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Abstract

In recent data mining research, the graph clustering
methods, such as normalized cut and ratio cut, have
been well studied and applied to solve many unsuper-
vised learning applications. The original graph clus-
tering methods are NP-hard problems. Traditional ap-
proaches used spectral relaxation to solve the graph
clustering problems. The main disadvantage of these
approaches is that the obtained spectral solutions could
severely deviate from the true solution. To solve this
problem, in this paper, we propose a new relaxation
mechanism for graph clustering methods. Instead of
minimizing the squared distances of clustering results,
we use the �1-norm distance. More important, consid-
ering the normalized consistency, we also use the �1-
norm for the normalized terms in the new graph clus-
tering relaxations. Due to the sparse result from the
�1-norm minimization, the solutions of our new re-
laxed graph clustering methods get discrete values with
many zeros, which are close to the ideal solutions. Our
new objectives are difficult to be optimized, because
the minimization problem involves the ratio of non-
smooth terms. The existing sparse learning optimization
algorithms cannot be applied to solve this problem. In
this paper, we propose a new optimization algorithm to
solve this difficult non-smooth ratio minimization prob-
lem. The extensive experiments have been performed
on three two-way clustering and eight multi-way clus-
tering benchmark data sets. All empirical results show
that our new relaxation methods consistently enhance
the normalized cut and ratio cut clustering results.

Introduction

Clustering is an important task in computer vision and ma-
chine learning research with many applications, such as
image segmentation (Shi and Malik 2000), image catego-
rization (Grauman and Darrell 2006), scene analysis (Kop-
pal and Narasimhan 2006), motion modeling (P.Ochs and
T.Brox 2012), and medical image analysis (Brun, Park, and
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Shenton 2004). In the past decades, many clustering algo-
rithms have been proposed. Among these approaches, the
use of manifold information in graph clustering has shown
the state-of-the-art clustering performance. The graph based
clustering methods model the data as a weighted undirected
graph based on the pair-wise similarities. Clustering is then
accomplished by finding the best cuts of the graph that opti-
mize the predefined cost functions. Two types of graph clus-
tering methods, normalized cut (Shi and Malik 2000) and
ratio cut (Cheng and Wei 1991; Hagen and Kahng 1992),
are popularly used to solve the clustering problems due to
their good clustering performance.

Solving the graph clustering problem is a difficult task
(NP-hard problems). The main difficulty of the graph clus-
tering problem comes from the constrains on the solution. It
is hard to solve the graph clustering problems exactly. How-
ever, the approximation solutions are possible with spectral
relaxations. The optimization usually leads to the computa-
tion of the top eigenvectors of certain graph affinity matri-
ces, and the clustering result can be derived from the ob-
tained eigen-space. However, the traditional spectral relax-
ations lead the non-optimal clustering results. The spectral
solutions don’t directly provide the clustering results and the
thresholding post-processing has to be applied, such that the
results often severely deviate from the true solution. More
recently, tight relaxations of balanced graph clustering meth-
ods were proposed (Bühler and Hein 2009; Luo et al. 2010;
Hein and Setzer 2011), and gradient based method was used
to solve the problem, which is time consuming and slow to
converge in practice.

In order to solve the above challenging issues, in this pa-
per, we revisit the normalized cut and ratio cut methods, and
propose new relaxations for these methods to achieve the
discrete and sparse clustering results which are close to the
ideal solutions. Instead of minimizing the projected squared
clustering indictors distance, we minimize the �1 distance.
Meanwhile, our new relaxations also use the �1-norm for the
normalization terms. Due to the �1-norm minimization, most
elements of each clustering indictor are enforced to be zero
and hence the clustering results are close the ideal solutions.

However, our new relations introduce a difficult opti-
mization problem which optimizes the ratio of two non-
smooth terms. The standard optimization methods for sparse
learning, such as Proximal Gradient, Iterative Shrinkage-
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Thresholding, Gradient Projection, Homotopy, and Aug-
mented Lagrange Multiplier methods, cannot be utilized to
solve such an �1-norm ratio minimization problem. We pro-
pose a new optimization algorithm to solve this difficult
problem with theoretically proved convergence, and our al-
gorithm usually converges within 10 iterations. The exten-
sive clustering experiments are performed on three two-way
clustering data sets and eight multi-way clustering data sets
to evaluate our new relaxed normalized cut and ratio cut
methods. All empirical results demonstrate our new relax-
ations consistently achieve better clustering results than the
traditional relaxations.

