiffiffiffi
didj

p
‚ if k = 2

didj‚ if k = 3‚P
k2N(i)‚ l2N(j) MaxPSk - 2(k‚ l)‚ if k>3:

8<
: (29)

where di =
P

j Bij is the degree of the i-th vertex, and N (i) denotes its neighboring vertices. The detailed

explanation of TM measurement can be referred to Pei and Zhang (2005).

4.1.2. Improved precision-recall performance. In order to generate the precision-recall curves for

evaluation, we randomly select half of the proteins as annotated proteins and the rest as unannotated ones.

The optimal result F* of our MDKC produces a ranking list to indicate prediction confidence. Varying

threshold, we obtain a precision-recall curve. Precision-recall curves for other compared approaches are

produced following Chua et al. (2006). For MV approach, the k most frequent functions appearing in a

protein’s neighbors are assigned as the k most likely function, such that a precision-recall curve is obtained

by varying k. For v2 approach, we take the k largest v2 statistics as the k most likely function to build the
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precision-recall curve. Because the solution to IVM approaches are not unique for every trial, we repeat the

experiment several times to obtain the precision-recall pairs. FF produces a ranking list, which are used to

generate the precision-recall curve.

The prediction results for function ‘‘Metabolism’’ are shown as in Figure 2(a), which has 1397 annotated

proteins in the original data before random selection (the biggest number of annotated proteins among all

17 functional categories). The prediction results for two other functions ‘‘Cellular Transport, Transport

Facilitation and Transport Routes’’ and ‘‘Cell Type Differentiation’’ are shown in Fig. 2b and c, which

have 995 and 437 annotated proteins respectively. The precision-recall curves for other functions can not be

presented due to space, from which the same observations can be seen. All these results show that the

proposed MDKC approach significantly improves the prediction performance, which validates the effec-

tiveness of our approach when the data similarity is derived from PPI network data.

In addition to reporting the protein function prediction performances over each individual biological

function of the compared methods as above, we also report their average predictive capabilities over all the

17 biological functions. As shown in Figure 2, every compared method produces a precision-recall curve

for a single biological function when we vary the thresholds, thus every curve comprises many different
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FIG. 2. Precision-recall curves by the five compared approaches for three functional categories in FunCat 2.1.
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pairs of precision and recall corresponding to setting a threshold value, where one pair corresponds to a

point of the curve. In order to compare the overall predictive performance of the compared methods, from

each precision-recall curve for a single biological function we pick up the precision-recall pair (point) that

produces the best F1 score. Then we average the 17 best F1 scores from all the biological functions for a

compared method and report it in Table 2. Obviously, the results in Table 2 demonstrate the better

predictive capability of our new method.

4.2. Evaluation on protein sequence data

Because sequence is the most fundamental form to describe a protein, which contains important structural,

characteristic, and genetic information, we evaluate the proposed MDKC approach using protein sequences.

We compare the predictive accuracy of our approach against the (1) functional similarity weight (FS)

approach (Chua et al., 2006) and (2) kernel-based data fusion (KDF) approach (Lanckriet et al., 2004). We

also report the performance of majority voting (MV) approach (Schwikowski et al., 2000) as a baseline. We

employ broadly used average precision and average F1 scores (Chua et al., 2006) as performance metrics.

4.2.1. Adaptive decision boundary for prediction. Although the evaluation through precision-

recall curves in section 4.1 makes sense in scientific research, it does not make explicit predictions. In

practice, however, specific putative functions for unannotated proteins are required for further post-

genomic researches and applications, therefore a decision boundary (threshold) is necessary.

In many semisupervised learning algorithms, the threshold for classification is usually selected as 0,

which, however, is not necessary to be the best choice. We use an adaptive decision boundary to achieve

better predictive performance, which is adjusted such that the weighted training errors on annotated

proteins are minimized.

