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Abstract

Recent developments in biology have produced a large num-
ber of gene expression patterns, many of which have been an-
notated textually with anatomical and developmental terms.
These terms spatially correspond to local regions of the im-
ages, which are attached collectively to groups of images. Be-
cause one does not know which term is assigned to which re-
gion of which image in the group, the developmental stage
classification and anatomical term annotation turn out to be
a multi-instance learning (MIL) problem, which considers
input as bags of instances and labels are assigned to the
bags. Most existing MIL methods routinely use the Bag-to-
Bag (B2B) distances, which, however, are often computa-
tionally expensive and may not truly reflect the similarities
between the anatomical and developmental terms. In this pa-
per, we approach the MIL problem from a new perspective
using the Class-to-Bag (C2B) distances, which directly as-
sesses the relations between annotation terms and image pan-
els. Taking into account the two challenging properties of
multi-instance gene expression data, high heterogeneity and
weak label association, we computes the C2B distance by in-
troducing class specific distance metrics and locally adaptive
significance coefficients. We apply our new approach to auto-
matic gene expression pattern classification and annotation on
the Drosophila melanogaster species. Extensive experiments
have demonstrated the effectiveness of our new method.

The mRNA in situ hybridization (ISH) is crucial for gene
expression pattern visualization. The ISH technique can pre-
cisely record the localization of gene expression at the cellu-
lar level via visualizing the probe by colorimetric or fluores-
cent microscopy to allow the production of high quality im-
ages recording the spatial location and intensity of the gene
expression (L’ecuyer et al. 2007; Fowlkes et al. 2008). In lit-
erature, more than one hundred thousand images of gene ex-
pression patterns from early embryogenesis are available for
Drosophila melanogaster (fruit fly) (Tomancak et al. 2002;
Lyne et al. 2007; Grumbling, Strelets, and Consortium
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2006). These images are a treasure trove for identifying co-
expressed and co-regulated genes and to trace the changes in
a gene’s expression over time (Tomancak et al. 2002; Lyne et
al. 2007; Grumbling, Strelets, and Consortium 2006). Such
spatial and temporal characterizations of expressions paved
the way for inferring regulatory networks based on spatio-
temporal dynamics. Knowledge gained from analysis of the
Drosophila expression patterns is widely important, because
a large number of genes involved in fruit fly development
are commonly found in humans and other species. Thus, re-
search efforts into the spatial and temporal characteristics of
Drosophila gene expression images have been at the leading-
edge of scientific investigations into the fundamental princi-
ples of different species development (Tomancak et al. 2002;
Walter et al. 2010; Osterfield et al. 2013).

The comparative analysis of gene expression patterns
need analyze a large number of digital images of individual
embryos. To facilitate the search and comparison of gene
expression patterns during Drosophila embryogenesis, it is
highly desirable to annotate the developmental stage and
tissue-level anatomical ontology terms for ISH images. This
annotation is of significant importance in studying develop-
mental biology, because it provides a direct way to reveal
the interactions and biological functions of genes based on
gene expressions and enhance gene regulatory networks re-
search. Due to the rapid increase in the number of ISH im-
ages and the inevitable biased annotation by human curators,
it is necessary to develop an automatic system to classify the
developmental stage and annotate anatomical structure us-
ing controlled vocabulary.