Graph Clustering Revisit
Given a graph G = (V,E) and the associated weight matrix
W , we partition it into two disjoint sets A and B, A ∪ B =
V , A ∩ B = ∅, Two types of graph clustering methods,
normalized cut (Shi and Malik 2000) and ratio cut (Cheng
and Wei 1991; Hagen and Kahng 1992), are usually applied
to measure the quality of the partition. The main task is to
minimize the defined graph cut to obtain a satisfied partition.

Normalized Cut and Relaxation

The normalized cut (Shi and Malik 2000) is defined as

Ncut =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
, (1)

where cut(A,B) =
∑

i∈A,j∈B Wij and assoc(A, V ) =∑
i∈A,j∈V Wij

Denote a vector y ∈ �n×1 as follows
y = [1, ..., 1︸ ︷︷ ︸

n1

, r, ...r︸ ︷︷ ︸
n2

]T . (2)

Denote d1 =
∑

i∈A Dii, d2 =
∑

i∈B Dii, (Shi and Ma-
lik 2000) proved that when r = −d1

d2
, the normalized cut

defined in Eq. (1) can be written as

Ncut =

1
2

∑
i,j

Wij(yi − yj)
2

∑
i

Diiy2i
=

yTLy

yTDy
, (3)

where L = D−W is the Laplacian matrix, D is the diagonal
matrix with the i-th diagonal element as Dii =

∑
j Wij .

Previous paper (Shi and Malik 2000) provided proof, but
here we provide a much more concise proof as follows.

Let c =
∑

i∈A,j∈B Wij , then we have
1
2

∑
i,j

Wij(yi − yj)
2

∑
i

Diiy2i
=

(1− r)2c

d1 + r2d2
. (4)

On the other hand, according to Eq. (1), we have

Ncut =
c

d1
+

c

d2
. (5)

Combining the above equations, we have:
(1− r)2c

d1 + r2d2
=

c

d1
+

c

d2
⇔ 1− 2r + r2

d1 + r2d2
=

d1 + d2
d1d2

⇔ (d1 + rd2)
2 = 0 ⇔ r = −d1

d2
,

which completes the proof. In order to minimize the normal-
ized cut to obtain a satisfied partition, we need to solve the
following problem:

min
y=[1,...,1,− d1

d2
,...,− d1

d2
]T

1
2

∑
i,j

Wij(yi − yj)
2

∑
i

Diiy2i
(6)

Due to the constraint on y, the problem is NP-hard. In order
to solve this problem, usually we need to relax the constraint.
The constraint in Eq. (6) indicates that 1TDy = 0, thus the
problem can be relaxed by using the constraint 1TDy = 0
to replace the constraint in Eq. (6). The relaxed problem is
as follows:

min
1TDy=0

1
2

∑
i,j

Wij(yi − yj)
2

∑
i

Diiy2i
(7)

The optimal solution to the relaxed problem is the eigenvec-
tor of D−1L corresponding to the second smallest eigen-
value. However, this relaxation makes the solution y devi-
ate from the constraint in Eq. (6) so much. The eigenvector
of D−1L usually take on continuous values while the real
solution of y should only take on two discrete values. As
suggested in (Shi and Malik 2000), One can take 0 or the
median value as the splitting point or one can search for the
splitting point such that the resulting partition has the best
normalized cut value.

Ratio Cut and Relaxation

The ratio cut (Cheng and Wei 1991; Hagen and Kahng 1992)
is defined as

Rcut =
cut(A,B)

|A| +
cut(A,B)

|B| , (8)

where |A| denotes the number of points in A. Similarly, it
can be easily proved that when r = −n1

n2
in Eq. (2), the ratio

cut defined in Eq. (8) can be written as

Rcut =

1
2

∑
i,j

Wij(yi − yj)
2

∑
i

y2i
=

yTLy

yT y
. (9)

In order to minimize the normalized cut to obtain a satisfied
partition, we solve the following problem

min
y=[1,...,1,−n1

n2
,...,−n1

n2
]T

1
2

∑
i,j

Wij(yi − yj)
2

∑
i

y2i
(10)

Due to the constraint on y, it was also proved that this prob-
lem is NP-hard. The constraint in Eq. (10) indicates that
1T y = 0, thus the problem can be relaxed by using the con-
straint 1T y = 0 to replace the constraint in Eq. (10). The
relaxed problem is as follows:

min
1T y=0

1
2

∑
i,j

Wij(yi − yj)
2

∑
i

y2i
(11)
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The optimal solution to the relaxed problem is the eigenvec-
tor of L corresponding to the second smallest eigenvalue.
The relaxation also makes the solution y deviate from the
constraint in Eq. (10), and the final partition can be obtained
by the same strategies as in the case of normalized cut.

