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Abstract

Transductive semi-supervised learning can only predict labels
for unlabeled data appearing in training data, and can not pre-
dict labels for testing data never appearing in training set. To
handle this out-of-sample problem, many inductive methods
make a constraint such that the predicted label matrix should
be exactly equal to a linear model. In practice, this constraint
might be too rigid to capture the manifold structure of data.
In this paper, we relax this rigid constraint and propose to
use an elastic constraint on the predicted label matrix such
that the manifold structure can be better explored. Moreover,
since unlabeled data are often very abundant in practice and
usually there are some outliers, we use a non-squared loss in-
stead of the traditional squared loss to learn a robust model.
The derived problem, although is convex, has so many non-
smooth terms, which make it very challenging to solve. In the
paper, we propose an efficient optimization algorithm to solve
a more general problem, based on which we find the optimal
solution to the derived problem.

Introduction
In most machine learning and data mining applications, such
as image annotations and categorizations, we often have a
small set of labeled data together with a large collection of
unlabeled data. Due to the small size of labeled data, the
traditional supervised classification methods cannot be ap-
plied. The semi-supervised method involving both labeled
and unlabeled data to train classification model is more re-
alistic to solve the problems. The semi-supervised learning
can be viewed as label propagation from labeled data to un-
labeled data. In its simplest form, the label propagation is
like a random walk on a similarity graph (Szummer and
Jaakkola 2002; Nie et al. 2010b). Using the diffusion kernel,
the semi-supervised learning is like a diffusive process of the
labeled information (Kondor and Lafferty 2002). The har-
monic function approach (Zhu, Ghahramani, and Lafferty
2003) emphasizes the harmonic nature of the diffusive func-
tion. The consistency labeling approach (Zhou et al. 2004)
focuses on the iterative spread of labels.
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The success of semi-supervised learning is based on how
much information unlabeled data carry about the distribu-
tion of labels in the pattern space (Nie et al. 2011b). In
general, researchers hypothesize a low-dimensional mani-
fold structure along which labels can be assumed to vary
smoothly (Belkin, Niyogi, and Sindhwani 2006; Sindhwani
et al. 2005). Because the linear models are strongly pre-
ferred due to their ease of and empirical performance,
the linear manifold regularization was introduced to semi-
supervised learning (Belkin, Niyogi, and Sindhwani 2006;
Sindhwani et al. 2005). However, the linear embedding often
restricts the identification of manifold structure and reduces
the classification performance of semi-supervised learning.

To solve this problem, we propose a new elastic constraint
on the predicted label matrix such that a better manifold
structure can be identified. Meanwhile, we consider that the
outliers often exist in the unlabeled data and confuse the
learning model. In order to reduce the outliers effect, we re-
place the traditional squared loss function by a non-squared
one which is robust to the outliers. Although our new ob-
jective is a convex function, it includes many non-smooth
terms which make the optimization problem very challeng-
ing. We provide a new efficient optimization algorithm to
solve a more general problem and also solve the proposed
objective. Extensive experiments have been performed on
both single-label image categorizations and multi-label im-
age annotations to evaluate the new method. In all empirical
results, our approach outperforms other related methods.

Related Work Revisited

Suppose we have n training data points {x1, x2, ..., xn}, de-
note the data matrix by X = [x1, x2, ..., xn] ∈ R

d×n, where
d is the dimensionality. For a graph based method, a graph
on the data is constructed based on the training data points.
The similarity matrix A ∈ R

n×n of the graph is calcu-
lated to encode the similarities between data pairs. In semi-
supervised learning, only a few data points of the training
data are labeled, and the remaining data points are unlabeled.
Without loss of generality, suppose the first l data points
x1, ..., xl are labeled as y1, ..., yl, respectively. For every i,
yi ∈ {1, 2, ..., c}, where c is the number of classes. The task
of semi-supervised learning is to predict the labels for the
unlabeled data points. Denote the label matrix of the first l
data points by Yl ∈ R

l×c, where the (i, j)-th element of Yl is
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1 if yi = j and 0 otherwise. Denote the predicted label ma-

trix by F =

[
Fl

Fu

]
, where Fl ∈ R

l×c and Fu ∈ R
(n−l)×c.

