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With the rapid growth of modern technologies, Internet has reached almost every corner of the world. As
a result, it becomes more and more important to manage and mine information contained in Web pages
in different languages. Traditional supervised learning methods usually require a large amount of training
data to obtain accurate and robust classification models. However, labeled Web pages did not increase as
fast as the growth of Internet. The lack of sufficient training Web pages in many languages, especially
for those in uncommonly used languages, makes it a challenge for traditional classification algorithms to
achieve satisfactory performance. To address this, we observe that Web pages for a same topic from different
languages usually share some common semantic patterns, though in different representation forms. In
addition, we also observe that the associations between word clusters and Web page classes are another type
of reliable carriers to transfer knowledge across languages. With these recognitions, in this article we propose
a novel joint nonnegative matrix trifactorization (NMTF) based Dual Knowledge Transfer (DKT) approach
for cross-language Web page classification. Our approach transfers knowledge from the auxiliary language,
in which abundant labeled Web pages are available, to the target languages, in which we want to classify Web
pages, through two different paths: word cluster approximation and the associations between word clusters
and Web page classes. With the reinforcement between these two different knowledge transfer paths, our
approach can achieve better classification accuracy. In order to deal with the large-scale real world data,
we further develop the proposed DKT approach by constraining the factor matrices of NMTF to be cluster
indicator matrices. Due to the nature of cluster indicator matrices, we can decouple the proposed optimization
objective and the resulted subproblems are of much smaller sizes involving much less matrix multiplications,
which make our new approach much more computationally efficient. We evaluate the proposed approach
in extensive experiments using a real world cross-language Web page data set. Promising results have
demonstrated the effectiveness of our approach that are consistent with our theoretical analyses.
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1. INTRODUCTION

With the rocketing growth of Internet in recent years, an ever-increasing number
of Web pages are now available in many different languages. As of July 2013, over
145.7 million web sites are actively in operation1, with billions of Web pages created
in almost all human languages. As a result, cross-language information retrieval (IR)
has become unprecedentedly important for organizing and mining information stored
in Web pages in various languages.

A potential problem in categorizing Web pages, especially for those written in un-
commonly used languages, is lacking sufficient labeled training data. This prevents
one from training effective classification models, which usually require a large amount
of labeled data. Statistically speaking, the more labeled training data one can use,
the more accurate and robust classification models one can build. Fortunately, due
to many reasons, there exist a lot of labeled Web pages in several most commonly
used languages, such as English. Examples of these resources include Reuters-215782,
20-Newgroups3, Open Document Project4, and many others. It is thus useful and in-
triguing to make use of these labeled Web pages in one language, called as auxiliary
language, to help classify Web pages in another language, called as target language.
This problem is called as cross-language Web page classification [Ling et al. 2008],
which has aroused a lot of interests in recent researches. In this article, we explore this
new, yet important, knowledge discovery problem by proposing a novel joint NMTF
based DKT approach.

1.1. Challenges in Cross-Language Web Page Classification

One of the most widely used strategy in cross-language Web page (text) classification is
using language translation [Ling et al. 2008; Olsson et al. 2005; Prettenhofer and Stein
2010; Ramı́rez-de-la Rosa et al. 2010; Shi et al. 2010; Wan 2009; Wu and Lu 2008]. One
can either translate the test data of a problem into the auxiliary language, or translate
the training data into the target language. Then one can train and classify the resulted
data in one single language. Although this straightforward method may be feasible, it
suffers from a number of critical problems that impede its practical use [Ling et al. 2008;
Ramı́rez-de-la Rosa et al. 2010; Shi et al. 2010]. Thus we first examine the challenges
in cross-language Web page classification and seek opportunities to overcome them,
which motivate our approach.

1.1.1. Cultural Discrepancy. The first difficulty in cross-language Web page classifica-
tion is caused by cultural discrepancies, which heavily impacts the classification per-
formance in spite of a perfect translation [Ling et al. 2008; Ramı́rez-de-la Rosa et al.
2010]. Given that a language is the way to express a cultural and socially homogenous
community, Web pages from a same category but different languages may concern
very different topics. For example, let us consider Web pages that report sports news
in France (in French) and in USA (in English). While the former typically pay more
attention to soccer, rugby and cricket, the latter are more interested in basketball and
American football. From machine learning perspective of view, this is the situation in
which the training data and test data are drawn from different distributions, which
makes it a challenge for traditional supervised and semi-supervised classification al-
gorithms to achieve satisfactory Web pages classification performance.

1http://www.domaintools.com/internet-statistics/.
2http://www.daviddlewis.com/resources/testcollections/reuters21578/.
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/news20.html.
4http://www.dmoz.org/.
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Fig. 1. An illustrative example to demonstrate the usefulness of leveraging the knowledge learned from
auxiliary language when clustering Web pages in target language.

To overcome this problem, instead of simply combining the data in different lan-
guages, we consider to transfer labeled information contained in the Web pages in the
auxiliary language to those in the target language [Pan and Yang 2009]. Our approach
is based on the observation that Web pages in different languages from a same category
often share some same semantic patterns, although they are in different representation
forms, for example, the respective basic linguistic units in French and English [Ling
et al. 2008]. Therefore, we may abstract the prior knowledge in the auxiliary language
into certain semantic patterns, then make use of them to help classify Web pages in
the target language. To transfer knowledge across languages, the most natural carrier
is the basic linguistic representation unit—words. As shown in Figure 1, we use an
example to illustrate the usefulness of knowledge transfer by word (KNW) clusters in
Web page classification tasks.

Given a data set with four Web pages (W1, W2, W3, and W4) as shown in Figure 1(a),
we represent them as a word-document matrix as shown in Figure 1(b). Because in
practice we usually do not have labels for Web pages in the target language, we cluster
them (the rows of the data matrix) based on the cosine similarity, which results in two
clusters, (W1) and (W3) as a cluster and (W2) and (W4) as a cluster. This result, how-
ever, is not meaningful. If we use the learned knowledge from the auxiliary language
to guide this clustering process, we can transform the data matrix by using the three
semantic “hyper-features” as in Figure 1(c). That is, “clustering” and “classification”
belong to “learning”, “illumination” and “texture” belong to “graphics”, and “webpage”
and “hyperlink” belong to “Web”. Clustering on this new transformed data matrix, we
obtain (W1) and (W2) as a cluster and (W3) and (W4) as a cluster, which is a very mean-
ingful result. Obviously, the topic of the former cluster is “IR”, while that of the latter
is “Vision”. We will further discuss this example and give more theoretical analysis on
it later in Section 3.2.

With earlier recognition, the first path in our new approach to transfer knowledge
from the auxiliary language to the target one is by word patterns, that is, feature
clusters, learned from the auxiliary language. This path is schematically shown by the
red lines in Figure 2.
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Fig. 2. Diagram of the proposed Dual Knowledge Transfer (DKT) approach using joint NMTF. We transfer
knowledge from auxiliary language to target language through two ways: words (via Fa and Ft) and the
associations between word clusters and Web page categories (via Sa and St).

1.1.2. Translation Ambiguity. During language translation, the ambiguities introduced
by dictionaries are another challenge in cross-language Web page classification. For
example [Zhuang et al. 2010], the word “ (reading materials)” in Chinese Web
pages could be reasonably translated as “textbooks”, “required reading list”, “reference”,
to name a few. Since the linguistic habits in expressing a concept are different in
different languages, the phrases for a same concept may have different probabilities
to appear in different languages. Therefore, transferring knowledge by the raw words
sometimes are not reliable. In contrast, the concept behind the phrases may have
the same effect to indicate the semantic class labels of the Web pages in different
languages. In the same example, a Web page is more probable to be course-related if
it contains the concept of “reading materials”, no matter which specific key word (i.e.,
“textbooks”, “required reading list” or “reference”) is being used. In other words, only

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 1, Article 1, Publication date: July 2015.
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the concept behind raw words are stable in indicating taxonomy, and the associations
between word clusters and Web page categories is independent of languages [Zhuang
et al. 2010]. Therefore, we make use of it as the second bridge to transfer knowledge
across different languages, which is illustrated by the green paths in Figure 2.

1.1.3. Data Diversity. One more challenge in cross-language Web page classification is
the data diversity. As illustrated in Figure 2, although we may have a lot of training
Web pages in one language, usually not all of them are fully labeled. Similarly, even
the labeled resources in the target language are scarce, we may still have a small
number of Web pages in this language, which are labeled by limited human efforts.
Most importantly, even we have sufficiently many labeled data in the target language,
due to the differences of culture and social focus, they might not cover all the Web
page categories. Consider that, for example [Olsson et al. 2005], the English speakers
tend to contribute more to some topics than their Czech counterparts (e.g., to discuss
“London” more than “Prague”). As a result, with data only in English we may expect
to do poorly at identifying topics like “Prague”. In contrast, Czech speakers often talk
about “Prague”. Thus, we may expect to improve on detecting topic “Prague” in English
Web pages by leveraging Czech data. In conclusion, we cannot rigidly assume the Web
pages in the auxiliary language are always labeled while the Web pages in the target
language are not labeled at all. Namely, model flexibility must be addressed to handle
real world cross-language Web page classification problems.

