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Abstract—Loop closure detection is an essential component for
simultaneously localization and mapping in a variety of robotics
applications. One of the most challenging problems is to perform
long-term place recognition with strong perceptual aliasing and
appearance variations due to changes of illumination, vegetation,
weather, etc. To address this challenge, we propose a novel Robust
Multimodal Sequence-based (ROMS) method for long-term loop
closure detection, by formulating image sequence matching as an
optimization problem regularized by structured sparsity-inducing
norms. Our method is able to model the sparsity nature of place
recognition, i.e., the current location should match only a small
subset of previously visited places, as well as to model underlying
structures of image sequences and incorporate multiple feature
modalities to construct a discriminative scene representation. In
addition, a new optimization algorithm is developed to efficiently
solve the formulated problem, which has a theoretical guarantee
to converge to the global optimal solution. To evaluate the ROMS
algorithm, extensive experiments are performed using large-scale
benchmark datasets, including St Lucia, CMU-VL, and Nordland
datasets. Experimental results have validated that our algorithm
outperforms previous loop closure detection methods, and obtains
the state-of-the-art performance on long-term place recognition.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) has been
an active research area in robotics for several decades, which
is an essential component required by an autonomous robot to
navigate through real-world environments in numerous critical
applications, including search and rescue [19], service robotics
[8, 41], and planetary exploration [12]. Loop closure detection,
i.e., to identify a previously visited location and find the match
from existing map templates using image matching techniques,
is necessary in all SLAM systems, because loop closing is able
to reduce the ambiguity and uncertainty in estimated maps and
robot poses, thereby can significantly improve the accuracy of
robot mapping and localization.

Given its importance, the problem of loop closure detection
has been extensively investigated over the last decade in visual
SLAM [1, 6, 23, 24]. Most previous techniques applied global
[2, 24, 26] or local [1, 7, 22, 29] visual features to represent
new observations and the scene templates of previously visited
places; then a newly observed scene is matched with a scene
template using a similarity score or a nearest neighbor search
[2, 6]. However, loop closure detection problems become very
challenging for the methods to solve robustly when two places
look similar, which is often referred to as perceptual aliasing
[14], or when the same location exhibits significant appearance

changes during a long-term SLAM operation (e.g., in different
illumination, weather, and vegetation conditions across months
or seasons [18, 26]), often called long-term place recognition.

To address these challenges, several loop closure detection
methods [4, 16, 35] fuzed the information from various sensing
modalities and devices (such as RGB-D cameras and LiDAR),
to construct a more comprehensive and discriminative repre-
sentation of scene templates and observations. The increasing
onboard computational power on mobile robots, especially the
accessibility of GPUs, allows for real-time multimodal feature
extraction. Another promising direction of research to address
the challenges is based on the idea of integrating temporal in-
formation and consistency by matching sequences of templates
and observed frames, instead of individual images. Sequence-
based loop closure detection methods demonstrated a high ro-
bustness to perceptual aliasing as well as substantial perceptual
changes due to weather, daylight, and season changes in long-
term loop closure detection [2, 17, 18, 26].

In this research, we implement a novel RObust Multimodal
Sequence-based (ROMS) loop closure detection algorithm, by
integrating both spatial (via multimodal features) and temporal
(via sequence-based matching) information to improve scene
representation power and place recognition performance. Our
algorithm is inspired by the insight that loop closuring events
are inherently sparse [24], i.e., the current sequence of frames
matches only a small subset (if any) of the template sequences
of scenes previously visited by a robot. A convex optimization
problem is formulated to robustly and efficiently solve the loop
closure detection task, and structured sparsity-inducing norms
are developed to model the spatiotemporal relationship of both
scene template and query sequences of various length.

Our contributions are threefold:
• We propose a novel ROMS loop closure detection method

that is able to model the sparsity nature of place recog-
nition in SLAM, capture the underlying structure of both
template and query sequences, and integrate multimodal
features to build highly discriminative representations.

• We introduce a new optimization algorithm to efficiently
solve the proposed sequence-based loop closure detection
problem, which is theoretically guaranteed to find the best
solution to the problem.

• We present a novel paradigm to formulate the sequence-
based loop closure detection problem as an optimization
task regularized by structured sparsity-inducing norms.



II. RELATED WORK

Existing SLAM methods can be broadly divided into three
groups based on extended Kalman filters, particle filters, and
graph optimization paradigms [40]. Loop closure detection is
an integrated component of all visual SLAM techniques, which
uses visual features to recognize revisited locations [25].

A. Visual Features for Scene Representation

A large number of visual features are developed and applied
by SLAM methods to represent the scenes observed by robots
during navigation. These features can be generally categorized
into two classes: global and local features [36, 44].