Label propagation (Zhu, Ghahramani, and Lafferty 2003) is
a popular method for semi-supervised learning, which is to
solve the following problem:

min
F,Fl=Yl

1

2

n∑
i,j=1

Aij ‖fi − fj‖22 (1)

Eq.(1) can be rewritten as: min
F,Fl=Yl

tr(FTLF ), where L is

the Laplacian matrix defined as L = D − A, the D is a di-
agonal matrix with the i-th diagonal element Dii =

∑
i Aij .

With writing L as blockwise matrix, Eq.(1) is rewritten as

min
Fu

tr

([
Yl

Fu

]T [
Lll Llu

Lul Luu

] [
Yl

Fu

])
(2)

By setting the derivative of Eq.(2) w.r.t. Fu to zero, we get
the optimal solution Fu as: Fu = −L−1

uuLulYl. The problem
in Eq.(1) can be generalized as

min
F

1

2

n∑
i,j=1

Aij ‖fi − fj‖22 + α ‖Fl − Yl‖2F (3)

When α → ∞, Eq.(3) is reduced to Eq.(1).
Label propagation can only be used in the transductive

setting, that is, the method can only predict the labels for the
seen training data points, and can not predict the labels for
new data points unseen in the training procedure. To han-
dle this out-of-sample problem, a manifold regularization
method was proposed recently (Belkin, Niyogi, and Sind-
hwani 2006; Sindhwani et al. 2005). The basic idea of this
inductive method is to learn a linear model by constraining
XTW +1bT = F , where 1 is a vector with all the elements
as one. Thus the problem in Eq.(3) becomes

min
F,XTW+1bT=F

1

2

n∑
i,j=1

Aij ‖fi − fj‖22 + α ‖Fl − Yl‖2F (4)

By adding a regularization term ‖W‖2F of the linear model
to avoid overfitting, problem (4) can be rewritten as

min
W,b

tr(WTXLXTW ) + α
∥∥XT

l W + 1bT − Yl

∥∥2

F
+ β ‖W‖2F (5)

where Xl = [x1, x2, ..., xl] ∈ R
d×l.

Elastic and Robust Embedding for

Semi-Supervised Classification

As can be seen in Eq.(4), the manifold regularization method
made a constraint that the predicted label matrix F must be
exactly equal to the linear model XTW + 1bT . In prac-
tice, this constraint is too rigid to capture the manifold
structure of data for label propagation (Nie et al. 2010c;
2013). In this paper, we propose to use an elastic constraint
on the label propagation such that the manifold structure
can be better explored and a linear model is also learned

for induction. Specifically, instead of using the rigid con-
straint XTW + 1bT = F , we use an elastic constraint∥∥XTW + 1bT − F

∥∥2
F

≤ δ on Eq.(3), which results in the
following problem:

min
F,‖XTW+1bT−F‖2

F≤δ

1

2

n∑
i,j=1

Aij ‖fi − fj‖22+α ‖Fl − Yl‖2F
(6)

Obviously, when δ → 0, Eq.(6) is reduced to Eq.(4).
In practice, labeled data are usually few and we can make

a reasonable assumption that all the labels of the labeled
data are correct. As in the label propagation method (Zhu,
Ghahramani, and Lafferty 2003), we can set the parameter
α in Eq.(6) to infinite to fully make use of the label informa-
tion. Then the problem in Eq.(6) becomes

min
F,Fl=Yl,‖XTW+1bT−F‖2

F≤δ

1

2

n∑
i,j=1

Aij ‖fi − fj‖22 (7)

By adding a regularization term ‖W‖2F of the linear model
to avoid overfitting, this problem can be equivalently rewrit-
ten as follows:

min
F,Fl=Yl,W,b

1
2

n∑
i,j=1

Aij ‖fi − fj‖22
+α

n∑
i=1

∥∥WTxi + b− fi
∥∥2
2
+ β ‖W‖2F

(8)

In practice, unlabeled data are often very abundant, and
usually there are some outliers in the unlabeled data. It is
known that the traditional squared loss is sensitive to out-
liers, we propose to use the loss without the square and thus
the learned model is robust to outliers (Nie et al. 2010a;
2011a). The proposed problem is as follows:

min
F,Fl=Yl,W,b

1
2

n∑
i,j=1

Aij ‖fi − fj‖2
+α

n∑
i=1

∥∥WTxi + b− fi
∥∥
2
+ β ‖W‖2F

(9)

As in Eq.(8), the problem in Eq.(9) is still convex. However,
solving the problem (9) is very challenging since there are
more than n2 non-smooth terms of �2 norm (without square).
Traditional sparsity induced norms minimization methods
are difficult to solve this kind of problem with so many spar-
sity induced norms.