Recently some bioinformatics research works have been
developed to solve the annotation and stage classification
problems (Kumar et al. 2002; Peng et al. 2007; Puniyani,
Faloutsos, and Xing 2010; Ji et al. 2010; Shuiwang et al.
2009; Li et al. 2009; Ji et al. 2008). Kuma et al. (Kumar et al.
2002) developed an embryo enclosing algorithm to find the
embryo outline and extract the binary expression patterns via
adaptive thresholding. Peng et al. (Peng et al. 2007) devel-
oped approaches to represent ISH images based on Gaussian
mixture models, principal component analysis and wavelet
functions. Besides, they also utilized min-redundancy max-
relevance to do the feature selection and automatically clas-
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sify gene expression pattern developmental stages. A system
called SPEX2 was recently constructed (Puniyani, Falout-
sos, and Xing 2010), which concluded that the local re-
gression (LR) method taking advantage of the controlled
term-term interactions can get the best enhanced anatom-
ical controlled term annotation results. All these methods
have provided good computational solutions to classify or
annotate Drosophila gene expression patterns captured by
ISH. However, a major challenge of automatically annotat-
ing gene expression images lies in that the gene expression
pattern of a specific anatomical and developmental ontology
term is body-part related and presents in local regions of im-
ages, while in available gene expression image databases,
the terms are attached collectively to groups of images with
the identity and precise placement of the term remaining a
mystery. Each image panel is assigned a group of annotation
terms, but this does not mean that all the annotations apply
to every image in a group, nor does it mean that the terms
must appear together for a specific image.

To tackle this annotation ambiguity problem, Multi-
Instance Learning (MIL) has been introduced (Li et al. 2009)
where the image panel of a gene is considered as a bag
and each image is considered as an instance inside the
bag. Despite its success to capture the hierarchical struc-
tures of the gene expression data, it fails to identify the
which image(s) in a panel truly corresponds to the anno-
tated terms. With these recognitions, in this paper we ex-
plore the challenges, as well as the opportunities, in anno-
tating gene expression image. Instead of studying the Bag-
to-Bag (B2B) distance usually used in many existing MIL
methods, we propose to directly assess the relevance be-
tween annotation terms and image panels by using the Class-
to-Bag (C2B) distance for MIL (Wang et al. 2011b; 2011a;
Wang, Nie, and Huang 2011; 2012). Specifically, we con-
sider each annotation term as a “super-bag”, which com-
prises all instances from the bags annotated to this term. The
elementary distance from an instance in a super-bag to a data
bag is first estimated, then the C2B distance from the term
to the image bag is computed as the sum of the elementary
distances from all the instances in the super-bag to the in-
terested data bag. Moreover, we consider the relative impor-
tance of a training instance with respect to its annotated term
by assigning it with a weight for each of its annotated terms,
called as Significance Coefficient (SC). Ideally, the learned
SCs of an instance with respect to its truly associated terms
should be as large as possible, whereas its SCs with respect
other terms should be as small as possible. By further en-
hancing the C2B distance via term specific distance metrics
to narrow down the gap between high-level annotation terms
and low-level visual features, we call the resulted C2B dis-
tance as Instance Specific Distance (ISD) (Wang, Nie, and
Huang 2011). Because the learned SCs explicitly give the
ranks of the images with respect to their annotated terms, it
solves the instance level labeling ambiguity problem.

Learning ISD for Multi-Instance Classification
In this section, we will first introduce a ISD (Wang, Nie,
and Huang 2011) to address the challenges of general MIL.
ISD is a C2B distance parameterized by the proposed SCs

and enhanced by class specific distance metrics. Then we
will develop our optimization objective to learn the param-
eters of ISD, followed by an novel yet efficient algorithm
to solve the proposed objective, whose convergence is rig-
orously proved. Finally, the classification rules using the
learned ISD will be presented.

Problem Formalization

We first formalize the MIL problem for Drosophila gene ex-
pression pattern annotations. Given a gene expression im-
age annotation task, we have N training image panels X =
{X1, . . . , XN} and K annotation terms. Each image panel
contains a number of images represented by a bag of in-
stances Xi =

[
x1
i , . . . ,x

ni
i

] ∈ R
d×ni , where ni is the num-

ber of images (instances) in the image panel (bag). Each in-
stance is abstracted as a vector xj

i ∈ R
d of d dimensions. We

are also given the class (annotation term) memberships of
the input data, denoted as Y = [y1, . . . ,yN ]

T ∈ {0, 1}N×K

whose row yT
i is the label indication of Xi. In the setting of

MIL, if there exists j ∈ {1, . . . , ni} such that xj
i belongs to

the k-th class, Xi is assigned to the k-th class and Yik = 1,
otherwise Yik = 0. Yet the concrete value of the index j re-
mains unknown. To be more specific, the following assump-
tions are held in MIL settings:
• bag X is assigned to the k-th class ⇐⇒ at least one in-

stance of X belongs to the k-th class;
• bag X is not assigned to the k-th class ⇐⇒ no instance in
X belongs to the k-th class.