New Graph Clustering Relaxations and

Optimization Algorithms

As discussed in the above section, the traditional graph clus-
tering relaxations make the solution y deviate from the ideal
solution. In this section, we will propose the new relaxations
for normalized cut and ratio cut, to which the solutions are
discrete and close to the ideal ones. We will also provide new
optimization algorithms to solve the proposed problems.

New Relaxation of Normalized Cut

First, we have the following theorem for normalized cut:

Theorem 1 Denote y = [1, ..., 1,−d1

d2
, ...,−d1

d2
]T , then

1
2

∑

i,j
Wij |yi−yj |

∑

i
|Diiyi| = 1

2Ncut

Proof: As before, denote c =
∑

i∈A,j∈B Wij , then we have

1
2

∑
i,j

Wij |yi − yj |∑
i

|Diiyi| =
(1 + d1

d2
)c

2d1
=

(d1 + d2)c

2d1d2

=
1

2
(
c

d1
+

c

d2
) =

1

2
Ncut,

which completes the proof. �
Based on Theorem 1, the problem (6) is equivalent to the

following problem with the same constraint but different ob-
jective function:

min
y=[1,...,1,− d1

d2
,...,− d1

d2
]T

1
2

∑
i,j

Wij |yi − yj |∑
i

|Diiyi| (12)

Accordingly, we can relax the problem as the following one:

min
1TDy=0

1
2

∑
i,j

Wij |yi − yj |∑
i

|Diiyi| (13)

Note that problem (13) minimizes a �1-norm, which usually
results in sparse solution (Nie et al. 2011b). That is to say,
|yi − yj | = 0 for many (i, j)-pairs, which indicates the so-
lution y will take on discrete values. Therefore, the solution
to the relaxed problem (13) is close to the ideal solution.

New Relaxation of Ratio Cut

Similarly, we have the following theorem for ratio cut:

Theorem 2 Denote y = [1, ..., 1,−n1

n2
, ...,−n1

n2
]T , then

1
2

∑

i,j
Wij |yi−yj |
∑

i
|yi| = 1

2Rcut

Proof: As the above proof, denote c =
∑

i∈A,j∈B Wij , then
we have:

1
2

∑
i,j

Wij |yi − yj |∑
i

|yi| =
(1 + n1

n2
)c

n1 +
n1

n2
n2

=
(n1 + n2)c

2n1n2

=
1

2
(
c

n1
+

c

n2
) =

1

2
Rcut,

which completes the proof. �
Based on Theorem 2, the problem (10) is equivalent to

the following problem with the same constraint but different
objective function:

min
y=[1,...,1,−n1

n2
,...,−n1

n2
]T

1
2

∑
i,j

Wij |yi − yj |∑
i

|yi| (14)

Accordingly, we can relax the problem as the following one:

min
1T y=0

1
2

∑
i,j

Wij |yi − yj |∑
i

|yi| (15)

Similarly, the relaxed problem (15) will result in sparse solu-
tion, i.e., |yi − yj | = 0 for many (i, j)-pairs. Therefore, the
solution to the relaxed problem (15) is a good approximation
to the ideal solution.

Relation to Cheeger cut

In spectral graph theory (Chung 1997), the Cheeger cut is
defined as

Ccut =
cut(A,B)

min{|A| , |B|} (16)

As pointed by (Chung 1997; Hein and Buhler 2010), the
optimal Cheeger cut is the same as the value obtained by
optimal thresholding the optimal solution to the following
problem:

min
y �=0,median(y)=0

1
2

∑
i,j

Wij |yi − yj |∑
i

|yi| . (17)

Comparing Eq. (17) and Eq. (14), it is interesting to see that
the optimal Cheeger cut and the optimal ratio cut can be
obtained with the same objective function but under differ-
ent constraints. Note that the feasible solution y to problem
(17) can be continuous values according to the constraint in
Eq. (17), thus one can reasonably conjecture that the value
obtained by optimal thresholding of the optimal solution to
problem (15) is close to the optimal ratio cut in Eq. (14).