Global features extract information from the whole image,
and a feature vector is often formed based on feature statistics
(e.g., histograms). These global features can encode raw image
pixels, shape signatures and color information. For example,
GIST features [24], built from responses of steerable filters at
different orientations and scales, were applied to perform place
recognition [37]. The Local Difference Binary (LDB) features
were used to represent scenes by directly computing a binary
string using simple intensity and gradient differences of image
grid cells [2]. The SeqSLAM approach [26] utilized the sum of
absolute differences between contrast low-resolution images as
global features to perform sequence-based place recognition.
Deep features based on convolutional neural networks (CNNs)
were adopted to match image sequences [31]. Global features
can encode whole image information and no dictionary-based
quantization is required, which showed promising performance
for long-term place recognition [2, 26, 27, 30, 33].

On the other hand, local features utilize a detector to locate
points of interest (e.g., corners) in an image and a descriptor to
capture local information of a patch centered at each interest
point. Place recognition based on local features typically uses
the Bag-of-Words (BoW) model as a quantization technique to
construct a feature vector. For example, this model was applied
to the Scale-Invariant Feature Transform (SIFT) features to
detect loops from 2D images [1]. FAB-MAP [6, 7] utilized the
Speeded Up Robust Features (SURF) for visual loop closure
detection. Both local features were also applied by the RTAB-
Map SLAM [21, 22]. A bag of binary words based on BRIEF
and FAST features were used to perform fast place recognition
[9]. Recently, ORB features showed promising performance of
loop closure identification [28, 29]. The BoW representation
based on local visual features are discriminative and (partially)
invariant to scale, orientation, affine distortion and illumination
changes, thus are widely used in SLAM for place recognition.

The proposed ROMS loop closure detection algorithm is a
general multimodal approach that can utilize a combination of
global and/or local features to construct a more comprehensive
spatial representation of scenes.

B. Image Matching for Place Recognition

Given a query observation and the scene templates of previ-
ously visited locations (represented as feature vectors), image
matching aims at determining the most similar templates to
the query observation, thereby recognizing the revisits.

Most of the place recognition methods are based on image-
to-image matching, which localize the most similar individual
image that best matches the current frame obtained by a robot.
The existing image-to-image matching methods in the SLAM
literature can be generally categorized into three groups, based
on pairwise similarity scoring, nearest neighbor search, and
sparse optimization. Early methods compute a similarity score
of the query image and each template based on certain distance
metrics and select the template with the maximum similarity
score [5, 14]. Matching techniques based on nearest neighbor
search typically construct a search tree to efficiently locate the
most similar scene template to the query image. For example,
the Chow Liu tree was used by the FAB-MAP SLAM [6, 7].
The KD tree was implemented using FLANN to perform fast
nearest neighbor search in the RTAB-MAP [21, 22] and some
other methods [2, 21] for efficient image-to-image matching.
Very recently, methods based on sparsity-inducing norms were
introduced to decide the globally most similar template to the
query image [24] (details in Section III-A). These image-to-
image matching methods typically suffer from the perceptual
aliasing problem, due to the limited information carried by a
single image [2, 26]. In addition, approaches based on nearest
neighbor search or sparse optimization are typically incapable
to address sequence-based loop closuring, because they cannot
satisfy the constraint that the selected group of the most similar
templates are temporally adjacent.

It has been demonstrated that integrating information from
a sequence of frames can significantly improve place recog-
nition accuracy and decrease the effect of perceptual aliasing
[2, 17, 18, 26, 27]. The majority of sequence-based matching
techniques, including RatSLAM [27], SeqSLAM [26], Cooc-
Map [18], among others [17, 20], compute sequence similarity
using all possible pairings of images within the template and
query sequences to create a similarity matrix, and then select
the local template sequence with a statistically high score from
this matrix. Other sequence-based matching methods were also
proposed. For example, this problem is formulated in [30] as a
minimum cost flow task in a data association graph to exploit
sequence information. Hidden Markov Models (HMMs) [15]
and Conditional Random Fields (CRFs) [4] were also applied
to align a pair of template and query sequences. However, all
previous sequence-based methods are not capable to model the
sparsity nature of place recognition for loop closuring. Also,
previous approaches only used a local similarity score without
considering global constraints to model the interrelationship
of the sequences. The proposed ROMS loop closure detection
method addresses these issues and is theoretically guaranteed
to find the best solution.

III. ROMS LOOP CLOSURE DETECTION

In this section, we introduce the formulation of loop closure
detection from the sparse convex optimization point of view.
Then, our novel multimodal algorithm is introduced to detect
loop closure from a sequence of frames based on heterogenous
features, named RObust Multimodal Sequence-based (ROMS)
loop closure recognition. A new optimization algorithm is also



proposed to efficiently solve this problem. Theoretical analysis
of the algorithm is provided.

Notation. In this paper, matrices are written using boldface,
capital letters, and vectors are represented as boldface lower-
case letters. Given a matrix M = {mij} ∈ Rn×m, we refer to
its i-th row and j-th column as mi and mj , respectively. The
`1-norm of a vector v ∈ Rn is defined as ‖v‖1 =

∑n
i=1 |vi|.