Optimization Algorithm

Optimization Algorithm for A General Problem

First, let us consider a more general problem as follows:

min
x

f(x) +
∑
i

‖gi(x)‖2, (10)

where gi(x) is a vector output function. It can be seen that
the problem (9) is a special case of the problem (10).

Eq. (10) is non-smooth, we turn to solve the following
smooth problem:

min
x

f(x) +
∑
i

√
gTi (x)gi(x) + δ (11)
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When δ → 0, Eq.(11) is reduced to Eq.(10).
By setting the derivative of Eq.(11) w.r.t. x to zero, we

have

f ′(x) +
∑
i

gi(x)√
gTi (x)gi(x) + δ

= 0 (12)

Denote
si =

1

2
√
gTi (x)gi(x) + δ

(13)

Then Eq.(12) is rewritten as

f ′(x) +
∑
i

2sigi(x) = 0 (14)

Note that si is dependent on x, this equation is difficult
to solve. However, if si is given for every i, then solving
Eq.(14) is equivalent to solving the following problem:

min f(x) +
∑
i

sig
T
i (x)gi(x) (15)

Based on the above analysis, we propose an iterative algo-
rithm to find the solution of Eq.(12), and thus the optimal
solution of problem (11). We will give a theoretical analy-
sis to prove the convergence of the proposed algorithm. The
detailed algorithm is described in Algorithm 1. In the algo-
rithm, We first guess a solution x, then we calculate si based
on the current solution x and update the current solution x by
the optimal solution of problem (15) based on the calculated
si, this procedure is iteratively performed until converges.

Algorithm 1: The algorithm to solve the problem (11).
Initialize x ;
while not converge do

1. For each i, calculate si according to Eq.(13). ;
2. Update x by solving the problem (15) ;

end
Output: x.

Convergence Analysis of Algorithm 1

To prove the convergence of the Algorithm 1, we need the
following lemma:
Lemma 1 For any vectors x̃, x with the same size, the fol-
lowing inequality holds:√

x̃T x̃+ δ − x̃T x̃

2
√
xTx+ δ

≤
√
xTx+ δ − xTx

2
√
xTx+ δ

.

Proof: We begin with an obvious inequality

−
(√

x̃T x̃+ δ −√
xTx+ δ

)2

≤ 0, we have

−
(√

x̃T x̃+ δ −√
xTx+ δ

)2

≤ 0

⇒ 2
√
x̃T x̃+ δ

√
xTx+ δ − (x̃T x̃+ δ) ≤ xTx+ δ

⇒ √
x̃T x̃+ δ − x̃T x̃+δ

2
√

xT x+δ
≤

√
xT x+δ

2

⇒ √
x̃T x̃+ δ − x̃T x̃+δ

2
√

xT x+δ
≤ √

xTx+ δ − xT x+δ

2
√

xT x+δ

⇒ √
x̃T x̃+ δ − x̃T x̃

2
√

xT x+δ
≤ √

xTx+ δ − xT x

2
√

xT x+δ

which completes the proof. �
As a result, we have the following theorem:

Theorem 1 The Algorithm 1 will monotonically decrease
the objective of the problem (11) in each iteration.

Proof: In step 2 of Algorithm 1, suppose the updated x is x̃.
According to step 2, we know that

f(x̃)+
∑
i

sig
T
i (x̃)gi(x̃) ≤ f(x)+

∑
i

sig
T
i (x)gi(x) (16)

Note that si = 1

2
√

gT
i (x)gi(x)+δ

, so we have

f(x̃) +
∑
i

gTi (x̃)gi(x̃)

2
√

gTi (x)gi(x) + δ
≤ f(x) +

∑
i

gTi (x)gi(x)

2
√

gTi (x)gi(x) + δ

According to Lemma 1, we have∑
i

√
gTi (x̃)gi(x̃) + δ −∑

i

gT
i (x̃)gi(x̃)

2
√

gT
i (x)gi(x)+δ

≤ ∑
i

√
gTi (x)gi(x) + δ −∑

i

gT
i (x)gi(x)

2
√

gT
i (x)gi(x)+δ

(17)

Summing the above two equations on two sides, we arrive at

f(x̃) +
∑
i

√
gTi (x̃)gi(x̃) + δ ≤ f(x) +

∑
i

√
gTi (x)gi(x) + δ

The above equalities hold when and only when the algo-
rithm converges. Thus the Algorithm 1 will monotonically
decrease the objective of the problem (11) in each iteration
until the algorithm converges. �

In the convergence, the equality in Eq. (12) holds, thus
the KKT condition (Boyd and Vandenberghe 2004) of prob-
lem (11) is satisfied. Therefore, the Algorithm 1 will con-
verge to a stationary point, which is usually an optimum so-
lution to the problem (11).