1.1.4. Algorithm Scalability. The last, but not least, challenge in Web page classification
is the scalability of the algorithm. Because the hardware costs in contemporary systems
keep to decrease in a fast speed, input data coming from real world applications are
usually of large sizes, especially for those related to Internet. Therefore, it is critical to
take into account the capability to deal with large-scale data, when one devises new
Web page classification methods for practical use.

1.2. Our Model

Taking into account the four major challenges in cross-language Web page classifica-
tion as detailed earlier, we propose a novel joint NMTF framework to abstract the
prior knowledge contained in Web pages in the auxiliary language, including both la-
beling information by human efforts and latent language structures. That is, our new
framework first represents the knowledge contained in the auxiliary language in two
forms by the two factor matrices Fa and S of NMTF respectively. Then, it transfers the
abstracted knowledge to the target language to guide the classification therein. The
whole idea is schematically summarized in Figure 2. Because we employ two separate
way to transfer knowledge, we call our new framework as the DKT approach.

Same as other existing nonnegative matrix factorization (NMF) and NMTF based
clustering and classification methods [Chen et al. 2009; Ding et al. 2005, 2006, 2010;
Gu and Zhou 2009a; Gu et al. 2010; Li et al. 2010; Wang et al. 2008], when traditional
nonnegative constraints are used, the algorithm to solve the objective of the proposed
DKT method involves intensive matrix multiplications, which make it computationally
inefficient. In order to deal with large-scale real world data, following the same idea in
our previous work [Wang et al. 2011a], we also present a fast version of the proposed
DKT approach. To be more specific, instead constraining the factor matrices of NMTF
to be nonnegative, we constrain them to be cluster indicator matrices, a special type
of nonnegative matrices. As a result, the new optimization problem can be decoupled,
which results in subproblems of much smaller sizes requiring much less matrix multi-
plications, such that our approach scales well to large-scale input data. Moreover, the
resulted factor matrices can directly assign class labels to Web pages due to the nature
of indicator matrices. In contrast, existing NMF based methods have to require an

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 1, Article 1, Publication date: July 2015.



1:6 H. Wang et al.

extra post-processing step to extract cluster structures from the factor matrices, which
often leads to non-unique clustering results.

We summarize our contributions as following.

—To address the cross-language Web page classification problem, we observe the two
possible ways to transfer knowledge across languages: the natural way by word
clusters and the reliable way by associations between word clusters and Web page
categories. We propose a joint NMTF based DKT approach to make use of these two
ways, thus improve the classification performance.

—Through the general framework of the proposed approach, we consider a variety
of conditions in cross-language Web page classification. Regardless the amount of
labeled training data and locations in which they are, either in auxiliary language
or target language, or the both, our approach is always able to take advantage of the
available information.

—In order to deal with large-scale real world data, a fast version of the proposed
approach with high computational efficiency is presented, which constrains the factor
matrices of NMTF to be cluster indicator matrices, instead of nonnegative as in
existing methods.

—Extensive experiments on real world data sets demonstrate promising results that
validate our approach.

This work expands on our previous conference publication [Wang et al. 2011b] and
differs from it in the following two important aspects. First, when transferring the
prior labeling knowledge in the auxiliary language to the target language, instead of
forcing the associations between word patterns and semantic classes to be identical
in both languages, we approximate the associations in the target language to that in
the auxiliary language. As a result, our new objective is more general and flexible,
which thereby could more accurately model the real world applications and alleviate
the impact caused by the semantic class difference between the two languages. Second,
in this manuscript, we further develop the proposed DKT approach and present a fast
version that is much more computationally efficient and scales well to large scale real
world Web page data. Constraining the factor matrices of NMTF to be cluster indicator
matrices thereby introducing the fast DKT approach is the major difference of this work
compared to our previous conference paper [Wang et al. 2011b]. In addition, we also
provide additional experimental results to demonstrate the effectiveness and efficiency
of both the proposed DKT approach and its fast version in cross-language Web page
classification.

1.3. Article Organization

The rest of this article is organized as following. We first introduce some backgrounds
and briefly review co-clustering via NMTF in Section 2, by which we motivate our
approach. Then in Section 3 we systematically develop the objective of the proposed
DKT approach. In order to improve the computational efficiency of the proposed DKT
approach to deal with large-scale real world data, we further introduce a fast version of
the proposed DKT approach in Section 4, which is one of the major contribution of this
article compared to our previous conference paper [Wang et al. 2011b]. The connections
of the proposed approach and related existing works are examined in Section 5. Finally,
we report experimental results to evaluate a variety aspects of the proposed approaches
in Section 6 and conclude our work in Section 7.

2. BACKGROUNDS

In this section, we first introduce some notations, which will be frequently used in
this article. Then we briefly review NMTF for co-clustering and reveal how it transfers
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knowledge between data and features within the same data set, from which we will
develop the proposed approach in next section.

2.1. Notations

Throughout this article, we denote matrices as bold uppercase characters and vectors
as bold lowercase characters. For the matrix M, we denote its entry at the ith row
and jth column as M(i j). The ith row and jth column of M are denoted as mi· and m· j
respectively. We denote the Frobenius norm and the trace of the matrix M as ‖M‖ and
tr (M) respectively.

The real number set is denoted as � and the nonnegative real number set is denoted
as �+.

In particular, in this article we use � to denote the set of cluster indicator matrices.
A cluster indicator matrix G ∈ �n×c is a special type of nonnegative matrix satisfying
the following requirement: given a row gi· (1 ≤ i ≤ n) of G, all its entries are equal to 0
except for one and only one entry equal to 1, which indicates the cluster membership of
the ith data point. To be more specific, for the ith row of G, the following two conditions
are satisfied: gi· ∈ {0, 1}c and

∑
j gi·( j) = 1.

2.2. Review of Co-Clustering via NMTF

Traditional clustering methods focus on one-side clustering, that is, clustering the data
side based on the similarities along the feature side. In co-clustering problems [Ding
et al. 2006; Wang et al. 2011c, 2011d], we cluster data points based on the distributions
of features, meanwhile we cluster features based on the distributions of data points.
Formally, given a data set X = {x·i ∈ �d}n

i=1, we write X = [x·1, . . . , x·n] = [xT
1·, . . . , xT

d·]
T .

The goal of co-clustering is to group the data points {x·1, . . . , x·n} into k1 clusters {C j}k1
j=1,

and simultaneously group the features {x1·, . . . , xd·} into k2 clusters {W j}k2
j=1.

K-means clustering is a standard clustering method in statistical learning, which
partitions the input data points into k disjoint clusters by minimizing the following
objective [Ding and He 2004]:

JK-means =
k∑

j=1

∑
x·i∈C j

‖x·i − c j‖2 =
k∑

j=1

n∑
i=1

gij‖x·i − c j‖2,

s.t. G ∈ �n×k,

(1)

where c j is the centroid of the jth cluster of the input data X. Because G ∈ � is a
cluster indicator matrix, minimizing JK-means is a combinatorial optimization problem,
which is hard to resolve in general. To tackle this, the problem of minimizing JK-means
in Equation (1) can be relaxed to maximize the following objective [Ding and He 2004;
Zha et al. 2001]:

J′
K-means = tr(GT XT XG), s.t. GT G = I. (2)

Note that, in Equation (2) G in J′
K-means is no longer an indicator matrix, but an arbitrary

orthonormal matrix. The orthonormality of G guarantees the uniqueness of the solution
of Equation (2), and leads to the clustering interpretation of G [Ding and He 2004; Zha
et al. 2001].

Recently, Ding et al. [2005] explored the relationship between the relaxed objective
of K-means clustering in Equation (2) and NMF, and proposed to use NMTF to simul-
taneously cluster both the features and the data points of an input data set, which is
called as co-clustering of the input data set. The original NMF [Lee and Seung 1999,
2001] aims to find two nonnegative matrices whose product can well approximate the
original nonnegative data matrix X ∈ �p×n

+ , that is, X ≈ FGT , where F ∈ �d×k
+ and

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 1, Article 1, Publication date: July 2015.
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G ∈ �n×k
+ . The columns of X are data points and the rows of X are features (observa-

tions). An appropriate objective of NMF is to minimize the following objective [Lee and
Seung 2001]:

JNMF = ‖X − FGT ‖2, s.t. F ≥ 0, G ≥ 0. (3)

According to Ding et al. [2005], NMF defined in Equation (3) corresponds to simulta-
neous K-means clustering of the rows (features) and columns (data points) of X, where
F can be considered as the clustering indications for features and G can be considered
as the clustering indications for data points. Because both F and G are relaxed clus-
ter indications, that is, continuous real-valued matrices, they are called as soft labels
[Ding et al. 2005]. Because co-clustering on the both sides of an input data matrix takes
advantage of the interrelatedness between the data points and features, NMF based
co-clustering methods usually report superior performance [Ding et al. 2005, 2006].

Because two-factor NMF in Equation (3) is restrictive, which often gives a rather
poor low-rank matrix approximation, one may introduce one additional factor matrix
S ∈ �k1×k2+ to absorb the different scales of X, F, and G, which leads to NMTF [Ding
et al. 2006] minimizing the following objective:

JNMTF = ‖X − FSGT ‖2 s.t. F ≥ 0, S ≥ 0, G ≥ 0, FT F = I, GT G = I, (4)

where F ∈ �d×k1+ and G ∈ �n×k2+ . S provides increased degrees of freedom such that
the low-rank matrix representation remains accurate while F gives row clusters and
G gives column clusters. Most importantly, S is a condensed view of X [Li et al. 2009]
and represents the associations between word clusters and Web page clusters [Zhuang
et al. 2010]. Note that here we impose the orthogonal constraints on the both side factor
matrices, such that the solution of the problem is unique [Ding et al. 2006].