The `2-norm of v is defined as ‖v‖2 =
√
v>v. The `2,1-norm

of the matrix M is defined as:

‖M‖2,1 =

n∑
i=1

√√√√ m∑
j=1

m2
ij =

n∑
i=1

‖mi‖2 . (1)

A. Formulation of Image-to-Image Matching as Sparse Con-
vex Optimization for Loop Closure Detection

Given a collection of image templates from the mapped area
D = [d1,d2, · · · ,dn] ∈ Rm×n, and a feature vector extracted
from the current image b ∈ Rm, loop closure detection can be
formulated as a convex optimization problem using sparsity-
inducing norms, as presented by Latif et al. [24]:

min
a
‖Da− b‖2 + λ‖a‖1 , (2)

where λ > 0 is a trade-off parameter, and a ∈ Rn indicates the
weights of all image templates to encode b. A larger value of
ai means the image template di is more similar to the current
image b and can better represent it.

The first term in Eq. 2 is a convex loss function to measure
the error of using the templates to explain the current image.
The second term is a regularization used to prevent overfitting
or introduce additional information to model design objectives.
By applying the `1-norm as a regularization term in Eq. 2, we
can enforce the sparsity of a, and seek an explanation of the
query image b that uses the fewest templates from the mapped
region. A loop is recognized if an image template has a high
similarity (i.e., with a large weight) to the current frame b. If
no matches are found within D, then a is dense, which assigns
a small weight to a large portion of the image templates in D.
As validated in [24], loop closure detection methods based on
sparse convex optimization are able to obtain very promising
performance to detect revisited locations.

B. Multimodal Sequence-Based Loop Closure Detection

Our objective is to solve the loop closure detection problem
in challenging environments through incorporating a temporal
sequence of image frames for place recognition and a set of
heterogenous visual features to capture comprehensive image
information. Formally, we have a set of templates that encode
scenes from the mapped area D = [d1,d2, · · · ,dn] ∈ Rm×n,
which has rich information structures. Each template contains
a set of heterogenous features extracted from different sources
di = [(d1

i )
>, (d2

i )
>, · · · , (dr

i )
>]> ∈ Rm, where dj

i ∈ Rmj is
the feature vector of length mj that is extracted from the j-th
feature modality and m =

∑r
j=1mj . In addition, the feature

templates [d1,d2, · · · ,dn] are divided into k separate groups,
i.e., D = [D1,D2, · · · ,Dk], where each group Dj denotes
the j-th sequence that contains nj images acquired in a short

time interval and used together for sequence-based matching,
where n =

∑k
j=1 nj . Given a query observation of the current

scene, which contains a sequence of s image frames encoded
by their multimodal feature vectors B = [b1,b2, · · · ,bs] ∈
Rm×s, solving the loop closure detection problem from the
perspective of sparse optimization is to learn a set of weight
vectors, A = [a1,a2, · · · ,as], which can be expanded as:

A =


a11 a12 . . . a1s
a21 a22 . . . a1s
...

...
. . .

...
ak1 ak2 . . . aks

 ∈ Rn×s , (3)

where each component weight vector aqp ∈ Rnq represents the
weights of the templates in the q-th group Dq with respect to
the p-th query image bp, which indicates the similarity of the
templates in Dq and bp.

Since we want each frame b in the observation relies on the
fewest number of templates for place recognition, following
[24], an intuitive objective function to solve the problem is:

min
A

s∑
i=1

(‖Dai − bi‖2 + λ‖ai‖1) , (4)

which minimizes the error of applying D to explain each bi in
the query observation, and at the same time enforces sparsity
of the used scene templates by using the `1-norm to regularize
each ai in A (1 ≤ i ≤ s). We concisely rewrite Eq. 4 utilizing
the following traditional Lasso model [42]:

min
A
‖(DA−B)>‖2,1 + λ‖A‖1, (5)

where ‖A‖1 =
∑s

i=1 ‖ai‖1.
However, this formulation suffers from two critical issues.

First, the Lasso model in Eq. 5 is equivalent to independently
applying Lasso to each b and ignores the relationship among
the frames in the observation B. Since the frames in the same
observation are obtained within a short time period, the visual
content of these image frames is similar; thus the frames are
correlated and should be explained by the same subset of the
templates. Second, the model in Eq. 5 ignores the underlying
group structure of the scene templates (each group containing
a sequence of templates acquired in previous time), and thus
is incapable of matching between sequences, i.e., the selected
scene templates with large weights are typically not temporally
adjacent or from the same template group. Both issues must be
addressed to accurately model the sequence-based loop closure
detection problem.