Our goal is to learn from the training data D = {Xi,yi}Ni=1
a classifier that is able to annotate terms for a new query
image panel X .

ISD for Multi-Instance Data

Because the major difficulty of general MIL problems are
how to estimate the set-to-set distances and elucidate the in-
stance level labeling ambiguity, we tackle these two difficul-
ties by applying the ISD (Wang, Nie, and Huang 2011).

C2B Distance for Multi-Instance Data It is broadly ac-
cepted that (Boiman, Shechtman, and Irani 2008) tradi-
tional B2B distance is not the true similarity measurement
of the class relationships between data objects (image pan-
els). Thus in this paper we consider to directly assess the
relevance between a class and a data object using the C2B
distance (Wang et al. 2011b; 2011a; Wang, Nie, and Huang
2011; 2012).

First we represent a class as a super-bag that comprises
all the instances contained in the training bags labeled with
the class of interest:

Ck =
{
xj
i | i ∈ πk

}
, (1)

where πk = {i | Yik = 1} is the index set of all the training
bags that belong to the k-th class. We denote the number of
instances in Ck as mk, i.e., |Ck| = mk.

Note that, in single-label classification tasks (such as em-
bryonic developmental stage classification) where each im-
age panel belongs to exactly one class, i.e.,

∑K
i=1 Yik = 1,
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we have {
Ck ∩ Cl = ∅ (∀ k �= l) ,∑K

k=1 mk =
∑N

i=1 ni .
(2)

In multi-label classification tasks (such as anatomical term
annotations) (Wang, Huang, and Ding 2009; Wang, Ding,
and Huang 2010; Wang, Huang, and Ding 2011) where each
image panel (thereby each instance) may belong to more
than one class, i.e.,

∑K
i=1 Yik ≥ 1, we have{

Ck ∩ Cl �= ∅ (∀ k �= l) ,∑K
k=1 mk ≥ ∑N

i=1 ni .
(3)

That is, different super-bags may overlap and one instance
xj
i may appear in multiple super-bags.
Then we define the elementary distance from an instance

xj
i of a super-bag Ck to a data bag Xi′ using the distance

between xj
i and its nearest neighbor instance in Xi′ as:

dk

(
xj
i , Xi′

)
=

∥∥∥xj
i −Ni′

(
xj
i

)∥∥∥2 , ∀i ∈ πk , (4)

where Ni′
(
xj
i

)
denotes the nearest neighbor of xj

i in Xi′ .
Finally, the C2B distance from Ck to Xi′ is computed as:

D (Ck, Xi′) =
∑
i∈πk

ni∑
j=1

dk

(
xj
i , Xi′

)

=
∑
i∈πk

ni∑
j=1

∥∥∥xj
i −Ni′

(
xj
i

)∥∥∥2 .

(5)

ISD— Parameterized C2B Distance Because the C2B
distance defined in Eq. (5) does not take into account the
the instance level labeling ambiguity in MIL, we further de-
velop it by weighting the instances in a super-bag upon their
relevances to the corresponding classes.

Due to the ambiguous associations between instances and
labels, not all the instances in a super-bag really characterize
the corresponding class. To address this, we define sjik to be
the weight for xj

i with respect to the k-th class, we compute
the C2B distance from Ck to Xi′ as following:

D (Ck, Xi′) =
∑
i∈πk

ni∑
j=1

sjik

∥∥∥xj
i −Ni′

(
xj
i

)∥∥∥2 . (6)

Because sjik reflects the relative importance of instance xj
i

when determining the label for the k-th class, we call it as
the Significance Coefficient (SC) of xj

i with respect to the k-
th class, and the resulted C2B distance computed by Eq. (6)
as the ISD as per (Wang, Nie, and Huang 2011).