Algorithms to Solve New Relaxation Problems

Our new relaxed graph clustering methods introduce a dif-
ficult optimization problem, i.e. minimize the ratio of non-
smooth terms. The standard optimization methods for sparse
learning, such as Proximal Gradient, Iterative Shrinkage-
Thresholding, Gradient Projection, Homotopy, and Aug-
mented Lagrange Multiplier methods, cannot be utilized to
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solve such �1-norm ratio minimization problem. In this sec-
tion, we will propose a new optimization algorithm to solve
this challenging optimization problem. We first introduce
the solution to a general problem, and then provide the solu-
tions to problems in Eqs. (13) and (15), respectively.

A General Framework Before solving the new relax-
ations of graph clustering methods, we solve the following
general problem first:

min
x∈C

∑
i

|fi(x)|∑
i

|gi(x)| . (18)

Motivated by (Nie et al. 2009; 2010; 2011a; Nie, Yuan, and
Huang 2014), we give an algorithm to solve this problem,
which is very easy to implement. The detailed algorithm is
described in Algorithm 1. In the following, we will prove
that the algorithm will monotonically decrease the objective
value of problem (18) until converges.

Algorithm 1 Algorithm to solve the general problem (18).
Initialize x ∈ C
while not converge do

1. Calculate the objective value λ =

∑

i
|fi(x)|

∑

i
|gi(x)| . For each

i, calculate si =
1

2|fi(x)| and bi = sign(gi(x))

2. Update x by argmin
x∈C

∑
i

sif
2
i (x)− λ

∑
i

bigi(x)

end while

Theorem 3 The procedure of Algorithm 1 will monotoni-
cally decrease the objective value of problem (18) until con-
verges.
Proof: Denote the updated x by x̃. According to step 2,∑
i

sif
2
i (x̃)− λ

∑
i

bigi(x̃) ≤
∑
i

sif
2
i (x)− λ

∑
i

bigi(x)

Notice the definitions of si and bi in step 1, we have∑
i

f2
i (x̃)

2 |fi(x)| − λ
∑
i

sign(gi(x))gi(x̃)

≤
∑
i

|fi(x)|
2

− λ
∑
i

|gi(x)|

It can be checked that the following two inequalities hold:∑
i

(
|fi(x̃)| − f2

i (x̃)

2 |fi(x)|
)

≤
∑
i

|fi(x)|
2

(19)

∑
i

(sign(gi(x))gi(x̃)− |gi(x̃)|) ≤ 0 (20)

Adding the above three inequalities in Eqs. (19-20), we have∑
i

|fi(x̃)| − λ
∑
i

|gi(x̃)| ≤ 0, which indicates
∑
i

|fi(x̃)|∑
i

|gi(x̃)| ≤ λ =

∑
i

|fi(x)|∑
i

|gi(x)| (21)

Therefore, the algorithm will monotonically decrease the
objective value until converges. �

Algorithm 2 Algorithm to solve the problem (13).
Initialize y such that 1TDy = 0
while not converge do

1. Calculate λ =

1
2

∑

i,j
Wij |yi−yj |

∑

i
|Diiyi| ; the matrix S, where

the (i, j)-th element is Sij = 1
2|yi−yj | ; and the vector

b, where the i-th element is bi = sign(Diiyi)

2. Update y by y = arg min
1TDy=0

yT L̂y − λbT y, where

L̂ = D̂ − Ŵ , Ŵ = W ◦ S and D̂ is a diagonal matrix
with the i-th element as D̂ii =

∑
j Ŵij

end while

Solutions to Problem (13) and Problem (15) We can use
the algorithm framework in Algorithm 1 to solve the pro-
posed problem (13) and (15). The detailed algorithm to solve
the problem (13) is described in Algorithm 2. The algorithm
to solve the problem (15) is similar, we omit the detailed
algorithm here during to space limitations.

In Step 2 of the Algorithm 2, we need to solve the prob-
lem min

1TDy=0
yT L̂y−λbT y. Solving this problem seems time

consuming because of the constraint in the problem. For-
tunately, the problem is equivalent to the following prob-
lem min

y
yT L̂y−λbT y+ ηyTD11TDy with a large enough

η. This problem has a closed form solution y = λ(L̂ +
ηD11TD)−1b and can be efficiently solved by using Wood-
bury matrix identity and solving a very sparse system of lin-
ear equations.