2.3. Motivations of Using NMTF in Cross-Language Web Page Classifications

In the context of Web page classification, the input data set is described by X for a
set of Web pages in a given language. Due to their roles in co-clustering as introduced
earlier, the factor matrices F and S of the NMTF in Equation (4) abstract the two
types of information contained in X: the former characterizes the feature clustering
patterns of the input data, which are the unsupervised knowledge of X due to the
intrinsic linguistic structures of the language; while the latter encodes the associations
between feature clusters and semantic classes, which are the supervised knowledge
due to human labeling efforts. Obviously, these two types of transformed knowledge are
exactly what we expect to transfer across languages as outlined in Section 1. However,
both Equations (3) and (4) are designed for one single data set, while in cross-language
Web page classifications we have two separate data sets, one in the auxiliary language
and the other in the target language. Thus, in next section we further develop NMTF
in Equation (4) and propose a novel joint NMTF framework to transfer knowledge
across languages to address the challenges in cross-language Web page classification
to achieve improved classification performance.

3. JOINT NMTF BASED DUAL KNOWLEDGE TRANSFER

In this section, we develop a novel joint NMTF based DKT approach for cross-language
Web page classification, which transfers knowledge from the data in the auxiliary
language to those in the target language by two different paths: (1) word cluster ap-
proximation and (2) the associations between word clusters and Web page classes. An
iterative algorithm to solve the proposed objective is also presented.

ACM Transactions on Knowledge Discovery from Data, Vol. 10, No. 1, Article 1, Publication date: July 2015.
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3.1. Problem Formalization of Cross-Language Web Page Classification

For a cross-language Web page classification problem, we have two Web page data sets,
one in the auxiliary language Xa = [xa

·1, . . . , xa
·na] ∈ �d×na

+ and the other in the target
language Xt = [xt

·1, . . . , xt
·nt ] ∈ �d×nt

+ , where xa
·i represents the ith Web page in the

auxiliary language and xt
· j represents the jth Web page in the target language. Thus

Xa and Xt can be seen as the document-word co-occurrence matrices of the auxiliary
data and the target data respectively, or their tf–idf normalized counterparts. We
assume that the both data sets are using a same vocabulary with d keywords: if the
vocabularies differ, we may simply pad zeros in the feature vectors and re-express them
under the same unified vocabulary so that the indices of the feature vectors from the
both data sets correspond to the same word. Let V ∈ �d×d be a diagonal matrix with
V(ii) = 1 if the ith word occurs in the both data sets, and V(ii) = 0 otherwise.

Typically a large amount of Web pages in the auxiliary language are manually
labeled, which can be described by an indicator matrix Ya ∈ �na×k2 such that Ya

(ik) = 1
if xa

·i belongs to the kth class, and Ya
(ik) = 0 otherwise. In addition, a diagonal matrix

Ca ∈ �na×na
is used, whose entry Ca

(ii) = 1 if Web page xa
·i is labeled by the ith row of

Ya, and Ca
(ii) = 0 otherwise. Note that if C = I, all the Web pages in auxiliary language

are completely labeled and specified by Ya. Sometimes, though not always, we may
also have a limited number of labeled Web pages in the target language. We similarly
describe them using Yt ∈ �nt×k2 such that Yt

(ik) = 1 if xt
·i belongs to the kth class, and

Yt
(ik) = 0 otherwise. Again, Ct ∈ �nt×nt

is a diagonal matrix whose entry Ct
(ii) = 1 if Web

page xt
·i is labeled by the ith row of Yt, and Ct

(ii) = 0 otherwise. When the labels for
all the Web pages in the target language are not available, we set Ct = 0nt×nt

, which is
a zero matrix. Our goal is to predict labels for the unlabeled Web pages in the target
data set.

In general, although the two sets of classes interested by the two data sets in the
two languages overlap for most of the classes, they may differ. For the latter case, we
pad zero columns to Ya or Yt, or the both, such that the column indices of the both
matrices correspond to the same classes. We encode the difference between the two
sets of classes by two matrices, one for the auxiliary data and the other for the target
data: Qa ∈ �k2×k2 is a diagonal matrix with Qa

(ii) = 1 if the ith class comes from the
source data set, and Qa

(ii) = 0 otherwise; and Qt ∈ �k2×k2 is a diagonal matrix with
Qa

(ii) = 1 if the ith class comes from the target data set, and Qt
(ii) = 0 otherwise. Note

that, we need the both matrices because one class could appear in the both data sets.
To encode the shared classes, we define one more indication matrix Q ∈ �k2×k2 , which
is a diagonal matrix with Q(ii) = 1 if the ith class is shared by the both languages, and
Q(ii) = 0 otherwise:

Q(ii) =
{

1 if Qa
(ii) = 1 and Qt

(ii) = 1,

0 if Qa
(ii) = 0 or Qt

(ii) = 0.
(5)

We summarize the frequently used notations in Table I for convenience.

3.2. Objective of Our Proposed Approach

Given the Web page data Xa in the auxiliary language and their corresponding labels
Ya, adopting the idea of simultaneous clustering of words and Web pages via NMTF,
we may minimize the following objective [Gu and Zhou 2009b; Zhuang et al. 2010]:

Ja = ‖Xa − FaSa(Ga)T ‖2 + α tr[Qa(Ga − Ya)T Ca(Ga − Ya)],

s.t. Fa ≥ 0, Sa ≥ 0, Ga ≥ 0, (Fa)T Fa = I, (Ga)T Ga = I.
(6)
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Table I. Frequently used Notations in this Article

Xa data matrix of Web pages in auxiliary language
Xt data matrix of Web pages in target language
na number of Web pages in auxiliary language
nt number of Web pages in target language
Fa word cluster indicator matrix of Xa

Ft word cluster indicator matrix of Xt

Sa the matrix associating word clusters and classes in the auxiliary language
St the matrix associating word clusters and classes in the target language
Ga class indicator matrix of Web pages in auxiliary language
Gt class indicator matrix of Web pages in target language
Ya true label indicator matrix of Web pages in auxiliary language
Yt true label indicator matrix of Web pages in target language
V word sharing indication matrix of the two data sets
Q class sharing indication matrix of the two data sets
Ca label indication matrix of Xa

Ct label indication matrix of Xt

k1 number of word clusters
k2 number of Web page classes

In Equation (6), α > 0 is a parameter determining to which extent we enforce the
prior labeling knowledge in auxiliary language, that is, Ga ≈ Ya. Qa is used to control
the scope to enforce the prior knowledge only to the classes that belong to the source
data set.

Solving the optimization problem in Equation (6), we obtain the optimal Fa∗ and Sa∗,
which contain the information of the Web page data in the auxiliary language. Our
goal is therefore to transfer the learned knowledge encoded in Fa∗ and Sa∗ to the Web
page data in the target language to improve the classification accuracy therein.

3.2.1. Transfer Knowledge via Word Clustering Approximation by Fa and Ft. As illustrated ear-
lier, we have two paths to transfer knowledge across the languages, among which the
first one is achieved by minimizing the following optimization objective:

JTrans-F = ‖Xt − FtSt(Gt)T ‖2 + β tr[Qt(Gt − Yt)T Ct(Gt − Yt)]

+ γ tr[(Ft − Fa∗)T V(Ft − Fa∗)],

s.t. Ft ≥ 0, St ≥ 0, Gt ≥ 0, (Ft)T Ft = I, (Gt)T Gt = I,

(7)

where β > 0 and γ > 0 are two parameters. The second term of Equation (7) acts
the same as that in Equation (6), which enforces labeling information in the target
domain if it is available. The key part is the third term of Equation (7). It enforces
the constraint that the word clusters in Xt are approximately close to Fa, which is
learned from Xa. The extent of this approximation is determined by the parameter
γ . As a result, the prior labeling information contained in Ga for Xa is transferred to
the label assignments Gt for Xt via the semantic word structures Fa and Ft, which is
schematically shown as the red path in Figure 2.

In order to demonstrate the usefulness of KNWs in cross-language Web page classi-
fication, we give a more theoretical analysis on the example in Figure 1. Suppose that
the knowledge in auxiliary language is certain, we may set γ in Equation (7) as ∞,
which leads to the following objective to minimize:

J′
2 = ‖Xt − Fa∗St(Gt)T ‖2, (8)

in which we temporarily ignore the training information in target language, in or-
der to see the real effect of prior labeling knowledge to improve classification perfor-
mance. The objective in Equation (8) is identical to the following optimization objective
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[Ding et al. 2005, 2006]:

max
Gt

tr[(Gt)T (Xt)T Fa∗(Fa∗)T XtGt]. (9)

By the equivalence between K-means clustering and principal component analysis
(PCA) [Ding and He 2004; Zha et al. 2001], the clustering by Equation (9) uses
(Xt)T Fa∗(Fa∗)T Xt as the pairwise similarity, whereas K-means clustering uses (Xt)T Xt

as the pairwise similarity. For example in Figure 1, we have

(Xt)T Xt =

⎡
⎢⎣

2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

⎤
⎥⎦. (10)

Thus K-means clustering will produce (W1, W3) as a cluster and (W2, W4) as another
cluster.