To model the correlation among the frames in an observation
B, the `2,1-norm is proposed as follows:

min
A
‖ (DA−B)

> ‖2,1 + λ‖A‖2,1. (6)

The `2,1-norm is an advanced technique that addresses both the
frame correlation and sparsity issues, by enforcing an `2-norm
across frames (i.e., all frames in B have a similar weight for a
same template) and an `1-norm across templates (i.e., selected
templates are sparse), as illustrated in Fig. 1.



Fig. 1. Illustration of the proposed ROMS algorithm. We model the grouping
structure of the scene templates using the G1-norm regularization (‖A‖G1

),
and enforce the query sequence of images to jointly match the same templates
using the `2,1-norm regularization (‖A‖2,1).

To model the grouping structure among the templates in D
and realize sequence-based matching, which was not addressed
in previous loop closure detection techniques based on nearest-
neighbor search or sparsity optimization, we propose to further
regulate the weight matrix A by adding a new regulation term
named the group `1-norm (G1-norm) to Eq. 6, which is an `1
sum of the `2-norms of group-specific weight vectors:

‖A‖G1 =

s∑
i=1

k∑
j=1

‖aji‖2 . (7)

Because the G1-norm uses `2-norm within each group and the
`1-norm between groups, it enforces sparsity between different
groups, i.e., if a group of templates are not representative for
the observation B, the weights of the templates in this group
are assigned with zeros (in ideal case, usually they are very
small values); otherwise, their weights are large. The `2-norm
applied on each group enables that the templates within the
same group have similar weight values. We illustrate the effect
of the G1-norm regulation in Fig. 1.

To sum up, the final objective function is formulated as:

min
A
‖(DA−B)>‖2,1 + λ1‖A‖2,1 + λ2‖A‖G1

. (8)

Through combining the `2,1-norm with the G1-norm, a small
number of scene templates (can be none) in non-representative
groups can also learn a large weight. The combined regularizer
can address sequence misalignment challenges, by activating
individual templates that are highly similar to the observation
but not in the most representative template group. Comparing
to traditional regression that utilizes a squared loss (e.g., the
Frobenius norm) as the loss function, in our new objective in
Eq. 8, the loss term encoded by the `2,1-norm is an absolute
loss, which can significantly improve the robustness of loop
closure detection, by reducing the effect of outliers caused by
occlusions and dynamic objects (e.g., pedestrians and cars).

After obtaining the optimal A in Eq. 8, a revisited location
(i.e., a loop) is recognized, if one group of scene templates
Dj have large weights, i.e.,

∑s
i=1 ‖a

j
i‖1/s ≥ τ , where τ is

close to 1, meaning Dj well matches the query sequence B.

After the query sequence B is processed, the scene templates
D = [D1,D2, · · · ,Dk] are updated as D = [D,B].

C. Optimization Algorithm and Analysis

Although the optimization problem in Eq. 8 is convex, since
the objective function contains three non-smooth terms, it is
challenging to be solved. We derive a new efficient algorithm
to solve this optimization problem, and provide a theoretical
analysis to prove that the proposed algorithm converges to the
global optimal solution.

Taking the derivative of Eq. 8 with respect to A and setting
it to zero, we obtain1:

D>DAU−D>BU+ λ1VA+ λ2W
iA = 0 , (9)

where U is a diagonal matrix with the i-th diagonal element
as uii = 1

2‖bi−Dai
‖2, V is a diagonal matrix with the i-th

element as 1
2‖ai‖2 , and Wi (1 ≤ i ≤ s) is a block diagonal

matrix with the j-th diagonal block as 1

2‖aj
i‖2

Ij , where Ij

(1 ≤ j ≤ k) is an identity matrix of size nj for each template
group. Thus, for each i, we have:

uiiD
>Dai − uiiD>bi + λ1Vai + λ2W

iai = 0 . (10)

Then, we calculate ai as follows:

ai = uii
(
uiiD

>D+ λ1V + λ2W
i
)−1

D>bi , (11)

where we can efficiently compute ai through solving the linear
equation uii(D

>D + λ1V + λ2W
i)ai = uiiD

>bi, without
computing the computationally expensive matrix inversion.

Note that U, V, and W in Eq. 11 depend on A and thus
are also unknown variables. We propose an iterative algorithm
to solve this problem, which is presented in Algorithm 1.

In the following, we analyze the algorithm convergence and
prove that Algorithm 1 converges to the global optimum. First,
we present a lemma from Nie et al. [32]:

Lemma 1. For any vector ṽ and v, the following inequality
holds: ‖ṽ‖2 − ‖ṽ‖22

2‖v‖2 ≤ ‖v‖2 −
‖v‖22
2‖v‖2 .

Then, we prove the convergence of our Algorithm 1 in the
following theorem.

Theorem 1. Algorithm 1 monotonically decreases the objec-
tive value of the problem in Eq. 8 in each iteration.