Optimization Algorithm to Problem (9)

In this subsection, we describe how to solve the problem (9)
based on the Algorithm 1. According to the step 2 in Algo-
rithm 1, i.e. Eq.(15), the key step of solving problem (9) is
to solve the following problem:

min
F,Fl=Yl,W,b

1
2

n∑
i,j=1

AijŜij ‖fi − fj‖22
+α

n∑
i=1

Sii

∥∥WTxi + b− fi
∥∥2
2
+ β ‖W‖2F

(18)

where Ŝij = 1

2
√

‖fi−fj‖2
2+δ

and Sii =
1

2
√

‖WT xi+b−fi‖2
2+δ

are calculated by the current solution of W ,b and F , and δ is
a small enough (approaching to zero) positive constant.

Denote L̂ = D̂ − Â, where (Â)ij = AijŜij , D̂ is a di-
agonal matrix with the i-th diagonal element as

∑
j(Â)ij ,

and denote S as a diagonal matrix, where the i-th diagonal
element is Sii. Problem (18) can be rewritten as

min
F,Fl=Yl,W,b

tr(FT L̂F ) + β ‖W‖2F
+αtr(XTW + 1bT − F )TS(XTW + 1bT − F )

(19)
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By setting the derivative of Eq.(19) w.r.t. b to zero, we have

b =
1

1TS1
(FTS1−WTXS1) (20)

Substituting Eq.(20) into the problem (19), we have

min
F,Fl=Yl,W

tr(FT L̂F ) + β ‖W‖2F
+αtr(PXTW − PF )TS(PXTW − PF )

(21)

where P = I − 1
1TS1

11TS. By setting the derivative of
Eq.(21) w.r.t. W to zero, we have

W = α(αXHXT + βI)−1XHF (22)
where H = PTSP = S − 1

1TS1
S11TS.

Then according to Eq.(21) and Eq.(22), we have

min
F,Fl=Yl,W

tr(FT L̂F ) + αtr(FTHF ) + βtr(WTW )

+αtr(WTXHXTW )− 2αtr(FTHXTW )

⇔ min
F,Fl=Yl,W

tr(FT L̂F ) + αtr(FTHF )

+tr(WT (αXHXTW + βI)W )− 2αtr(FTHXTW )

⇔ min
F,Fl=Yl

tr(FT L̂F ) + αtr(FTHF )

−α2tr(FTHXT (αXHXT + βI)−1XHF ) (23)
Define a matrix M as following

M = L̂+ αH − α2HXT (αXHXT + βI)−1XH, (24)
and write M as a blockwise matrix, then Eq.(23) can be
rewritten as

min
Fu

tr

([
Yl

Fu

]T [
Mll Mlu

Mul Muu

] [
Yl

Fu

])
(25)

By setting the derivative of Eq.(25) w.r.t. Fu to zero, we get
the optimal solution Fu as follows:

Fu = −M−1
uu MulYl (26)

Based on the above analysis, we propose an iterative algo-
rithm to solve the problem (9). The detailed algorithm is de-
scribed in Algorithm 2. Since problem (9) is convex, the al-
gorithm will converge to the optimal solution according to
Theorem 1.

Empirical Studies

A Toy Example

We generate a dataset randomly distributed on two differ-
ent Gaussians with some noises (see Fig.1). The proposed
Elastic and Robust Embedding (ERE) method and its most
related methods, i.e. the Linearly Regularized Laplacian
(LRL) method as defined in Eq. (5) (Belkin, Niyogi, and
Sindhwani 2006; Sindhwani et al. 2005) are evaluated on
this dataset. The results are shown in Fig.1. From Fig.1(a)
we can see that our method successfully finds the opti-
mal projection W while the LRL method is failed in this
case. Fig.1(b) is the embedding result of the label matrix F
learned by our method, which is very close to the ideal class
indicator matrix. The results indicate that the proposed ERE
method can effectively explore the distribution of unlabeled
data to find the optimal projection W and the learned label
matrix F is much more suitable for classification.