SC is the most important contribution of this work from
learning perspective of view, because it explicitly ranks the
relevances of the training instances of a class. If the learned
SCs make sense, the instance level labeling ambiguity in
MIL is solved. Moreover, through the learned SCs, a clear
picture of the insight of the input image panels of gene ex-
pressions can be seen.

Refined ISD by Class Specific Distance Metrics The
ISD defined in Eq. (6) by definition is a weighted Euclidean
distance, which is independent of input data. Similar to
many other learning models, using Mahalanobis distance
with an appropriate distance metric to capture the second-
order statistics of input data is desirable for gene expression
image annotation. Taking into account the high heterogene-
ity of gene expression data, instead of learning a global dis-
tance metric for all classes as in existing many works (Jin,
Wang, and Zhou 2009; Guillaumin, Verbeek, and Schmid
2010), we learn K different class specific distance metrics
{Mk 	 0}Kk=1 ⊂ R

d×d, one for each class. Note that, using
class specific distance metrics is only feasible with the C2B
distance, because we are only concerned with intra-class dis-
tance. However, traditional B2B distance needs to compute
distances between bags belonging to different classes that
involve inter-class distance metrics, which inevitably com-
plicates the problem.

To be more precise, instead of using Eq. (6), we compute
the ISD using the Mahalanobis distance as following:

D (Ck, Xi′) (7)

=
∑
i∈πk

ni∑
j=1

sjik

[
xj
i −Ni′

(
xj
i

)]T
Mk

[
xj
i −Ni′

(
xj
i

)]
.

We refer to D (Ck, Xi′) computed in Eq. (7) as the proposed
ISD in the sequel of this paper.

Optimization Objective

Equipped with the ISD defined in Eq. (7), following the stan-
dard learning strategy, we learn its two set of parameters, sjik
and Mk, by maximizing the data separability, i.e., we mini-
mize the overall ISD from a class to all its belonging bags,
whilst maximizing the overall ISD from the same class to all
the bags not belonging to it. Formally, for a given class, say
Ck, we solve the following optimization problem:

min
Mk�0, sik≥0,

sTike=1

∑
i′∈πk

D (Ck, Xi′) + γ
∑

i∈πk
sTiksik∑

i′ /∈πk
D (Ck, Xi′)

,

(8)
where sik =

[
s1ik, . . . , s

ni

ik

]T
is the SC vector of Xi with

respect to the k-th class. In Eq. (8), e = [1, . . . , 1]
T is a

constant vector with all entries to be 1. The second term in
the numerator of Eq. (8) is to avoid over-fitting and increase
the numerical stability. Here we constrain the overall weight
of a single bag with respect to a class to be unit, i.e., sik ≥
0, sTike = 1, such that all the training bags are fairly used.
This constraint is equivalent to require the �1-norm of sik to
be 1 and implicitly enforce sparsity on sik (Tibshirani 1996),
which is in accordance with the fact that one annotation term
of an image bag usually arises from only one or a few of its
images, but not all.

Because the class specific distance metric Mk is positive
definite, we can reasonably write it as Mk = UkU

T
k where

Uk is an orthonormal matrix such that UT
k Uk = I . Thus, the
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optimization problem in Eq. (8) is transformed as:

min
UT

k Uk=I,

sik≥0, sTike=1

∑
i′∈πk

D (Ck, Xi′) + γ
∑

i∈πk
sTiksik∑

i′ /∈πk
D (Ck, Xi′)

,

(9)
where the distance D (Ck, Xi′) is defined as

D (Ck, Xi′ ) (10)

=
∑
i∈πk

ni∑
j=1

sjik

[
xj
i −Ni′

(
xj
i

)]T
UkU

T
k

[
xj
i −Ni′

(
xj
i

)]
.

Optimization Algorithm

In order to solve the optimization problem in Eq. (9), we first
present the following useful theorems.