Now, with the work pattern knowledge Fa∗ learned from the auxiliary language, we
have

(Xt)T Fa∗(Fa∗)T Xt =

⎡
⎢⎢⎢⎣

1 1 1
2

1
2

1 1 1
2

1
2

1
2

1
2 1 1

1
2

1
2 1 1

⎤
⎥⎥⎥⎦, (11)

in which we assume we already learned Fa∗ from auxiliary language, which, as shown
in Figure 1(c), is

(Fa∗)T = 2−1/2

[ 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

]
. (12)

Clearly, using the similarity in Equation (11), K-means clustering will generate (W1,
W2) as a cluster and (W3, W4) as another cluster, which is a more meaningful result
as in Figure 1(c).

3.2.2. Transfer Knowledge via the Associations Between the Word Clusters and Web Page Classes
by Sa and St. As discussed earlier in Section 1, compared to word clusters, the associa-
tions between word clusters and Web pages classes are more reliable to convey semantic
relationships across different languages. Formally, we achieve this by minimizing the
following optimization objective:

JTrans-S = ‖Xt − FtSt(Gt)T ‖2 + μ tr[(Sa∗ − St)Q(Sa∗ − St)T ]

s.t. Ft ≥ 0, St ≥ 0, Gt ≥ 0, (Ft)T Ft = I, (Gt)T Gt = I,
(13)

where Sa∗ is obtained by solving Equation (6). As a result, Sa∗, learned from the
auxiliary data set, is used as the supervision to classify the target data. Namely, Sa∗

and St bridge the source and target languages such that prior labeling knowledge can
be transferred from the former to the latter, which is schematically shown as the green
path in Figure 2.

A simpler way to transfer the supervised knowledge via the associations between
word patterns and semantic classes is to force the middle factor matrix S in the two
data matrix factorizations for the both domains to be identical, which is achieved by
minimize the following objective:

J′
Trans-S = ‖Xt − FtSa∗(Gt)T ‖2

s.t. Ft ≥ 0, Gt ≥ 0, (Ft)T Ft = I, (Gt)T Gt = I.
(14)
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Because Equation (14) is free of parameter, it easier to fine tune in practice, which
thereby is used in our earlier conference publication [Wang et al. 2011b, 2011e] to trans-
fer the supervised knowledge across languages. However, compared to Equation (13),
Equation (14) is less general and flexible for the following two reasons.

First, instead of rigidly forcing the two matrix factorizations in the both domains to
share an identical middle factor matrix, through the parameter μ Equation (13) allows
user to adjust to which extent we approximate Sa by St. If it is known in advance that
the auxiliary data has very close distribution to the target data, we may set μ to be
a large value, such that the factorization in the target domain is strongly guided by
the supervised knowledge in the auxiliary domain. Apparently, when μ is sufficiently
large, Equation (13) is exactly equivalent to Equation (14). In contrast, if the auxiliary
data is known in a priori to have a very different distribution from that of the target
data, we may set μ to be a small value so as not to bias the factorization in the target
domain too much, while the useful knowledge in the auxiliary domain is still used.

Second, but more important, Equation (13) could potentially reduce the noise due
to semantic class differences. Because Equation (13) only approximate St to Sa for the
classes shared by the both domains due to the introduction of class sharing indication
matrix Q, when the auxiliary data and target data do not share a same set of classes,
the supervised information for the classes exclusively in the auxiliary data will have
no effect on the data factorization in the target domain. On the other hand, when the
data in the both domains convey same semantic meanings by sharing a same set of
classes, one can set Q = I, which reduces Equation (13) to Equation (14) when μ is
sufficiently large.

In summary, both Equation (13) and Equation (14) are able to transfer the prior
labeling information in the auxiliary data to the target data, while the former is more
general and flexible. Equation (14) can be seen as a special case of Equation (13).
Therefore, in the current work, we choose Equation (13) as our objective to build the
path to transfer supervised knowledge.

3.2.3. Our Optimization Objective. Finally, we may combine the three optimization prob-
lems in Equation (6), Equation (7) and Equation (13) into a joint optimization objective
to minimize the following objective:

JDKT = ‖Xa − FaSa(Ga)T ‖2 + ‖Xt − FtSt(Gt)T ‖2

+ α tr
[
Qa(Ga − Ya)T Ca(Ga − Ya)

]
+ β tr

[
Qt(Gt − Yt)T Ct(Gt − Yt)

]
+ γ tr

[
(Ft − Fa)T V(Ft − Fa)

]
,

+ μ tr
[
(Sa − St)Q(Sa − St)T ]

s.t. Fa ≥ 0, Ga ≥ 0, Sa ≥ 0, St ≥ 0, Ft ≥ 0, Gt ≥ 0,

(Fa)T Fa = I, (Ga)T Ga = I, (Ft)T Ft = I, (Gt)T Gt = I.

(15)

In this formulation, we approximate St and Ft in the target domain to those in the
source domain, which are used as the two bridges to transfer knowledge between them
as illustrated in Figure 2.

Note that, the last term of Equation (7) only applies to the common words of Xa and
Xt, which are encoded by V. When the auxiliary data set and the target data set do not
share any word, that is, V = 0m×m is a zero matrix, there will be no knowledge transfer
through word path. Similarly, if the auxiliary data set and the target data set do not
share common classes, there will be no knowledge transformation in the optimization
problem of Equation (13), because it is decoupled into two independent subproblems,
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one for auxiliary data and the other for target data. However, these two cases rarely
happen at the same time. As a result, our model is flexible and can always transfer
knowledge in Equation (15) through either word clusters or the associations between
word clusters and Web page classes, or the both.

On solving Equation (15), there exist a number of ways to determine the class labels
of unlabeled Web pages in target language. In this work, following [Ding et al. 2005],
we consider gt

i· (after normalization) as the posterior probability of class membership,
we assign the class label to the xt

·i in target language using the following rule:

l
(
xt

·i
) = arg max

k
Gt

(ik). (16)

Solving Equation (15) and assigning labels to the unlabeled Web pages in target lan-
guage using Equation (16), we can classify cross-language Web pages in the target
language domain. Because Equation (15) transfers knowledge in two different paths,
we call it as the proposed DKT approach.

3.3. Optimization Algorithm

In the rest of this section, we will derive the solution to Equation (15) and present an
alternating scheme to optimize the objective JDKT. Specifically, we will optimize one
variable while fixing the rest variables. The procedure repeats until convergence.

First, we expand the objective in Equation (15) as follows,

J(Fa, Sa, Ga, Ft, St, Gt)

= tr[−2(Xa)T FaSa(Ga)T + Ga(Sa)T (Fa)T FaSa(Ga)T ]

tr[−2(Xt)T FtSt(Gt)T + Gt(St)T (Ft)T FtSt(Gt)T ]

+ α tr[Qa(Ga)T CaGa − 2Qa(Ga)T CaYa]

+ β tr[Qt(Gt)T CtGt − 2Qt(Gt)T CtYt]

+ γ tr[(Ft)T VFt − 2(Ft)T VFa + (Fa)T VFa]

+ μ tr[Q(Sa)T Sa − 2Q(Sa)T St + Q(St)T St],

(17)

in which constant terms are discarded.

3.3.1. Computation of Fa. We first compute Fa and assume the rest variables are
fixed. Following the standard theory of constrained optimization, we introduce the
Lagrangian multipliers U ∈ �k1×k1 (a symmetric matrix of size k1 × k1) and minimize
the following Lagrangian function:

L(Fa) = J − tr[U((Fa)T Fa − I)]. (18)

Thus, the gradient of L is:

∂L
∂Fa = −2XaGa(Sa)T + 2FaSa(Ga)T Ga (Sa)T − 2γ VFt + 2γ VFa + 2FaU. (19)

The Karush–Kuhn–Tucker (KKT) condition complementarity condition gives

(−2XaGa (Sa)T + 2FaSa(Ga)T Ga (Sa)T − 2γ VFt + 2γ VFa + 2FaU)ik (Fa)ik = 0. (20)

This is the fixed point relation that local minima for Fa must hold.
The standard approach is to solve the coupled equations Equation (20) and constraint

FaFa = I for Fa and U. This system nonlinear equations is generally difficult to solve.
Following [Ding et al. 2006, Section 6], we can derive the Lagrangian multiplier U is
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computed as following:

U = (Fa)T XaGa (Sa)T − Sa(Ga)T Ga (Sa)T
. (21)

Following the same derivations in Ding et al. [2005, 2006, 2010], we can obtain updating
formula as follows:

Fa
(i j) ← Fa

(i j)

√√√√ (XaGa (Sa)T + γ VFt)(i j)

(Fa (Fa)T XaGa (Sa)T + γ VFa)(i j)
. (22)

Based on the updating formulation in Equation (22) earlier, it is obvious that the
constraint Fa ≥ 0 is automatically satisfied.