Algorithm 2: The algorithm to solve the problem (9).

Input: The training data X ∈ R
d×n and the label

matrix Yl ∈ R
l×c for the first l data points, the

similarity matrix A ∈ R
n×n.

Initialize W ∈ R
d×c, b ∈ R

c×1, F ∈ R
n×c ;

while not converge do

1. Calculate L̂ = D̂ − Â, where
(Â)ij =

Aij

2
√

‖fi−fj‖2
2+δ

, D̂ is a diagonal matrix

with the i-th diagonal element as
∑

j(Â)ij ;
2. Calculate the diagonal matrix S, where the i-th

diagonal element Sii =
1

2
√

‖WT xi+b−fi‖2
2+δ

;

3. Calculate H = S − 1
1TS1

S11TS and calculate
M according to Eq.(24) ;

4. Update Fu by Eq.(26), F =

[
Yl

Fu

]
;

5. Update W by Eq.(22) ;
6. Update b by Eq.(20) ;

end

Output: W ∈ R
d×c, b ∈ R

c×1, F ∈ R
n×c.

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3 LRL
ERE

(a) Projection W (b) Embedding of F

Figure 1: Projection and Embedding results on a toy dataset.

Implementation Details of Our Method

The proposed method has two parameters α and β in Eq. (9).
Although it is tedious to seek an optimal combination of
them, we can demonstrate that the performance of the pro-
posed method is not sensitive to these parameters when they
are sampled in certain value ranges. Upon some preliminary
tests, we bound the parameters in the ranges of 1 ≤ α ≤ 10
and 0.01 ≤ β ≤ 0.1.

Besides the feature input in vector form, our method also
requires an input graph in the form of pairwise similarity
to explore the manifold structures of the input data. Fol-
lowing (He et al. 2005), we construct the nearest-neighbor
graph for an input data set, where the neighborhood size for
graph construction is set as optimal by searching the grid of
{1, 2, . . . , 10}.

Classification Rules by Our Method

Given the output decision matrix F from Algorithm 2 for
both labeled and unlabeled data points, their relevances to
the classes of interest are ranked, upon which we can assign
labels to the unlabeled data points.
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For single-label image classification tasks, in which each
image belongs one and only one class, we classify an unla-
beled image xi (l + 1 ≤ i ≤ n) by: l (xi) = argmaxk Fik.

For multi-label image classification tasks, in which one
image could belong to more than one class, we need a
threshold to make label prediction (Wang, Huang, and Ding
2009). For every class we learn a threshold from the labeled
data as follows: τk =

∑l
i Yl(ik)Fik/

∑l
i Yl(ik), which is the

average decision score of all the labeled data points belong-
ing to the k-th class. Then we determine the class member-
ship for an unlabeled image xi (l + 1 ≤ i ≤ n) by the fol-
lowing rule: assign xi to the k-th class if Fik ≥ bk, and not
otherwise.

For the classification of an out-of-sample data point x ∈
R

d, we first compute its decision vector by f = WTx + b,
where W is the output projection matrix and b is output bias
vector from Algorithm 2. Then we predict labels for x by
applying the same classification rules as above.

Improved Single-Label Classifications

We experiment with two single-label image data sets
(Caltech-101 and MSRC-v1) for four image classification
tasks (following (Dueck and Frey 2007; Lee and Grauman
2009)), which are broadly used in computer vision studies.
Experimental setups. We compare the proposed ERE
method against its most related methods, i.e., the LRL
method as defined in Eq. (5). We also compare our method to
the following widely used semi-supervised method includ-
ing Transductive SVM (TSVM) (Joachims 1999) method,
Gaussian Field and Harmonic function (GFHF) (Zhu,
Ghahramani, and Lafferty 2003) method, Green’s Function
(GF) (Ding et al. 2007) method and Transductive Classifica-
tion via Dual Regularization (TCDR) (Gu and Zhou 2009)
method. As a baseline, we also report the classification per-
formances of SVM on the same data sets, though it is a
supervised classification method. We implement SVM and
TSVM methods using the SVMlight software package1. Fol-
lowing (Joachims 1999), we fix the regularization parame-
ter C = 1 and use the Gaussian kernel (i.e., K (xi, xj) =