1When Dai − bi = 0, Eq. 8 is not differentiable. Following [13, 43],
we can regularize the i-the diagonal element of the matrix U using uii =

1

2
√
‖Dai−bi‖22+ζ

. Similarly, when ai = 0, the i-th diagonal element of the

matrix V can be regularized using 1

2
√
‖ai‖22+ζ

. When aji = 0, we employ

the same small perturbation to regularize the j-th diagonal block of Wi as
1

2
√
‖aj

i‖
2
2+ζ

Ij . Then, the derived algorithm can be proved to minimize the

following function:
∑s
i=1

√
‖Dai − bi‖22 + ζ+λ1

∑n
i=1

√
‖ai‖22 + ζ+

λ2
∑s
i=1

∑k
j=1

√
‖aji‖22 + ζ. It is easy to verify that this new problem is

reduced to the problem in Eq. 8, when ζ → 0.



Algorithm 1: An efficient algorithm to solve the optimiza-
tion problem in Eq. 8.

Input : The scene templates D ∈ Rm×n,
the query sequence of frames b ∈ Rm×s.

Output: The weight matrix A ∈ Rn×s.

1: Initialize A ∈ Rn×s;
2: while not converge do
3: Calculate the diagonal matrix U with the i-th

diagonal element as uii = 1
2‖bi−Dai‖2 ;

4: Calculate the diagonal matrix V with the i-th
diagonal element as 1

2‖ai‖2 ;
5: Calculate the block diagonal matrix Wi (1 ≤ i ≤ s)

with the j-th diagonal block as 1

2‖aj
i‖2

Ij ;

6: For each ai (1 ≤ i ≤ s), calculate
ai = uii

(
uiiD

>D+ λ1V + λ2W
i
)−1

D>bi;
7: end
8: return A ∈ Rn×s.

Proof: Assume the update of A is Ã. According to Step
6 in Algorithm 1, we know that:

Ã = argmin
A

Tr((DA−B)U(DA−B)>)

+λ1Tr(A
>VA) + λ2

s∑
i=1

Tr(a>i W
iai) , (12)

where Tr(·) is the trace of a matrix. Thus, we can derive

Tr((DÃ−B)U(DÃ−B)>)

+λ1Tr(Ã
>VÃ) + λ2

s∑
i=1

Tr(ã>i W
iãi)

≤ Tr((DA−B)U(DA−B)>)

+λ1Tr(A
>VA) + λ2

s∑
i=1

Tr(a>i W
iai) (13)

According to the definition of U, V, and W, we have

s∑
i=1

 ‖Dãi − bi‖22
2‖Dai − bi‖2

+ λ1
‖ã‖22
2‖a‖2

+ λ2

k∑
j=1

‖ãji‖22
2‖aji‖2


≤

s∑
i=1

 ‖Dai − bi‖22
2‖Dai − bi‖2

+ λ1
‖a‖22
2‖a‖2

+ λ2

k∑
j=1

‖aji‖22
2‖aji‖2


(14)

According to Lemma 1, we can obtain the following inequal-
ities:

s∑
i=1

(
‖Dãi − bi‖2 −

‖Dãi − bi‖22
2‖Dai − bi‖2

)
≤

s∑
i=1

(
‖Dai − bi‖2 −

‖Dai − bi‖22
2‖Dai − bi‖2

)

s∑
i=1

(
‖ã‖2 − λ1

‖ã‖22
2‖a‖2

)
≤

s∑
i=1

(
‖a‖2 − λ1

‖a‖22
2‖a‖2

)
(15)

s∑
i=1

k∑
j=1

(
‖ãji‖2 −

‖ãji‖22
2‖aji‖2

)
≤

s∑
i=1

k∑
j=1

(
‖aji‖2 −

‖aji‖22
2‖aji‖2

)
Computing the summation of the three equations in Eq. 15 on
both sides (weighted by λs), we obtain:

s∑
i=1

‖(Dãi − bi)
>‖2 + λ1‖ã‖2 + λ2‖ã‖2

≤
s∑

i=1

‖(Dai − bi)
>‖2 + λ1‖a‖2 + λ2‖a‖2 (16)

Therefore, Algorithm 1 monotonically decreases the objective
value in each iteration.

Since the optimization problem in Eq. 8 is convex, Algo-
rithm 1 converges to the global optimal solution fast. In each
iteration of our algorithm, computing Steps 3–5 is trivial. We
compute Step 6 by solving a system of linear equations with
a quadratic complexity.

IV. EXPERIMENTAL RESULTS

To assess the performance of our ROMS algorithm on place
recognition for loop closure detection, we conducted extensive
experiments. This section discusses our implementations, and
presents and analyzes the experimental results.

A. Experiment Setup

Three large-scale public benchmark datasets were used for
validation in different conditions during various time spans. A
summary of the dataset statistics is presented in Table I. Four
types of visual features were employed in our experiments for
all datasets, including LDB features [2] applied on 64 × 64
downsampled images, GIST features [24] applied on 320×240
downsampled images, CNN-based deep features [34] applied
on 227 × 227 downsampled images, and ORB local features
[29] extracted from 320 × 240 downsampled images. These
features are concatenated into a final vector to represent scene
templates and query observations.