3.3.2. Computation of Sa, Ga, Ft, St and Gt. Following the same derivations in Equa-
tions (18–22), we obtain the updating rules for the rest variables of JDKT as following:

Ga
(i j) ← Ga

(i j)

√√√√ ((Xa)T FaSa + αCaYaQa)(i j)

(Ga(Ga)T (Xa)T FaSa + αCaGaQa)(i j)
(23)

Sa
ij ← Sa

ij

√√√√ ((Fa)T XaGa + μQSt)(i j)

((Fa)T FaSa(Ga)T Ga + μQSa)(i j)
(24)

Ft
(i j) ← Ft

(i j)

√√√√ (XtGt (St)T + γ VFa)(i j)

(Ft (Ft)T XtGt (St)T + γ VFt)(i j)
(25)

Gt
(i j) ← Gt

(i j)

√√√√ ((Xt)T FtSt + βCtYtQt)(i j)

(Gt(Gt)T (Xt)T FtSt + βCtGtQt)(i j)
(26)

St
i j ← St

i j

√√√√ ((Ft)T XtGt + μQSa)(i j)

((Ft)T FtSt(Ga)T Gt + μQSt)(i j)
(27)

In summary, we present an iterative multiplicative updating algorithm to optimize
Equation (15) in Algorithm 1.

The analysis of the convergence of Algorithm 1 is provided in the appendix.

4. FAST DUAL KNOWLEDGE TRANSFER FOR LARGE-SCALE WEB DATA

Despite its mathematical elegance, same as existing NMF based methods [Ding et al.
2005, 2006, 2010; Gu and Zhou 2009a; Li et al. 2010; Wang et al. 2008], Equation (15)
suffers from two problems that impede its practical use. First, similar to Equation (2),
relaxing F and G to be continuous variables makes the immediate outputs of Equa-
tion (15) not the clustering labels, which requires an additional post-processing step,
for example, using Equation (16), and may lead to non-unique solutions. Second, and
more important, Equation (15) is solved by an alternately iterative algorithm as de-
scribed in Algorithm 1, and in each iteration step the intensive matrix multiplications
are involved. As a result, it is infeasible to apply such algorithms to large-scale real
world Web data due to the expensive computational cost.
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ALGORITHM 1: Algorithm to solve JDKT in Equation (15).
Input: 1. Data matrix Xa in auxiliary language,
2. data matrix Xt in target language,
3. labels of Web pages in auxiliary language Ya,
4. optional labeling information Yt in target data,
5. trade-off parameters α, β and γ .
Initialize Fa, Ga, Sa, Ft, Gt and St following [Zhuang et al. 2010];
while not converge do

1. Update Fa using Equation (22),
2. Update Ga using Equation (23),
3. Update Sa using Equation (24),
4. Update Ft using Equation (25),
5. Update Gt using Equation (26),
6. Update St using Equation (27),

end
Predict labels for xt

·i using Equation (16).
Output: Labels assigned to the labeled Web page xt

·i in target language.

In order to tackle these difficulties, instead of solving the relaxed clustering problems
as in Equations (2)–(4) and Equation (15), we solve the original clustering problem
similar to Equation (1). Specifically, we constrain the factor matrices of NMTF to be
cluster indicator matrices and minimize the following objective:

JF-DKT = ‖Xa − FaSa(Ga)T ‖2 + ‖Xt − FtSt(Gt)T ‖2

+ α tr
[
Qa(Ga − Ya)T Ca(Ga − Ya)

]
+ β tr

[
Qt(Gt − Yt)T Ct(Gt − Yt)

]
+ γ tr

[
(Ft − Fa)T V(Ft − Fa)

]
,

+ μ tr
[
(Sa − St)Q(Sa − St)T ]

s.t. Fa ∈ �, Ga ∈ �, Sa ≥ 0, St ≥ 0, Ft ∈ �, Gt ∈ �.

(28)

We call Equation (28) as the proposed F-DKT. Note that, in Equation (28) the traditional
nonnegative constraints on the four factor matrices in the two matrix factorizations
are replaced by cluster indicator matrices. Because �n×c ⊂ �n×c

+ , these new constraints
are more stringent. Surprisingly, with these new constraints, though more stringent,
as shown theoretically shortly in this section and empirically later in Section 6, the
computational speed of our approach can be significantly improved.

4.1. Optimization Procedures

Again, we alternately optimize the five variables of JF-DKT in Equation (28).
First, when Fa, Ga, Ft, and Gt are fixed, the optimizations of Sa and St are same as

before, therefore the same updating rule in Equation (24) and Equation (27) are used.
Second, when Fa, Sa, Ft, St, and Gt are fixed, the optimization problem to obtain Ga

can be decoupled and we solve the following simpler problem for each i (1 ≤ i ≤ na):

min
Ga∈�

∥∥xa
·i − FaSa (

ga
i·
)T ∥∥2 + α Ca

(ii)

(
ga

i· − ya
i·
)
Qa (

ga
i· − ya

i·
)T

. (29)

Because ga
i· (1 ≤ i ≤ na) ∈ �1×k2 is a cluster indicator vector in which one and only

one element is 1 and the rest are zeros, the solution of Equation (29) can be easily
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obtained by:

Ga
(i j) =

{
1 j = arg mink

∥∥xa
·i − f̃a

·k
∥∥2 + αCa

(ii)Q
a

(kk)

(
1 − Ya

(ik)

)2
,

0 otherwise,
(30)

where F̃a = FaSa and f̃a
·k is the kth column of Fa. Note that Equation (30) simply

enumerates the k2 vector norms and seeks the minimum one, without involving any
matrix multiplication.

Similarly, when Ga, Sa, Ft, St, and Gt are fixed, the optimization problem to obtain
Fa can be decoupled and we solve the following simpler problem for each j (1 ≤ j ≤ d):

min
Fa∈�

∥∥xa
j· − fa

j·S
a(Ga)T

∥∥2 + γ V(ii)
∥∥fa

j· − ft
j·
∥∥2

. (31)

Again, because fa
j· (1 ≤ j ≤ d) ∈ �1×k1 is a cluster indicator vector for feature side, the

solution to Equation (31) is

Fa
(i j) =

{
1 i = arg minl

∥∥xa
j· − g̃a

l·
∥∥2 + γ V(ii)

(
1 − Ft

( jl)

)2
,

0 otherwise,
(32)

where (G̃a)T = Sa(Ga)T and g̃a
l· is the lth row of (G̃a)T .

Following the same idea, we can obtain the update rules for Ft and Gt. Specifically,
when Fa, Ga, Sa, Ft, and St are fixed, the optimization problem to obtain Gt can be
decoupled and we solve the following simpler problem for each i(1 ≤ i ≤ nt):

min
Gt∈�

∥∥xt
·i − FtSt (

gt
i·
)T ∥∥2 + α Ct

(ii)

(
gt

i· − yt
i·
)
Qt (

gt
i· − yt

i·
)T

. (33)

Thus, let F̃t = FtSt, the solution of Equation (33) can be obtained by

Gt
(i j) =

{
1 j = arg mink

∥∥xt
·i − f̃t

·k
∥∥2 + αCt

(ii)Q
t
(kk)

(
1 − Yt

(ik)

)2
,

0 otherwise.
(34)

Finally, when Fa, Ga, Sa, St and Gt are fixed, the optimization problem to obtain Ft

can be decoupled and we solve the following simpler problem for each j (1 ≤ j ≤ d):

min
Ft∈�

∥∥xt
j· − ft

j·S
t(Gt)T

∥∥2 + γ V(ii)
∥∥ft

j· − fa
j·
∥∥2

. (35)

Let (G̃t)T = St(Gt)T , the solution to Equation (35) is

Ft
(i j) =

{
1 i = arg minl

∥∥xt
j· − g̃t

l·
∥∥2 + γ V(ii)

(
1 − Fa

( jl)

)2
,

0 otherwise.
(36)

The procedures to optimize JF-DKT in Equation (28) are summarized in Algorithm 2.
Due to the nature of alternating optimization, Algorithm 2 is guaranteed to converge
to a local minima (existing NMF algorithms [Ding et al. 2005, 2006, 2010] also con-
verges to a local minima because the objectives JNMF and JNMTF are not convex in both
variables F and G).

A careful look at Algorithm 2 shows that the steps 3–6 are obtained by enumerating
vector norms, which is definitely much more computationally efficient than matrix
multiplications used in the same steps of Algorithm 1. Because the updates on Sa and
St is performed on much smaller matrices (typically k1  d, k2  na and k2  nt),
the main computational loads of the algorithms fall on steps 3–6. As a result, the
computational speed of Algorithm 2 is much faster than Algorithm 1.

Moveover, on solution, G directly gives the classification results of data points, while
additional postprocessing step is required in continuous NMTF based methods, such
as using Equation (16) to extract labeling structures from the results of Equation (15).
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ALGORITHM 2: Algorithm to solve JF-DKT in Equation (28).
Input: 1. Data matrix Xa in auxiliary language,
2. data matrix Xt in target language,
3. labels of Web pages in auxiliary language Ya,
4. optional labeling information Yt in target data,
5. trade-off parameters α, β and γ .
Initialize Fa, Sa, Ga, Ft, smt and Gt following [Zhuang et al. 2010];
while not converge do

1. Update Sa using Equation (24),
2. Update St using Equation (27),
3. Update Ga using Equation (30),
4. Update Fa using Equation (32),
5. Update Gt using Equation (34),
6. Update Ft using Equation (36),

end
Output: Indicator matrix Gt for the class memberships of the unlabeled Web pages in target

language.

5. RELATED WORKS

In this section, we review several prior researches mostly related to our work, including
transfer learning, cross-language classification and NMTF.