Extension to Multi-Way Partitioning

The Algorithm 2 partitions the graph into two parts, we can
recursively run the algorithms to obtain the desired number
of partitions. Specifically, when the graph is divided into k
parts, the k + 1 part can be obtained by running the algo-
rithms on the k parts individually, and select the one that the
defined cut is minimal when this part is divided into 2 parts.

Another method to perform the multi-way partitioning is
as follows. After we obtain k vectors by the algorithms, the
k + 1 vector y is obtained by running the algorithms with
an additional constraint that the vector y is orthogonal to the
pervious k vectors. Recursively run the algorithms, we can
obtain the desired number of vectors, and then run K-means
clustering on the vectors to obtain the final partitioning of
the graph as in (Nie et al. 2011b).

Experimental Results

In this section, we experimentally evaluate the two proposed
graph clustering methods in both two-way and multi-way
clustering tasks. We abbreviate the proposed new relaxation
of the normalized cut as NR-NC, and abbreviate the pro-
posed new relaxation of the ratio cut as NR-RC.

To evaluate the clustering results, we adopt the two widely
used standard metrics: clustering accuracy and normalized
mutual information (NMI) (Cai et al. 2008).
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Table 1: Performance and objective value comparison of the proposed methods against their traditional counterparts.

Data Ratio Cut NR-RC Normalized Cut NR-NC

Acc NMI Acc NMI Acc NMI Acc NMI

Hepatitis 0.894 0.773 0.924 0.797 0.919 0.804 0.944 0.813
ionosphere 0.903 0.812 0.931 0.844 0.897 0.801 0.915 0.824
breast cancer 0.851 0.678 0.913 0.766 0.872 0.703 0.938 0.812

0 10 20 30 40−3

−2

−1

0

1

Number of iterations

Lo
ga

rit
hm

ic 
ob

jec
tiv

e 
va

lue Ratio Cut
NR−RC (our method)

(a) Objective value vs. iter-
ation.

0 5 10 15 20 25 30 35 400.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

Number of iterations

Av
er

ag
e 

pr
ec

isi
on

(b) Clustering accuracy of
NR-RC vs. iteration.

0 10 20 30 40−3

−2

−1

0

1

2

Number of iterations

Lo
ga

rit
hm

ic 
ob

jec
tiv

e 
va

lue Normalized Cut
 NR−NC (our method)

(c) Objective value vs. iter-
ation.

0 5 10 15 20 25 30 35 400.88

0.89

0.9

0.91

0.92

0.93

0.94

0.95

Number of iterations

Av
er

ag
e 

pr
ec

isi
on

(d) Clustering accuracy
NR-NC vs. iteration.

Figure 1: Convergence analysis of 2-way clustering on hepatitis data set.
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Figure 2: Convergence analysis of 2-way clustering on ionosphere data set.
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Figure 3: Convergence analysis of 2-way clustering on breast cancer data set.

Two-Way Clustering Using NR-RC and NR-NC
Methods

We first evaluate the two proposed methods in two-way clus-
tering, and compare them against their respective traditional
counterparts. Three benchmark data sets from UCI machine
learning repository1 are used in our experiments, includ-
ing hepatitis database with 155 instances and 20 attributes,
ionosphere database with 351 instances and 34 attributes,
breast cancer database with 286 instances and 9 attributes.
All these three data sets have only 2 classes, therefore we can
perform two-way clustering on them. We construct nearest-
neighbor graph for each data set following (Gu and Zhou
2009).

The clustering results by the compared results are shown
in Table 1, from which we can see that the proposed new re-

1http://archive.ics.uci.edu/ml/

laxation graph clustering methods consistently outperforms
their traditional counterparts, sometimes very significantly.
These results clearly demonstrate the advantage of the pro-
posed methods in terms of clustering performance.

Because our methods employ iterative algorithms, we in-
vestigate the convergence properties of our algorithms with
some details. Given the output vertex ranking from each it-
eration of the algorithms, we compute the objective value by
Eq. (8) for the NR-RC method and by Eq. (1) for the NR-
NC method, which are plotted in Figure 1(a) and Figure 1(c)
for hepatitis data, Figure 2(a) and Figure 2(c) for ionosphere
data, Figure 3(a) and Figure 3(c) for breast cancer data, re-
spectively. The clustering accuracy with respect each itera-
tion of the two proposed methods are also plotted in Fig-
ure 1(b) and Figure 1(d) for hepatitis data, Figure 2(b) and
Figure 2(d) for ionosphere data, Figure 3(b) and Figure 3(d)
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Table 2: Clustering accuracy (%) comparison of multi-way clustering on the eight data sets.