Considering the binary classification problem for the k-th functional category, we denote bk as the

decision boundary, S + and S - as the sets of positive and negative samples for the k-th class, and e + (bk) and

e - (bk) as the numbers of misclassified positive and negative training samples. The adaptive (optimal)

decision boundary is given by the Bayes’ rule as follows:

b
opt
k = arg min

bk

e + (bk)

jS + j
+

e - (bk)

jS - j

	 

: (30)

And the decision rule to assign a function to protein xi is given by:

xi is annotated with the k-th function if F�ik>b
opt
k ;

xi is not annotated with the k-th function if F�ikpb
opt
k ;

(
(31)

4.2.2. Data preparation. We obtain sequence data from GenBank (Benson et al., 2006) and describe

a protein sequence through one kind of its elementary constituents, that is, trimers of amino acids. Trimer, a

type of k-mer (when k = 3) broadly used in sequence analysis, considers the statistics of one amino acid

Table 2. Average F1 Scores by the Compared Approaches

over All the 17 Main Functional Categories of FunCat

Annotation Scheme when Using Protein–Protein

Interaction Network Data Only

Approaches

Average of the best

F1 scores (%)

MV 32.07

IMV 34.15

v2 33.03

FF 33.12

MDKC 40.03

FF, functional flow; IMV, iterative majority voting; MDKC, maximization of

data-knowledge consistency; MV, majority voting.
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and its vicinal amino acids, and regards any three consecutive amino acids as a unit to preserve order

information, for example ‘‘ART’’ is one unit and ‘‘MEK’’ is another one. The trimer histogram of a

sequence hence can be used to characterize a protein xi, which is denoted as Pi. Because histogram indeed

is a probability distribution, we use Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951), a

standard way to assess the difference between two probability distributions, to measure the distance

between two proteins, which is defined as:

DKL(PikPj) =
X

k

Pi(k) log
Pi(k)

Pj(k)
‚ (32)

where k denotes the index of the k-th trimer. Because KL divergence is nonsymmetric, that is,

DKL(PikPj) 6¼ DKL(PjkPi), we use the symmetrized KL divergence as follows:

DS-KL(i‚ j) =
DKL(PikPj) + DKL(PjkPi)

2
: (33)

Finally, the pairwise data similarity W is defined by converting the symmetrized KL divergences through

the standard way:

Wij = DS-KL(i‚ i) + DS-KL(j‚ j) - 2DS-KL(i‚ j)

= - [DKL(PikPj) + DKL(PjkPi)]:
(34)

4.2.3. Improved predictive capability. We perform standard five-fold cross validation to evaluate

the compared approaches and report the average performance of five trials in Table 3. For FS approach,

because it does not supply a threshold, we use the one giving the best F1 score to make the prediction. We

implement two versions of our method to evaluate the contributions of each of its components. First, we

solve Equation (9) by Algorithm 1, which is the proposed method. Second, we solve a degenerate version

of the problem in Equation (9) by not incorporating the correlations between functional categories. Spe-

cifically, we replace FAFT in Equation (9) by FFT, which is denoted by MDKC-S.

The results in Table 3 show that our MDKC-S and MDKC approach clearly outperform the other

compared approaches, which concretely quantify the advantage of our approaches. The improvement on

classification performance of the MDKC approach over the MDKC-S approach clearly justifies the use-

fulness of function–function correlations in predicting putative protein functions.

We further study the proposed method by using the knowledge similarity learned by using Gene On-

tology (GO) (Consortium et al., 2008) terms. We randomly pick up 30 terms from every one of the three

domains of GO and use the selected 90 terms to annotate the same set of proteins as above. We compute the

function similarity using the following two different approaches. The first approach is the cosine similarity

proposed in section 2, where we compute the function similarities using the training data (four folds out of

the five folds) of each of the five experimental trails in the cross-validation. In addition, we also compute

the function similarity using the semantic similarity between terms as proposed in Dotan-Cohen et al.

(2009).We compare the proposed method against the same set of competing methods as before and report

the results in Table 4. From the results, we can see that our new method once again performs better,

especially when functional similarity is utilized. In addition, the classification performances of our method

Table 3. Average Precision and Average F1 Score by the Compared

Approaches in 5-Fold Cross Validation on the Main

Functional Categories of FunCat Annotation Scheme

Approaches

Average

precision (%)

Average F1

score (%)

FS 33.65 22.78

KDF 53.45 38.10

MV 32.07 29.46

MDKC-S 56.51 39.04

MDKC 61.38 42.17

FS, functional similarity weight; KDF, kernel-based data fusion.
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do not change much when using different function similarities, which demonstrates the robustness of our

new method.