5.1. Transfer Learning

From machine learning perspective of view, our work belongs to the topic of transfer
learning (also called as domain adaption in some research papers), which deals with
the case in which the training and test data are obtained from different resources
thereby in different distributions [Ling et al. 2008; Li et al. 2009, 2010; Olsson et al.
2005; Prettenhofer and Stein 2010; Ramı́rez-de-la Rosa et al. 2010; Shi et al. 2010; Wan
2009; Wu and Lu 2008; Zhuang et al. 2010]. Recently, Dai et al. [2007] studied trans-
fer learning through co-clustering, which also uses coclustering to achieve knowledge
transfer across domain, same as ours. For a comprehensive survey of transfer learning,
we refer readers to Pan and Yang [2009].

5.2. Cross-Language Classification

Cross-language Web page and document classification has attracted increased atten-
tion in recent years due to its importance in IR. Bel et al. [2003] studied English–
Spanish cross-language classification problem. Two scenarios are considered in their
work. One scenario assumes to have training documents in both languages, and the
other is to learn a model from the text in one language and classify the data in another
language by translation. Our work follows the second strategy. Olsson et al. [2005]
employed a general probabilistic English-Czech dictionary to translate Czech text into
English and then classified Czech documents using the classifier built on English train-
ing data. Ling et al. [2008] classify Chinese Web pages using English data source by
utilizing the information bottleneck (IB) theory. Other cross-language text classifica-
tion researches include [Wu and Lu 2008] (Chinese–English), Ramı́rez-de-la Rosa et al.
[2010] (English–Spanish–French), Shi et al. [2010] (English–Chinese–French), and so
forth, to be mentioned.

5.3. NMTF

NMF is a useful learning method to approximate a nonnegative input data matrix
by the product of factor matrices [Lee and Seung 1999, 2001], which has been ap-
plied to solve many real world problems including dimensionality reduction, pattern
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recognition, clustering and classification [Ding et al. 2010, 2005, 2006; Wang et al. 2008;
Gu and Zhou 2009a; Chen et al. 2009; Li et al. 2009, 2010; Zhuang et al. 2010]. Recently,
Ding et al. extended NMF [Ding et al. 2006] to NMTF and explored its relationships to
K-means/spectral clustering [Ding et al. 2005, 2006]. Due to its mathematical elegance
and encouraging empirical results, NMTF method is further developed to address a
variety of aspects of unsupervised and semi-supervised learning [Chen et al. 2009; Gu
and Zhou 2009a; Li et al. 2009, 2010; Wang et al. 2008; Zhuang et al. 2010], among
which [Li et al. 2009] and [Zhuang et al. 2010] are closely related to our work. The
former investigated cross-domain sentiment classification, which transfers knowledge
by sharing information of word clusters. This is similar to our approach to transfer
knowledge through words. While they dealt with two separate tasks of matrix fac-
torizations, first on the source domain and then on the target domain, our approach
optimizes a combined and collaborative objective, which leads to extra values in clas-
sification as shown later in our experimental evaluations. In addition, they assume
there exist no label information in target domain, which restricts its capability to solve
real world problems. The latter considered the cross-domain document classification
via transferring knowledge by the associations between word clusters and document
classes, which, however, did not use the important information contained in words as
both our approach and [Li et al. 2009]. Again, they restrict that the data in the source
domain are completely labeled while no data labeling information in the target domain.
In summary, our approach has very close relationships to Li et al. [2009] and Zhuang
et al. [2010], but enjoys the advantages of both of them, with additional flexibilities to
allow training data appearing in various forms.

Most importantly, all these earlier NMTF based clustering or classification methods
rely on solution algorithms involving intensive matrix multiplications, which makes
them computational inefficient and can scale to large-scale real world data. In con-
trast, the fast implementation of our approach address this problem, which adds to its
practical value.

6. EXPERIMENTS

In this section, we evaluate the proposed joint NMTF based DKT approach as well as
its fast variant in cross-language Web page classification tasks.

6.1. Data Preparation

We conduct our empirical evaluations on a publicly available multi-lingual Web page
data set—cross lingual sentiment corpus5 [Prettenhofer and Stein 2010]. This data set
contains about 800,000 web pages from Amazon web site for product reviews in four
languages: English, German, French and Japanese. The crawled part of the corpus
contains more than four millions of Web pages in the three languages other than
English from amazon.{de|fr|co.jp}. Besides the original Web pages, all the Web pages
in German, French and Japanese are translated into English. The corpus is extended
with English Web pages provided by Blitzer et al. [2006]. All the Web pages in the
corpus are divided into three categories on the product they describe: books, DVDs and
music. We refer readers to Prettenhofer and Stein [2010] for the details of the data set
and language translation procedures.

We randomly pick up 5,000 Web pages from each language in our test. Same as
[Prettenhofer and Stein 2010], we use English as the auxiliary language and the rest
three as target languages separately. Therefore we end up with three language pairs

5http://www.webis.de/research/corpora/.
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Table II. Shared Keywords of the Three Language Pairs

Several sample shared keywords
Language pair # shared keywords English German/French/Japanese

absurd absurd
English–Germen 5012 blew blies

darling Liebling
worst schlimmsten

abstract résumé
English–French 5608 beginning début

decade décennie
work travailler

5th
English–Japanese 5605 aim

chose
familiarity

Table III. Description of Testing Data Sets. English is used as Auxiliary Language
in all the Testing Data Sets

Data Target language # Labeled Auxiliary # Labeled Target
D1 German 3,500 0
D2 German 3,500 1,000
D3 French 3,500 0
D4 French 3,500 1,000
D5 Japanese 3,500 0
D6 Japanese 3,500 1,000

for testing: English-Germen, English-French, and English-Japanese. The numbers of
shared keywords between the three language pairs are reported in Table II, in which
several sample shared keywords are also shown for reference.

Because in real world applications not all the Web pages in the auxiliary language
are labeled, we randomly pick up 70% of English Web pages from each class as labeled
data. On the other hand, because in real world applications the Web pages in the
target language are mostly unlabeled, we simulate two different cases: (1) no labeled
Web pages in the target languages and (2) we randomly pick up 20% Web pages from
each class as labeled data in the concerned target language. As a result, we end up with
six testing data sets, which are summarized in Table III. For each testing data set, our
task is to classify the unlabeled Web pages in the corresponding target language.

6.2. Evaluation Metrics

Two widely used classification performance metrics in statistical learning and IR
are used in our experiments: macro-average precision and F1-measure. Let f be the
function which maps from document d to its true class label c = f (d), and h be the func-
tion which maps from document d to its prediction label c = h(d) given by the classifiers.
The macro-average precision P and recall R are defined as:

P = 1
C

∑
c∈C

{
d|d ∈ Xc ∧ h(d) = f (d) = c

}
{
d|d ∈ Xc ∧ h(d) = c

} (37)

R = 1
C

∑
c∈C

{
d|d ∈ Xc ∧ h(d) = f (d) = c

}
{
d|d ∈ Xc ∧ f (d) = c

} (38)
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Fig. 3. Classification performance (measured by macro-average precision) with respect to different param-
eter settings of the proposed DKT approach on D2 data set, which show that our approach is stable with
respect to a wide range of parameters settings.

The F1 measure is the harmonic mean of precision and recall, which is defined as
follows:

F1 = 2P R
P + R

(39)

6.3. Stopping Criterion of Our Iterative Algorithms

In order to solve the two proposed objectives in Equations (15) and (28), we presented
two iterative algorithms in Algorithm 1 and Algorithm 2, which employ the following
stopping criterion: ∥∥Z(k+1) − Z(k)

∥∥
max

(∥∥Z(k)
∥∥ , 1

) ≤ Tol, (40)

where Z is a concerned variable and Tol is a small number. In our experiments, we set
Tol = 10−4. When all the variables of an running algorithm, that is, Fa, Ft, Sa, St, Ga,
or Gt, satisfy the criterion in Equation (40), we stop the iteration procedures.

6.4. Study on Parameters

Because the proposed DKT and F-DKT approaches have four parameters, that is, α, β,
γ and μ in Equations (15) and (28), we first evaluate their impacts on the classification
performance. Although it is tedious to seek an optimal combination of them, we can
demonstrate that the performance of our DKT and F-DKT approaches are not sensitive
when the parameters are sampled in some value ranges. On our preliminary tests, we
bound the parameters in the ranges of 1 ≤ α ≤ 10, 1 ≤ β ≤ 10, 0.5 ≤ γ ≤ 3 and
1 ≤ μ ≤ 5. We report classification performance on test data set D2 in Figure 3
as it has labeled Web pages in both auxiliary language and target language. In our
experiments, the default parameter values are set as α = 1, β = 4.5, γ = 1, μ = 1, that
is, when evaluating one parameter, we set the other three parameters to the default
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Fig. 4. Comparison of the proposed approach (Equation (15)) and its degenerate version (Equation (41)) on
D1 test data.

values as listed. For each set of parameter combination, we repeat the experiment for
50 times and the average performance is reported as one point in Figure 3.

From Figure 3, we can see that the average performances of our DKT approach with
respect to each parameter remain considerable stable in a large range of the parameter
settings. This demonstrates that our approach is very robust again parameter settings
and thereby suitable for practical use.