Theorem 1 The global solution of the following general op-
timization problem:

min
v∈C

f(v)

g(v)
, where g(v) ≥ 0 (∀ v ∈ C) , (11)

is given by the root of the following function:

h(λ) = min
v∈C

f(v)− λg(v) , (12)

Proof. Suppose v∗ is the global solution of the problem (11),
and λ∗ is the corresponding global minimal objective value,
the following holds:

f(v∗)
g(v∗)

= λ∗ . (13)

Thus ∀ v ∈ C, we have

f(v)

g(v)
≥ λ∗ =⇒ f(v)− λ∗g(v) ≥ 0 , (14)

which means:

min
v ∈C

f(v)− λ∗g(v) = 0 ⇐⇒ h(λ∗) = 0 . (15)

That is, the global minimal objective value λ∗ of the problem
(11) is the root of the function h(λ), which complete the
proof of Theorem 1. �
Theorem 2 Algorithm 1 decreases the objective value of the
problem (11) in each iteration.

Proof. In the Algorithm 1, according to step 2 we know that

f(vt+1)− λtg(vt+1) ≤ f(vt)− λtg(vt) , (16)

According to step 1, we know that

f(vt)− λtg(vt) = 0 . (17)

Thus we have

f(vt+1)− λtg(vt+1) ≤ 0 , (18)

which indicates that
f(vt+1)

g(vt+1)
≤ λt =

f(vt)

g(vt)
, (19)

and completes that proof. �

Theorem 3 Algorithm 1 is a Newton’s method to find the
root of the function h(λ) in Eq. (12).

Proof. According to step 2 in the Algorithm 1, we have

h(λt) = f(vt+1)− λtg(vt+1) . (20)

Thus we have
h′(λt) = −g(vt+1) . (21)

In Newton’s method, the updated solution should be

λt+1 = λt − h(λt)

h′(λt)

= λt − f(vt+1)− λtg(vt+1)

−g(vt+1)

=
f(vt+1)

g(vt+1)
,

(22)

which is exactly the step 1 in Algorithm 1. Namely, Algo-
rithm 1 is a Newton’s method to find the root of the function
h(λ). �

Algorithm 1: The algorithm to solve the problem (11).
t = 1. Initialize vt ∈ C ;
while not converge do

1. Calculate λt =
f(vt)
g(vt)

;
2. Calculate vt+1 = argminv∈C f(v)− λtg(v) ;
3. t = t+ 1 ;

Theorem 3 indicates that Algorithm 1 converges very fast
and the convergence rate is quadratic convergence, i.e., the
difference between the current objective value and the op-
timal objective value is smaller than 1

cct
(c > 1 is a certain

constant) at the t-th iteration. Therefore, Algorithm 1 scales
well to large data sets in gene expression patterns classifica-
tion tasks, which adds to its practical value.

Based upon Theorem 1 and Theorem 3, we employ the al-
ternatively iterative method to solve the optimization prob-
lem in Eq. (9) using Algorithm 1 as following.

First, when sik is fixed, the problem in Eq. (9) can be
written as following:

min
UT

k Uk=I

Tr(UT
k AkUk)

Tr(UT
k BkUk)

, (23)

where the matrices Ak and Bk are defined as:

Ak =
∑

i′∈πk

∑
i∈πk

ni∑
j=1

sjik

[
xj
i −Ni′

(
xj
i

)] [
xj
i −Ni′

(
xj
i

)]T

+ γ
∑
i∈πk

sTiksikI , (24)

Bk =
∑

i′ /∈πk

∑
i∈πk

ni∑
j=1

sjik

[
xj
i −Ni′

(
xj
i

)] [
xj
i −Ni′

(
xj
i

)]T
.

(25)
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According to the step 2 in the Algorithm 1, we need to
solve the following problem:

min
UT

k Uk=I
Tr(UT

k AkUk)− λtTr(U
T
k BkUk) , (26)

which is known to have optimal solution with eigenvalue
decomposition of Ak − λtBk.