4.3. Evaluation on integrated biological data

As mentioned earlier, biological data from one single experimental source only convey information for

certain aspects, which are usually incomplete and sometimes misleading. For example, similar sequences

do not always have similar functions. In the extreme case, proteins with 100% sequence identity could

perform different functional roles (Whisstock and Lesk, 2004). Therefore, integration of different bio-

logical data is necessary for more robust and complete protein function inferences. In general, results

learned from a combination of different types of data are likely to lead to a more coherent model by

consolidating information on various aspects of the same biological process. In this subsection, we evaluate

the predictive performance using the integrated data from both PPI networks and protein sequences. We

compute the data similarity for each individual data in the same ways as in section 4.1 and section 4.2,

which are denoted as WPPI and Wsequence respectively. The integrated data similarity W is hence computed

as follows:

W = WPPI + cWsequence‚ (35)

where c is a balance parameter and empirically selected as

c =
P

i‚ ‚ i6¼j WPPI(i‚ j)P
i‚ ‚ i6¼j Wsequence(i‚ j)

: (36)

We compare the predictive performance of our MDKC approach to two data integration based–protein

function prediction approaches, (1) the kernel-based data fusion (KDF) approach (Lanckriet et al., 2004)

and (2) the locally constrained diffusion kernel (LCDK) approach (Tsuda and Noble, 2004), and two

baseline approaches, (3) the majority voting (MV) approach (Schwikowski et al., 2000) and (4) the

iterative majority voting (IMV) approach (Vazquez et al., 2003). The function-wise prediction perfor-

mance measured by average precision and average F1 score in standard five-fold cross validation is

reported in Figure 3.

From the results in Figure 3a and Figure 3b, we can see that the proposed MDKC approach is consis-

tently better than other compared approaches, sometimes very significantly, which again demonstrates the

superiority of our approach.

A more careful examination on the results in Figure 3 shows that, although our approach outperforms the

compared approaches in most functional categories, but not always, for example, the average precision for the

function ‘‘Transposable Elements, Viral and Plasmid Proteins’’ (ID: 38). By scrutinizing the function category

correlations, defined in Equation (2) and illustrated in the right panel of Figure 1, we can see the average

correlation of the function ‘‘Transposable Elements, Viral and Plasmid Proteins’’ with other functional

categories is among the lowest. As a result, the presence/absence of this function category can not benefit from

other functional categories, because it only has weak correlations with them. In contrast, prediction for the

function categories with high correlations to others generally can benefit from our approach. This observation

firmly testifies the importance of function category correlations in predicting protein function.

Table 4. Average Precision and Average F1 Score by the Compared Approaches

in 5-Fold Cross Validation on 90 Randomly Selected Gene Ontology Terms

Approaches Average precision (%) Average F1 score (%)

FS 19.52 18.15

KDF 37.14 22.63

MV 20.11 17.55

MDKC-S 41.26 33.51

MDKC (cosine similarity) 48.15 39.62

MDKC [process linkage similarity

(Dotan-Cohen et al., 2009)]

48.96 40.11
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5. CONCLUSIONS

In this article, we presented a novel Maximization of Data-Knowledge Consistency (MDKC) ap-

proach to predict protein function, which attempts to make use of function category correlations to

improve the predictive accuracy. Different from traditional approaches in predicting protein function,

which routinely use protein annotations as labels assigned to data points, we employed annotation

knowledge in a completely different way to measure pairwise protein similarities. By maximizing

consistency between the knowledge similarity computed from annotations and the data similarity

computed from biological experimental data, optimal function assignments to unannotated proteins are

obtained. Most importantly, function category correlations are incorporated in a natural way through the

knowledge similarity. Using kernel mechanism, we further extend our approach to better fit more

specific data for improved prediction performance. Comprehensive empirical evaluations have been

conducted on S. cerevisiae genome using PPI network data, protein sequence data, and an integration of

both of them respectively, promising results in the experiments justified our analysis and validated the

performance of our methods.
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