exp
(
−γ ‖xi − xj‖2

)
) where γ is fined tuned in the range

of
{
10−5, . . . , 10−1, 1, 101, . . . , 105

}
. For SVM and TSVM

methods, we employ one-vs-other strategy to deal with
multi-class data sets. We implement the other compared
methods and set the parameters to be optimal following their
original works.
Experimental results. For each of the four classification
tasks from the two image data sets, we randomly select 20%
images as labeled data and the rest as unlabeled data, on
which we perform all the compared methods. A 5-fold cross-
validation is conducted on the labeled data to fine tune the
parameters of the compared methods. We repeat each test
case for 20 times and report the average performance. Be-
cause we experiment with single-label data, the macro aver-
age classification accuracies over all the classes of the com-
pared methods are reported in Table 1, from which we have
a number of interesting observations as following.

1http://svmlight.joachims.org/

First, the proposed method is consistently better than the
other compared methods with a significant margin, which
clearly demonstrate its effectiveness on single-label image
data. Second, our new method obviously outperforms its
non-robust and rigid counterpart, i.e., the LRL method,
which is consistent with our previous theoretical analyses:
our method does better in the robustness against noises and
outlier samples that are inevitable in large-scale data and its
elasticity between the predicted and ground truth labels for
the labeled data. These important results concretely confirm
the correctness and advantage of our learning objective in
Eq. (9) over that of the LRL method in Eq. (5). Third, the
four methods, including SVM, TSVM, GFHF and GF meth-
ods, which take as input only one single input data format
of either feature description in vector form or pairwise sim-
ilarities between data points in graph form, generally do not
perform well, which can be explained as follows. Although
both the feature vectors and the similarity graph are describ-
ing a same set of objects, they may emphasize different as-
pects of the data and could reinforce the discriminability of
each other (Wang, Huang, and Ding 2010a).

Improved Multi-Label Classifications

Now we evaluate the proposed method in multi-label image
classification tasks. Multi-label classification can be seen
as a generalization of traditional single-label classification,
which is more challenging yet more close to real-world com-
puter vision applications. We experiment with the follow-
ing two broadly used multi-label image data sets: Mediamill
(Snoek et al. 2006) and MSRC-v2.
Experimental setups. As in previous subsection, we still
compare the proposed approach against its two most related
methods, i.e., TCDR and LRL methods. In addition, we also
compare our method to three recent multi-label image clas-
sification methods including Multi-Label Green’s Function
(MLGF) (Wang, Huang, and Ding 2009) method that uses
graph input, Multi-Label Least Square (MLLS) (Ji et al.
2010) method that uses only feature vector input, and multi-
label feature transform (MLFT) (Wang, Huang, and Ding
2010b) method that integrates the inputs in the both formats.
Experimental results. We conduct standard 5-fold cross-
validation and report the average results over the five trial on
the two data sets by the compared methods in Table 2 and Ta-
ble 3. From the results, we can see that our method still per-
forms the best on the both test data sets. Besides, the TCDR
and LRL methods are worse than the other three compared
methods, as well as ours. This is because these two meth-
ods are designed for single-label classification, while the rest
three compared methods are designed for multi-label data
sets to leverage the cross-label correlations. Although our
method is not particularly designed for multi-label classifi-
cation, as in (Chang et al. 2014), it is naturally capable to
deal with multi-label data.

Inductive Classification on Out-of-Sample Data

Although semi-supervised learning methods (Joachims
1999) have been successfully used in many computer vision
applications solve the lack labeled data by utilizing a large
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Table 1: Comparison of the average macro classification accuracy (mean ± standard deviation).
Methods Caltech-101 (7 classes) Caltech-101 (20 classes) Caltech-101 (all) MSRC-v1

SVM 0.75± 0.15 0.50± 0.17 0.37± 0.12 0.76± 0.20
TSVM 0.81± 0.04 0.56± 0.04 0.41± 0.03 0.78± 0.06
GFHF 0.51± 0.09 0.38± 0.07 0.21± 0.04 0.56± 0.09
GF 0.63± 0.06 0.42± 0.03 0.26± 0.02 0.60± 0.06
TCDR 0.81± 0.09 0.62± 0.04 0.51± 0.07 0.82± 0.07
LRL 0.77± 0.09 0.49± 0.12 0.40± 0.05 0.74± 0.06
ERE 0.85± 0.04 0.69± 0.03 0.62± 0.05 0.88± 0.09

Table 2: Multi-label classification on mediamill data.