Second, when fixing Uk, we define a vector dii′k ∈ R
ni ,

where the j-th element is[
xj
i −Ni′

(
xj
i

)]T
UkU

T
k

[
xj
i −Ni′

(
xj
i

)]
. (27)

Then we can rewrite the problem in Eq. (9) as:

min
sik≥0, sTike=1

∑
i′∈πk

∑
i∈πk

sTikdii′k + γ
∑

i∈πk
sTiksik∑

i′ /∈πk

∑
i∈πk

sTikdii′k
.

(28)
We define

dw
ik =

∑
i′∈πk

dii′k ∈ R
ni , (29)

and
db
ik =

∑
i′ /∈πk

dii′k ∈ R
ni , (30)

by which we further rewrite Eq. (28) as:

min
sik≥0, sTike=1

∑
i∈πk

(sTikd
w
ik + γsTiksik)∑

i∈πk
sTikd

b
ik

. (31)

According to the step 2 of Algorithm 1, we solve:

min
sik≥0, sTike=1

∑
i∈πk

(sTikd
w
ik + γsTiksik)− λ

∑
i∈πk

sTikd
b
ik .

(32)
We define

dik = dw
ik − λdb

ik , (33)

by which we rewrite the problem in Eq. (32) as:

min
sik≥0, sTike=1

∑
i∈πk

(sTikdik + γsTiksik) . (34)

We can see that the problem in Eq. (34) can be decoupled to
solve the following subproblems separately for each i ∈ πk:

min
sik≥0, sTike=1

sTikdik + γsTiksik , (35)

which are convex quadratic programming (QP) problem,
and can be efficiently solved because sik ∈ R

ni and the
value of ni is usually not large in MIL problems.

Classification Using ISD

Given a query videop clip X , using the learned class specific
distance metrics and SCs,{

Mk (1 ≤ k ≤ K) ,

sjik (1 ≤ k ≤ K, 1 ≤ i ≤ N, 1 ≤ j ≤ ni) ,
(36)

we can compute D (Ck, X) (1 ≤ k ≤ K) from all the
classes to the query image using Eq. (7). Sorting D (Ck, X),
we can easily assign labels to the query image.

For single-label classification tasks, in which each image
panel belongs to one and only one class, we assign X to the
class with minimum ISD, i.e.,

l (X) = argmink D (Ck, X) . (37)

For multi-label classification tasks, in which one image
panel may be assigned with more than one class label, we
need a threshold to make prediction. For every class, we
learn the adaptive decision boundary bk (Wang, Huang, and
Ding 2009; 2013), which is then used to determine the class
membership for X using the following rule: assign X to the
k-th class if D (Ck, X) < bk, and not otherwise.

Learning ISD by solving Eq. (8) and classifying query
image panels using the rules above, our Explicit Instance
Ranking (EIR) method for multi-instance classification is
proposed.

Experiment

In this section, we will conduct experiments to evaluate the
proposed method empirically on Drosophila gene expres-
sion data and compare it with other state-of-art classification
methods for both stage classification and anatomical term
annotation. Note that, the former task is a single-label clas-
sification term, because each image panel can belongs to one
and only one class (development stage), while the latter task
is a multi-label classification task, because one image panel
is usually annotated with more than one anatomical terms.
Besides, we also study the effectiveness of the proposed SCs
when elucidating the usefulness of each image in an image
panel with respect a certain annotation term.

Data Descriptions

As we known, the Drosophila embryos are 3D objects. How-
ever, the corresponding image data can only demonstrate
2D information from a certain view. Since recent study has
shown that incorporating images from different views can
improve the classification performance consistently (Ji et al.
2008), we will use the images taken from multiple views
instead of one perspective as the data descriptor. We only
consider the lateral, dorsal, and ventral images in our ex-
periment due to the fact that the number of images taken
from other views is much less than that of the above three
views. Following our prior work (Cai et al. 2012), all the im-
ages from the Berkeley Drosophila Genome Project (BDGP)
database1 have been pre-processed, including alignment and
resizing to 128 × 320 gray images. For the sake of simplic-
ity, we extract the popular SIFT (Lowe 2004) features from
the regular patches with the radius as well as the spacing
as 16 pixels (Shuiwang et al. 2009). Specifically, we extract
one SIFT descriptor with 128 dimensions on each patch and
each image is represented by 133 (7×19) SIFT descriptors.
As a result, each image is represented by a fixed-length vec-
tor, while each gene expression pattern contains a number of
images that forms an image panel.