DATA SET KM PCA+KM LDA-KM RC NR-RC NC NR-NC

DERMATOL 75.96 75.96 71.58 81.52 82.67 81.9 83.52
ECOLI 62.91 63.99 62.80 44.74 64.35 46.81 63.22
COIL20 64.10 67.92 62.01 78.74 79.94 77.51 78.42
BINALPHA 42.95 46.30 46.58 46.41 48.12 45.15 47.21
UMIST 45.39 45.39 48.52 60.95 62.31 61.59 64.20
AR 27.98 29.17 24.17 37.93 38.91 37.01 38.88
YALEB 11.06 12.26 12.43 39.21 45.12 42.22 46.07
PIE 18.86 18.56 22.20 42.04 46.74 44.51 47.18

Table 3: NMI (%) comparison of multi-way clustering on the eight data sets.

DATA SET KM PCA+KM LDA-KM RC NR-RC NC NR-NC

DERMATOL 86.18 86.18 85.51 83.21 86.38 84.51 87.19
ECOLI 49.27 55.53 52.50 36.01 51.20 40.21 57.50
COIL20 77.46 77.14 74.85 87.23 87.88 86.14 87.67
BINALPHA 58.52 59.74 59.51 57.21 59.64 58.41 60.30
UMIST 66.08 66.08 65.03 76.45 77.19 71.52 75.41
AR 61.50 63.18 58.11 71.52 72.63 70.63 72.17
YALEB 16.09 17.22 18.74 57.36 59.15 53.42 57.93
PIE 38.78 39.02 39.55 56.14 59.21 57.15 60.32

for breast cancer data, respectively. From these figures we
can see that our algorithms converge very fast with typically
no more than 20 iterations, which concretely confirm their
computational efficiency.

Moreover, as shown in Figure 3(a) and Figure 3(c), in con-
trast to the objective values of the traditional graph cluster-
ing methods, the objective values at convergence of our new
relaxed graph clustering methods are much smaller, which
provide another evidence to support the correctness of both
our objectives and algorithms.

Multi-Way Clustering Using NR-RC and NR-NC
Methods

Now we evaluate the proposed methods in multi-way clus-
tering. In our experiments, we implement our methods using
the second strategy introduced in Section . Eight benchmark
data sets are used in the experiments, including two UCI data
sets, dermatology and ecoli, one object data set, COIL-20
(Nene, Nayar, and Murase 1996), one digit and character
data sets, Binalpha, and four face data sets, Umist (Graham
and Allinson 1998), AR (Martinez and Benavente 1998),
YaleB (Georghiades, Belhumeur, and Kriegman 2001), and
PIE (Sim and Baker 2003).

Beside comparing our methods to their traditional coun-
terparts, we also compare to K-means (denoted by Km),
PCA+K-means (denoted by PCA+Km), LDA-Km (Ding
and Li 2007) methods. Again, we construct nearest-neighbor
graph for each data set and set the neighborhood size for
graph construction as 10 (Gu and Zhou 2009). The dimen-
sion of PCA+K-means is searched from five candidates

ranging from 10 to the dimension of data.
The results of all clustering algorithms depend on the ini-

tialization. To reduce statistical variety, we independently
repeat all clustering algorithms for 50 times with random
initializations, and then we report the results corresponding
to the best objective values.

The clustering performance measured by clustering ac-
curacy and NMI are reported in Table 2 and Table 3, from
which we can see that the proposed methods still perform the
best among all compared methods. In addition, our methods
are always better their respective traditional counterparts.
These advantages validate the effectiveness of the proposed
methods and justify our motivations.

Conclusions

In this paper, we proposed new relaxations for normalized
cut and ratio cut methods. The �1-norm distances are utilized
in the relaxed graph clustering formulations. Such �1-norm
based relaxations can naturally get the discrete and sparse
clustering solutions (with many zeros) which are close to
the optimal ones. Moreover, we proposed a new optimiza-
tion algorithm to address the minimization problem of a ra-
tio of non-smooth terms which cannot be solved by other
standard sparse learning optimization algorithms. The val-
idations were performed on both two-way and multi-way
clustering problems. On all eleven benchmark data sets, our
new relaxed normalized cut and ratio cut methods consis-
tently outperform the traditional ones.
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