TABLE I
STATISTICS AND SCENARIOS OF THE PUBLIC BENCHMARK DATASETS

USED FOR ALGORITHM VALIDATION IN OUR EXPERIMENTS

Dataset Sequence Image Statistics Scenario

St Lucia [11] 10× 12 km 10× ∼ 22, 000 frames
640× 480 at 15 FPS

Different times
of the day

CMU-VL [3] 5× 8 km 5× ∼ 13, 000 frames
1024× 768 at 15 FPS Different months

Nordland [38] 4× 728 km 4× ∼ 900, 000 frames
1920× 1080 at 25 FPS Different seasons

We implement three versions of the proposed ROMS loop
closure detection method. First, we set λ2 in Eq. 8 to 0, which
only employs the `2,1-norm and thereby only considers frame
consistency in the query observation. Second, we set λ1 in Eq.
8 equal to 0, which only uses the G1-norm to match between



sequences without considering frame correlations. Finally, the
full version of the proposed ROMS algorithm is implemented,
which both models frame consistency and performs sequence
matching. The current implementation was programmed using
a mixture of unoptimized Matlab and C++ on a Linux laptop
with an i7 3.0 GHz GPU, 16G memory and 2G GPU. Similar
to other state-of-the-art methods [31, 39], the implementation
in this current stage is not able to perform large-scale long-
term loop closure detection in real time. A key limiting factor
is that the runtime is proportional to the number of previously
visited places. Utilizing memory management techniques [22],
combined with an optimized implementation, can potentially
overcome this challenge to achieve real-time performance. In
these experiments, we qualitatively and quantitatively evaluate
our algorithms, and compare them with several state-of-the-art
methods, including BRIEF-GIST [37], FAB-MAP [7] (using
the OpenFABMAP v2.0 implementation [10]), and SeqSLAM
[26] (using the OpenSeqSLAM implementation [38]).

B. Results on the St Lucia Dataset (Various Times of the Day)

The St Lucia dataset [11] was collected by a single camera
installed on a car in the suburban area of St Lucia in Australia
at various times over several days during a two-week period.
Each data instance includes a video of 20-25 minutes. GPS
data was also recorded, which is used in the experiment as the
ground truth for place recognition. The dataset contains several
challenges including appearance variations due to illumination
changes at different times of a day, dynamic objects including
pedestrians and vehicles, and viewpoint variations due to slight
route deviations. The dataset statistics is shown in Table I.

Loop closure detection results over the St Lucia dataset are
illustrated in Fig. 2. The quantitative performance is evaluated
using a standard precision-recall curve, as shown in Fig. 2(b).
The high precision and recall values (close to 1) indicate that
our ROMS methods with G1-norms obtain high performance
and well match morning and afternoon video sequences. The
ROMS method only using the G1-norm regulation outperforms
the implementation only using the `2,1-norm regulation, which
underscores the importance of grouping effects and sequence-
based matching. When combined both norms together, the full
version of the ROMS algorithm obtains the best performance,
which indicates that promoting consistency of the frames in
the query sequence is also beneficial. To qualitatively evaluate
the experimental results, an intuitive example of the sequence-
based matching is presented in Fig. 2(a). We show the template
image (left column of Fig. 2(a)) that has the maximum weight
for a query image (right column of Fig. 2(a)) within a sequence
containing 75 frames. This qualitative results demonstrate that
the proposed ROMS algorithm works well with the presence of
dynamic objects and other vision challenges including camera
motions and illumination changes.

Comparisons with some of the main state-of-the-art methods
are also graphically presented in Fig. 2(b). It is observed that
for long-term loop closure detection, sequence-based methods,
such as our ROMS algorithms with G1-norms and SeqSLAM,
outperform the methods based on individual image matching,
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Fig. 2. Experimental results over the St Lucia dataset. Fig. 2(a) presents an
example showing the matched template and query sequences recorded at 15:45
on 08/18/2009 and 10:00 on 09/10/2009, respectively. Fig. 2(b) illustrates the
precision-recall curves that indicate the performance of our ROMS algorithms.
Quantitative comparisons with some of the main state-of-the-art loop closure
detection methods are shown in Fig. 2(b). The figures are best seen in color.

including FAB-MAP and BRIEF-GIST, due to the significant
appearance variations of the same location at different times.
In addition, our sequence-based ROMS methods (i.e., with the
G1-norm) obtain superior performance over SeqSLAM, which
is mainly resulted from the ability of our ROMS algorithm to
detect the global optimal match, comparing to depending on
a local similarity score for place recognition. The quantitative
comparison of the evaluated sequence-based approaches, using
the metric of recall at 100% precision, is summarized in Table
II, which indicates the percentage of loop closures that can be
recognized without any false positives [7]. We do not include
the methods based on individual image matching in this table,
because they generally obtain a zero-percent recall at a perfect
precision, as illustrated in Fig. 2(b). As indicated by Table II,
our ROMS loop closure detection algorithm achieves the best
recall of 65.31% with a perfect precision.