1http://www.fruitfly.org/
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Table 1: Stage classification results in terms of average clas-
sification accuracy over 5 developmental stages.

Method Accuracy

SVM 0.845
1NN 0.774
PRW 0.852

Our method 0.869

Developmental Stage Classification of Image Bags

Drosophila gene expression pattern stage categorization is
a single-label multi-class problem. We compare our method
with support vector machine (SVM) with radial basis func-
tion (RBF) kernel (Chang and Lin 2001) and 1-Nearest
Neighbor (1NN) classifier. We use the optimal parameter
values for C and γ obtained from cross-validation for SVM.
We also compare the classification result of the preferen-
tial random walk (PRW) method (Cai et al. 2012), which
is one of the most recent simultaneous developmental stage
classification and anatomical term annotation method and
has reported state-of-the-art results on Drosophila gene ex-
pression patterns. We assess the classification in terms of
the average classification accuracy as shown in Table 1. The
results in Table 1 have shown that the average prediction
accuracy of our method is better than that of all the three
competing methods, which demonstrate the effectiveness of
the proposed method in developmental stage classification
for Drosophila gene expression patterns.

Controlled Vocabulary Terms Annotation on
Image Bags

Besides the stage classification task, we also validate our
method by predicting the anatomical controlled terms for the
Drosophila gene expression patterns, which can be consid-
ered as a multi-class multi-label multi-instance classification
problem. The conventional classification performance met-
rics in statistical learning, precision and F1 score, are uti-
lized to evaluate the proposed methods. For every anatomi-
cal term, the precision and F1 score are computed following
the standard definition for the binary classification problem.
To address the multi-label scenario, following (Tsoumakas
and Vlahavas 2007), macro and micro average of precision
and F1 score are used to assess the overall performance
across multiple labels. We compared five state-of-art-multi-
label classification methods: local shared subspace (LS) (Ji
et al. 2008), local regression(LR) (Ji et al. 2009), harmonic
function (HF) (Zhu, Ghahramani, and Lafferty 2003), ran-
dom walk (RW) (Zhou and Schölkopf 2004) and PRW (Cai
et al. 2012). All of them are proposed recently to solve the
multi-label annotation problem. In addition, we compare the
results of 1NN as well. For the first three methods we use
the published codes posted on the corresponding author’s
web sites. And we implement the RW method following the
original work (Zhou and Schölkopf 2004). For HF and RW
methods, we follow the original work to solve the multi-
label annotation only. Therefore, we only evaluate those two
methods on data subgraph and annotation label subgraph

without using any information derived from the classifica-
tion label subgraph such as the stage-term correlation. Table
shows the average anatomical annotation performance of
79-term dataset. Compared to the above five stat-of-the-art
methods, our method has the best results by all metrics.

Conclusions
In this paper, we proposed to explicitly learn the relative im-
portance of each gene expression image in a collectively an-
notated image bag with respect to each annotation terms. As
a result, we can clearly see the insight of the image bags
and utilize the gene expression pattern data for better analy-
sis. Our new method computes a novel Class-to-Bag (C2B)
distance, which address the two major challenges in multi-
instance learning — high heterogeneity and weak label asso-
ciation. Both developmental stage classification and anatom-
ical controlled term annotation tasks are tested by our new
method on the Drosophila melanogaster species. We evalu-
ated the proposed method using one refined BDGP dataset.
The experimental results demonstrated in the real applica-
tion, our new learning method can achieve superior predic-
tion results on both tasks than the state-of-the-art methods.
Moreover, the learned Significance Coefficients have clear
biological meanings, which additionally confirm the correct-
ness of our new method.
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