Methods Macro average Micro average

Precision F1 Precision F1

MLGF 0.204 0.206 0.201 0.304
MLFT 0.397 0.425 0.386 0.570
MLLS 0.385 0.410 0.352 0.560
TCDR 0.362 0.403 0.326 0.533
LRL 0.364 0.397 0.341 0.519
ERE 0.411 0.421 0.412 0.581

Table 3: Multi-label classification on MSRC-v2 data.

Methods Macro average Micro average

Precision F1 Precision F1

MLGF 0.216 0.279 0.237 0.287
MLFT 0.256 0.304 0.259 0.312
MLLS 0.255 0.291 0.256 0.301
TCDR 0.242 0.278 0.241 0.299
LRL 0.201 0.252 0.226 0.264
ERE 0.291 0.363 0.315 0.340

amount of cheap unlabeled data, another important practical
issue is how to effectively deal with out-of-sample images
that are not available at the training phase. Most transduc-
tive learning methods, such as the GFHF and GF methods,
are not able to generalize beyond the (labeled and unlabeled)
training data. However, in many real world applications, test
images are only available at the testing phase but not at the
training phase. As a result, the inductive capability to clas-
sify unseen images at the training phase is desired for practi-
cal use. Motivated by the prior studies (Belkin, Niyogi, and
Sindhwani 2006; Sindhwani et al. 2005), as an important
advantage, our model gracefully solved this problem by re-
placing the soft label indications by a linear projection on
the input data, as in Eq. (9). Therefore, in this subsection,
we evaluate the inductive classification capability of the pro-
posed method.
Experimental setups. In this experimental study, we use the
Caltech-101 and the MSRC-v2 data sets. The former is a
single-label data set, while the latter is a multi-label one. For
each data set, we randomly split it into two halves, and use
one half as training data and the other one as testing data. For
the training data, we randomly label 40% of the images and
leave the rest 60% of the images as unlabeled. Our task is to

Table 4: Multi-label classification on MSRC-v2 data.
Caltech-101 MSCR-v2

Methods Accuracy Macro average Micro average

Precision F1 Precision F1

PCA 0.327 0.174 0.250 0.219 0.281
LDA 0.536 0.230 0.325 0.262 0.298
LPP 0.315 0.147 0.240 0.215 0.256
DLE 0.553 0.242 0.332 0.281 0.304
LRL 0.452 0.201 0.252 0.226 0.264
ERE 0.631 0.287 0.352 0.309 0.338

learn a model from the training data to classify the images
in the testing data.

Besides comparing our method to the LRL method, we
also compare it to the following standard and widely used
projection methods in statistical learning: Principal Compo-
nent Analysis (PCA), Linear Discriminant Analysis (LDA),
Locality Preserving Projections (LPP) (He et al. 2005) and
Discriminant Laplacian Embedding (DLE) (Wang, Huang,
and Ding 2010a) method. PCA and LDA methods take fea-
ture vectors as input, while LPP method takes graphs as in-
put. DLE method aims at integrating the both forms of inputs
to seek a better low-dimensional discriminative subspace.
Experimental results. Each of the test cases for the com-
pared methods on the two data sets is repeated for 20 times
and the average results are reported in Table 4. From the re-
sults we can see that, PCA and LPP methods do not lead to
satisfactory classification performance because they are un-
supervised methods. LDA and DLE methods are generally
better, because the former is a supervised method and the
latter is a semi-supervised method. However, none of these
compared methods could outperform the proposed method,
which demonstrate the inductive classification capability of
our new method that is able to generalize to the out-of-
sample images beyond the training data and adds to its prac-
tical value.

Conclusions

In this paper, we propose an elastic and robust embed-
ding method for semi-supervised classification. To handle
the out-of-sample problem in transductive semi-supervised
learning, many inductive methods make a rigid constraint on
the predicted label matrix to learn a linear model. In prac-
tice, this constraint might be too rigid. We relax this rigid
constraint and use an elastic constraint such that the man-
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ifold structure can be better explored. Moreover, we use a
non-squared loss instead of the traditional squared loss to
improve the robustness to outliers that often lie in the abun-
dant unlabeled data. We proposed an efficient optimization
algorithm to solve the new challenging objective. Experi-
mental results on toy example, single-label and multi-label
image categorizations clearly show the effectiveness of the
proposed method.
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