C. Results on the CMU-VL Dataset (Different Months)

The CMU Visual Localization (VL) dataset [3] was gathered
using two cameras installed on a car that traveled the same
route five times in Pittsburgh areas in the USA during different
months in varying climatological, environmental and weather
conditions. GPS information is also available, which is used as
the ground truth for algorithm evaluation. This dataset contains
seasonal changes caused by vegetation, snow, and illumination
variations, as well as urban scene changes due to constructions
and dynamic objects. The visual data from the left camera is
used in this set of experiments.

The qualitative and quantitative testing results obtained by
our ROMS algorithms on the CMU-VL dataset are graphically
shown in Fig. 3. Each of the scene template groups and query
sequences include 75 frames obtained every five seconds. The
qualitative results in Fig. 3(a) show the template images (left
column) with the maximum weight for each query image (right



(a) Matched sequences

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re
ci
si
on FAB-MAP

BRIEF-GIST

SeqSLAM

Our ROMS (`2,1-norm only)

Our ROMS (G1-norm only)

Our ROMS

(b) Precision-recall curves

Fig. 3. Experimental results over the CMU-VL dataset. Fig. 3(a) presents an
example demonstrating the matched template and query sequences recorded in
October and December, respectively. Fig. 3(b) illustrates the precision-recall
curves and compares our methods with several previous loop closure detection
approaches. The figures are best viewed in color.

TABLE II
COMPARISON OF USED SEQUENCE-BASED LOOP CLOSURE DETECTION

METHODS USING THE METRIC OF RECALL (%) AT 100% PRECISION.
APPROACHES BASED ON SINGLE IMAGE MATCHING ARE NOT INCLUDED

HERE BECAUSE THEY GENERALLY OBTAIN A ZERO VALUE.

Methods St Lucia CMU-VL Nordland
SeqSLAM [26, 38] 32.25 12.83 16.26

ROMS (`2,1-norm only) 31.81 2.54 4.83
ROMS (G1-norm only) 52.55 50.17 36.92
Our ROMS algorithm 65.31 66.47 57.36

column) in an observed sequence. It is clearly observed that
our ROMS method is able to well match scene sequences and
recognize same locations across different months that exhibit
significant weather, vegetation, and illumination changes. The
quantitative experimental results in Fig. 3(b) indicate that the
ROMS methods with G1-norm regulations obtain much better
performance than the version using only the `2,1-norm, which
is the same phenomenon observed in the experiment using the
St Lucia dataset. The reason is the ROMS method using only
`2,1-norm regulations actually matches a sequence of observed
images to a set of independent scene templates, i.e., the group
structure of the scene templates is not considered. On the other
hand, the ROMS methods using G1-norm regulations perform
sequence-based matching, by using the G1-norm to model the
underlying structure of the scene templates. This underscores
the importance of sequence-based matching for long-term loop
closure detection across months. By integrating both sparsity-
inducing norms, the full version of our algorithm achieves very
promising performance as shown in Fig. 3 and Table II.

Fig. 3(b) also illustrates comparisons of our ROMS methods
with several previous loop closure detection approaches, which
shows the same conclusion as in the St Lucia experiment that
sequence-based loop closure detection approaches significantly
outperform methods based on single image matching for long-
term place recognition. In addition, we observe that the ROMS

algorithm only using `2,1-norms as the regularization (i.e., not
sequence-sequence matching) still performs much better than
traditional approaches based on image-image matching. This
is because although the group structure of the scene templates
is not modeled, the ROMS algorithm with only the `2,1-norm
considers a sequence of currently observed frames to match a
small set of independent templates, which essentially performs
the optimal sequence-image matching. The comparison in Fig.
3(b) also demonstrates that even the optimal sequence-image
matching approach (i.e., our ROMS algorithm using only the
`2,1-norm) cannot perform as good as sequence-based methods
(e.g., SeqSLAM and ROMS with G1-norms).

D. Results on the Nordland Dataset (Different Seasons)

The Nordland dataset [38] contains visual data from a ten-
hour long journey of a train traveling around 3000 km, which
was recorded in four seasons from the viewpoint of the train’s
front cart. GPS data was also collected, which is employed as
the ground truth for algorithm evaluation. Because the dataset
was recorded across different seasons, the visual data contains
strong scene appearance variations in different climatological,
environmental and illumination conditions. In addition, since
multiple places of the wilderness during the trip exhibit similar
appearances, this dataset contains strong perceptual aliasing.
The visual information is also very limited in several locations
such as tunnels. The difficulties make the Nordland dataset one
of the most channelling datasets for loop closure detection.
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Fig. 4. Experimental results over the Nordland dataset. Fig. 4(a) presents an
example illustrating the matched scene template and query sequences recorded
in Winter and Spring, respectively. Fig. 4(b) shows the precision-recall curves
and compares our methods with previous loop closure detection methods. The
figures are best viewed in color.