6.5. Effectiveness of Knowledge Transfer in Cross-Language Web Page Classification

Because the main purpose of the proposed DKT approach is to transfer knowledge from
the Web pages in an auxiliary language to those in another target language which does
not have sufficient labeled data, we first evaluate the knowledge transfer capability
of the proposed approach in this subsection. We compare the proposed DKT approach
against its degenerate version as:

min J = ‖Xt − FtSt(Gt)T ‖2

+ tr[β(Gt − Yt)T Ct(Gt − Yt)],

s.t. St ≥ 0, Ft ≥ 0, Gt ≥ 0, (Ft)T Ft = I, (Gt)T Gt = I,

(41)

in which knowledge transfer terms in Equation (15) are removed. Thus Equation (41)
is a semi-supervised learning method working with the target data only, whose similar
form was ever proposed in Gu and Zhou [2009b].
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Fig. 5. Average precisions over all the classes on the target data set when the amount of labeled Web pages
in the auxiliary language varies.

We conduct this experiment on D2 data set. According to the experimental results
in Section 6.4, we set the tradeoff parameters α = 1, β = 4.5, γ = 1 and μ = 1,
following [Ding et al. 2006; Gu and Zhou 2009a] the number of word clusters is set to
same as Web page classes k1 = k2 = 3. We predict labels for the 80% unlabeled Web
pages in German and repeat the experiments for 100 times. The average classification
performances measured by precision and F1 score for each class are shown in Figure 4(a)
and Figure 4(b) respectively, from which we can see that our approach using knowledge
transfer outperforms its degenerate version without using knowledge transfer in all the
three classes. These observations concretely demonstrate the usefulness of knowledge
transfer in cross-language Web page classification.

In order to evaluate the detailed impact of training information in the auxiliary data
to the classification performance on the target data, we vary the amount of labeled
Web pages in the auxiliary language and examine the corresponding classification
performance on the Web pages in the target language of our approach. The average
precisions over all the three classes for different amount of labeled Web pages in the
auxiliary language are reported in Figure 5, which show that the more labeled data we
have in the auxiliary domain, the better classification performance we can achieve on
the target data set. This is consistent with the theoretical analysis, and again confirms
the effectiveness of our approach to transfer knowledge in cross-language Web page
classification.

6.6. Comparisons to Related Methods

Now we evaluate the proposed DKT approach by comparing it to two most recent
transfer learning methods including (1) KTW method [Li et al. 2009], (2) Matrix
Trifactorization based classification framework (MTrick) [Zhuang et al. 2010], and
(3) a very recent cross-language Web classification method using IB theory [Ling et al.
2008]. These methods have demonstrated state-of-the-art classification performance in
a variety of real world applications.

We also compare the proposed methods in the current manuscript to that in our
previous conference publication [Wang et al. 2011b]. Because the latter transfers the
supervised knowledge via fixed middle factor matrix S in the data matrix factorizations,
we denote it as “DKT (S fixed)” in Tables (IV–VI).

In addition, we also report the classification performances of Support Vector Machine
(SVM) (supervised method), and Transductive SVM (TSVM) [Joa] (semi-supervised
method) as baselines.
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Table IV. Macro-Average Precision and F1 Measure of Compared
Methods on English-German Web Page Data Sets

D1 D2
Methods Precision F1 Precision F1
SVM_T – – 0.679 0.468
SVM_TS 0.682 0.479 0.682 0.481
TSVM_T – – 0.682 0.475
TSVM_TS 0.689 0.483 0.701 0.489
KTW 0.673 0.481 0.675 0.483
MTrick 0.695 0.490 0.699 0.492
IB 0.691 0.492 0.703 0.501
DKT (S only) 0.697 0.495 0.718 0.505
DKT (S fixed) 0.716 0.508 0.730 0.510
DKT 0.735 0.517 0.748 0.532
F-DKT 0.721 0.513 0.734 0.527

Table V. Macro-Average Precision and F1 Measure of Compared
Methods on English-French Web Page Data Sets

D3 D4
Methods Precision F1 Precision F1
SVM_T – – 0.663 0.452
SVM_TS 0.670 0.470 0.628 0.469
TSVM_T – – 0.670 0.461
TSVM_TS 0.675 0.475 0.687 0.472
KTW 0.663 0.470 0.669 0.471
MTrick 0.682 0.481 0.681 0.481
IB 0.680 0.480 0.690 0.486
DKT (S only) 0.683 0.483 0.702 0.492
DKT (S fixed) 0.701 0.498 0.718 0.501
DKT 0.721 0.511 0.730 0.515
F-DKT 0.713 0.504 0.723 0.506

Table VI. Macro-Average Precision and F1 Measure of Compared
Methods on English–Japanese Web Page Data Sets

D3 D4
Methods Precision F1 Precision F1
SVM_T – – 0.651 0.447
SVM_TS 0.662 0.463 0.676 0.460
TSVM_T – – 0.663 0.456
TSVM_TS 0.668 0.468 0.676 0.467
KTW 0.656 0.462 0.658 0.463
MTrick 0.674 0.472 0.672 0.475
IB 0.672 0.470 0.681 0.478
DKT (S only) 0.679 0.477 0.695 0.486
DKT (S fixed) 0.688 0.485 0.707 0.493
DKT 0.701 0.497 0.719 0.512
F-DKT 0.690 0.491 0.713 0.503

6.6.1. Experimental Setups. SVM and TSVM methods can use either the labeled data
in the target language or the labeled data in both the auxiliary and target languages.
We refer to SVM_T, TSVM_T as the former case, and SVM_ST, TSVM_ST as the
latter case. For the latter case, the data from the both auxiliary and target languages
are used in a homogeneous way. This is equivalent to assume the Web pages from
different laguages are drawn from a same distribution, which, however, is not true
in reality. Following previous works, for the both methods, we train one-versus-others
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classifiers, with the fixed regularization parameter C = 1. Gaussian kernel is used (i.e.,
K(xi, x j) = exp(−γ ‖xi − x j‖2)) where γ is set as 1/m. SVM and TSVM are implemented
by SVMlight [Joachims 2008].

The parameters of KTW and MTrick are set as optimal following their original works
[Li et al. 2009; Zhuang et al. 2010]. The iteration number of IB method is set as 100.

For our approach, we follow the same settings as in Section 6.5. Due to the nature of
our optimization objective in Equation (15), we always use S, that is, the associations
between word clusters and Web page classes, to transfer knowledge. In order to test the
flexibility of our approach, we consider two different cases of our approach for using
words to transfer knowledge: (1) not use words transfer denoted as “DKT (S only)”,
that is, set γ = 0 in Equation (15); and (2) use words transfer denoted as “DKT”.

6.6.2. Experimental Results. Tables (IV–VI) present the classification performances
measured by macro-average precision and F1 score of the compared methods on six
different test data sets. A number of interesting observations can be seen from these
results.

First, the proposed DKT approach consistently outperforms the other compared
methods, sometimes very significantly. DKT (S only) method is always worse than DKT
approach, which confirms the usefulness of the knowledge transfer path by words. In
addition, the classification performances of the DKT (S fixed) method proposed in our
previous conference publication [Wang et al. 2011b] is also not as good as the DKT
approach, which demonstrate that the new objective in Equation (13) is more effective
to transfer supervised knowledge than Equation (14) proposed in Wang et al. [2011b],
which is a new contribution of the current manuscript compared to our previous work
in Wang et al. [2011b].

Second, although the classification performance of F-DKT is satisfactory, which is not
as good as DKT method. This is consistent with their formulations in that the former
is more stringently constrained to use cluster indicator matrices as factor matrices
and thereby has less data representation power. However, as demonstrated shortly in
Section 6.7, the computational speed of F-DKT method is much faster than that of DKT
method, which makes it more suitable for practical use.

Third, from the experimental results of SVM_ST and TSVM_ST methods, we can see
that considering Web pages from different languages as homogenous typically leads to
unsatisfactory classification performance. Because the cross-domain methods, includ-
ing ours, are generally better than these two methods, knowledge transfer from the aux-
iliary language to the target one is important to improve the classification performance.

Fourth, our DKT approach is able to transfer knowledge in two ways, that is, words
and the associations between word clusters and Web page classes. Therefore it achieves
encouraging classification performance on all the six test data sets. In contrast, KTW
method can only transfer knowledge through words, and MTrick method only transfers
knowledge through the associations between word clusters and Web page classes, their
performances are generally not as good as other transfer learning methods.

Last, but not the least, our approach is able to exploit the label information in
both auxiliary and target data, whereas KTW method and MTrick method cannot
benefit from label information in target domain, and SVM_T method and TSVM_T
method cannot work with label information in auxiliary data. The more labeled data
in target domain, the better classification performance our approach can achieve. In
summary, all the earlier observations demonstrate the effectiveness of the proposed
DKT approach in cross-language Web page classification.

6.7. Studies of Computational Speeds

Because one of the main contributions of this article is to present a fast version of
the proposed DKT approach, in this section we evaluate the computation efficiencies
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Table VII. Run Time (in seconds) of the Proposed DKT Method and F-DKT Method

Data set D1 D2 D3 D4 D5 D6
DKT 7.54 × 104 7.25 × 104 7.81 × 104 7.36 × 104 7.47 × 104 7.91 × 104

F-DKT 8.96 × 103 8.26 × 103 9.15 × 103 8.69 × 103 8.83 × 103 8.93 × 103

Table VIII. Run Time (in seconds ) on the Three Simulated Large-Scale Data

Run time (sec)
Data set # Web pages # keywords # classes DKT F-DKT
S1 20,000 1,000 20 7.93 × 105 9.87 × 104

S2 200,000 1,000 20 1.64 × 107 2.15 × 106

S3 2,000,000 1,000 20 3.84 × 109 6.79 × 107

of the presented F-DKT approach, and compare it with its continuous version. All our
experiments are performed on a Dell PowerEdge 2900 server, which has two quad-core
Intel Xeon 5300 sequence CPU processors at 3.0 GHz and 48G bytes memory.

6.7.1. Experiments on Real Cross-Language Web Page Classification Data. We first evaluate
the computational efficiencies of the proposed DKT method and F-DKT method by
comparing their running time on the six test data sets. We repeat each experiment for
10 times and report the average run time in Table VII. From the results in Table VII we
can see that, as expected, the F-DKT method is much faster than DKT method, which
demonstrate the usefulness of introducing new constraints on the factor matrices to be
cluster indicator matrices.

6.7.2. Experiments on Simulated Large-Scale Data. In order to further evaluate the com-
putational efficiency of the proposed F-DKT approach, we perform experiments on
three simulated large-scale data. In the our experiments, we randomly create two data
matrices to simulate the two input data sets in the auxiliary and target language re-
spectively. We simulate three different conditions in which the numbers of Web pages
are 20,000, 200,000 and 2,000,000 respectively. We assume the number of the keywords
of all the data sets is 1,000. As a results, we end up with three simulated data sets, S1,
S2 and S3, which are summarized in Table VIII. For all the simulated test data, we
assume to have 20 semantic classes. We randomly pick up 70% of the auxiliary data
points and randomly label them to one of the 20 classes. We also randomly pick up 20%
of the target data and randomly label them to one of the 20 classes. Then we run our
DKT approach by solving Equation (15) using Algorithm 1, and F-DKT approach by
solving Equation (28) using Algorithm 2. We repeat each experiment for 20 times and
report the average run time in Table VIII. Again, the results clearly demonstrate the
computational advantage of the F-DKT approach over DKT approach, which provide
one evidence to support the usefulness of using cluster indicator matrices in NMTF.

7. CONCLUSIONS

In this article, we proposed a novel joint NMTF based DKT approach for cross-language
Web page classification. Our approach adopts the idea of transfer learning to pass
knowledge across languages but not simply combine the Web page data from different
languages. By carefully examine the cross-language Web page classification problem,
we observe that common semantic patterns usually exist in Web pages for a same topic
from different languages. Moreover, we also observe that the associations between
word clusters and Web page classes are more reliable to transfer knowledge than using
raw words. With these recognitions, our approach is designed to transfer knowledge
across languages through two different ways: word clusters and the associations be-
tween word clusters and Web pages classes. With this enhanced knowledge transfer,
our approach is able to address the main challenges in cross-language Web page classi-
fication: cultural discrepancies, translation ambiguities and data diversity. In order to
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deal with large-scale real world Web page data sets, we further develop the proposed
DKT method by constraining the factor matrices to cluster indicator matrices, a special
type of nonnegative matrices. Due to the nature of the cluster indicator matrices, the
optimization problem of the proposed approach is decoupled, which leads to subprob-
lems in much smaller sizes involving much less matrix multiplications. As a result,
our F-DKT approach is much more computationally efficient, though it uses a more
stringent constraints than traditional nonnegative constraints. Extensive experiments
using a real world Web page data set demonstrated encouraging results from a number
of aspects that validate our approach.

APPENDIX: ANALYSIS OF ALGORITHM CONVERGENCE

In this section, we will investigate the convergence of Algorithm 1. We use the auxiliary
function approach [Lee and Seung 2001] to prove the convergence of the algorithm.

LEMMA A.1 [LEE AND SEUNG 2001]. Z (h, h′) is an auxiliary function of F (h) if the
conditions Z (h, h′) ≥ F (h) and Z (h, h′) = F (h) are satisfied.

LEMMA A.2 [LEE AND SEUNG 2001]. If Z is an auxiliary function for F, then F is
non-increasing under the update h(t+1) = arg minh Z (h, h′).

LEMMA A.3 [DING ET AL. 2006]. For any matrices A ∈ �n×n
+ , B ∈ �k×k

+ , S ∈ �n×k
+ and

S′ ∈ �n×k
+ , and A and B are symmetric, the following inequality holds

∑
ip

(AS′B)ip S2
ip

S′
ip

≥ tr(ST ASB). (42)

THEOREM A.4. The Lagrangian function L in Equation (18) can be written as

L (Fa) = tr[−2(Xa)T FaSa(Ga)T + (Sa(Ga)T Ga (Sa)T + U) (Fa)T Fa

− 2γ (Ft)T VFa + γ (Fa)T VFa],
(43)

in which the constant terms are removed. Then the following function

H(Fa, Fa′) = − 2
∑

i j

((Xa)T FaSa(Ga)T )

+
∑

i j

[Fa′(Sa(Ga)T Ga (Sa)T + U)]

(
Fa

(i j)

)2

Fa
(i j)

′

− 2γ
∑

i j

(VFt)(i j)Fa
(i j)

′
(

1 + log
Fa

(i j)

Fa
(i j)

′

)

+ γ
∑

i j

(VFa′)(i j)

(
Fa

(i j)

)2

Fa
(i j)

′ (44)

is an auxiliary function for L (Fa). Furthermore, it is a convex function in Fa and its
global minimum is

Fa
(i j) = Fa

(i j)

√√√√ (XaGa (Sa)T + γ VFt)(i j)

(Fa (Fa)T XaGa (Sa)T + γ VFa)(i j)
. (45)
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PROOF. According to Lemma A.3, we have

tr((Sa(Ga)T Ga (Sa)T + U) (Fa)T Fa) ≤
∑

i j

[Fa′(Sa(Ga)T Ga (Sa)T + U)]

(
Fa

(i j)

)2

Fa
(i j)

′ , (46)

tr((Fa)T VFa) ≤
∑

i j

(VFa′)(i j)

(
Fa

(i j)

)2

Fa
(i j)

′ . (47)

Because z ≤ 1 + log z, ∀ z > 0, we have

tr((Ft)T VFa) ≥
∑

i j

(VFt)(i j)Fa
(i j)

′
(

1 + log
Fa

(i j)

Fa
(i j)

′

)
. (48)

Summing over all the bounds in Equations (46–48), we can obtain H(Fa, Fa′), which
clearly satisfies (1) H(Fa, Fa′) ≥ J(Fa) and (2) H(Fa, Fa) = J(Fa).

Then, fixing Fa′, we minimize H(Fa, Fa′).

∂ H(Fa, Fa′)
∂Fa

(i j)
= − 2

[
(XaGa (Sa)T )(i j) + γ (VFt)(i j)

]Fa
(i j)

′

Fa
(i j)

+ 2
[
(Fa′(Sa(Ga)T Ga (Sa)T + U))(i j) + γ (VFa′)(i j)

] Fa
(i j)

Fa
(i j)

′

(49)

and the Hessian matrix of H(Fa, Fa′) is

∂2 H(Fa, Fa′)
Fa

(i j)F
a
(kl)

= δikδ jl

{
2
[
(XaGa (Sa)T )(i j) + γ (VFt)(i j)

] Fa
(i j)

′(
Fa

(i j)

)2

+ 2
[
(Fa′(Sa(Ga)T Ga (Sa)T + U))(i j) + γ (VFa′)(i j)

]
Fa

(i j)
′
}
, (50)

which is a diagonal matrix with positive diagonal elements. Therefore H(Fa, Fa′) is
a convex function of Fa, and we can obtain the global minimum of H(Fa, Fa′) by set-
ting ∂ H(Fa, Fa′)/∂Fa

(i j) = 0 and solving for Fa, from which we get Equation (45). This
completes the proof of Theorem A.4.

THEOREM A.5. Updating Fa using the rule in Algorithm 1 will monotonically decreases
the value of the objective J(Fa) in Equation (43), thus it finally converge.

PROOF. By Lemma A.1 and Theorem A.4, we can get that J[(Fa)0] = H[(Fa)0, (Fa)0] ≥
H[(Fa)1, (Fa)0] ≥ J[(Fa)1] . . . So J(Fa) is monotonically decreasing. As J(Fa is clearly
bounded later, we prove this theorem.

THEOREM A.6. Updating Ga, Sa, St, Ft, and Gt using the rules in Algorithm 1, the
respective objective will converge.

Theorem A.6 can be similarly proved as Theorems (A.4–A.5).
Because J in Equation (15) is obviously lower bounded by 0, Algorithm 1 is guaran-

teed to converge by Theorems (A.5–A.6).
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J. S. Olsson, Douglas W. Oard, and Jan Hajič. 2005. Cross-language text classification. In Proceedings of
the 28th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, New York, NY, USA, 645–646.

Sinno J. Pan and Qiang Yang. 2009. A survey on transfer learning. In IEEE Transactions on Knowledge and
Data Engineering (IEEE TKDE) 22, 10, 1345–1359.

Peter Prettenhofer and Benno Stein. 2010. Cross-language text classification using structural correspondence
learning. In Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, Stroudsburg, PA, USA, 1118–1127.
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