Fig. 4 presents the experimental results obtained by match-
ing the spring data to the winter video in the Nordland dataset.
Fig. 4(a) demonstrates several example images from one of the
matched scene template (left column) and query (right column)
sequences, each including 300 frames. Fig. 4(a) validates that
our ROMS algorithm can accurately match image sequences
that contain dramatic appearance changes across seasons. Fig.
4(b) illustrates the quantitative result obtained by our ROMS



algorithms and the comparison with the previous techniques.
We can observe similar phenomena that show the state-of-the-
art performance of our sequence-based loop closure detection
algorithm, which is also supported by its highest recall value
at a perfect precision as compared in Table II.
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Fig. 5. Performance analysis of our ROMS algorithm with respect to varying
parameters and algorithm setups using the Nordland dataset. These figures are
best viewed in color.

E. Discussion and Parameter Analysis

We discuss and analyze the characteristics and key parame-
ters of the ROMS algorithm, using experimental results of the
first hour of the winter and spring visual data in the Nordland
dataset as an example, as demonstrated in Fig. 5.

The effect of the trade-off parameters used by our problem
formulation in Eq. 8 is illustrated in Fig. 5(a), using recall at
100% perception as an evaluation metric. When λ1 = 102 and
λ2 = 103, our ROMS approach obtains the best performance.
This validates both sparsity-inducing norms are necessary, and
the G1-norm regulation that enables sequence-based matching
is more important. When λ1 and λ2 take very large values, the
performance decreases, because the loss function that models
the sequence matching error is almost ignored. When λ1 and
λ2 take very small values, the algorithm cannot well enforce
sequence-based matching and frame consistency of the query
sequence, thus resulting in performance decrease. Specifically,
when λ1 = λ2 = 0, i.e., no global sparsity is considered, the
algorithm only minimizes the error of using template groups to
explain query sequences, which is similar to the methods based

on similarity scores (e.g., SeqSLAM). Similar phenomena are
also observed on other datasets in the experiments.

The temporal length of the image sequences is another key
parameter that affects the performance of sequence-based loop
closure detection techniques. We illustrate the precision-recall
curves obtained by our ROMS methods with varying sequence
lengths in Fig. 5(b). In general, a longer sequence results in a
better performance. On the other hand, when the sequence is
longer than 250 (for the Nordland dataset), the improvement is
limited. Similar observations are obtained using other datasets.
In suburban environments, we notice a sequence length of five
seconds (i.e., 75 images for St Lucia and CMU-VL datasets)
can result in promising performance. In natural environments
with stronger perceptual aliasing, a longer image sequence that
includes more information is needed, as demonstrated in Fig.
5(b) using the Nordland dataset. The camera’s frame rate and
movement speed also need to be considered when determining
the number of frames used in the sequences.

Effects of different algorithm setups are also analyzed. For
example, the sliding window technique can be flexibly used by
our ROMS algorithm through overlapping a number of frames
in the sequences. However, we observe in the experiments that
the approaches using different sizes of overlaps obtain almost
identical performance, as shown by the Nordland example in
Fig. 5(c). This is mainly because the highly similar templates
outside of the selected group can be activated (and vise versa)
by the `2,1-norm to address the sequence misalignment issue.
In addition, we analyze algorithm performance variations with
respect to different modality settings. The experimental results
over the Nordland dataset are demonstrated in Fig. 5(d). It is
observed that the global features (i.e., LDB, GIST, and CNN-
based deep features) applied on downsampled images perform
better than local features, and are more descriptive to deal with
significant scene changes across seasons. The experiment also
illustrates that using an ensemble of features can improve the
performance of sequence-based image matching.

V. CONCLUSION

We propose a novel robust multimodal sequence-based loop
closure detection algorithm that formulates sequence matching
as an optimization problem regularized by structured sparsity-
inducing norms. Our ROMS algorithm captures the sparsity
nature of loop closure detection, models the grouping structure
of template and query sequences, and incorporates multimodal
features. A new optimization algorithm is also implemented to
efficiently solve the formulated problem, which guarantees to
obtain the global optimal solution to the problem. To evaluate
the performance of the ROMS method, extensive experiments
are performed based on three large-scale benchmark datasets.
Qualitative results have validated that our algorithm is able to
robustly perform long-term place recognition under significant
scene variations across different times of the day, months and
seasons. Quantitative evaluation results have also demonstrated
that our ROMS algorithm outperforms previous techniques and
obtains the state-of-the-art place recognition performance.



REFERENCES

[1] Adrien Angeli, David Filliat, Stéphane Doncieux, and
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