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Abstract
Loop closure detection is one of the most important module in Simultaneously Localization and Mapping (SLAM) because
it enables to find the global topology among different places. A loop closure is detected when the current place is recognized
to match the previous visited places. When the SLAM is executed throughout a long-term period, there will be additional
challenges for the loop closure detection. The illumination, weather, and vegetation conditions can often change significantly
during the life-long SLAM, resulting in the critical strong perceptual aliasing and appearance variation problems in loop
closure detection. In order to address this problem, we propose a new Robust Multimodal Sequence-based (ROMS) method
for robust loop closure detection in long-term visual SLAM. A sequence of images is used as the representation of places
in our ROMS method, where each image in the sequence is encoded by multiple feature modalites so that different places
can be recognized discriminatively. We formulate the robust place recognition problem as a convex optimization problem
with structured sparsity regularization due to the fact that only a small set of template places can match the query place.
In addition, we also develop a new algorithm to solve the formulated optimization problem efficiently, which guarantees to
converge to the global optima theoretically. Our ROMS method is evaluated through extensive experiments on three large-
scale benchmark datasets, which record scenes ranging from different times of the day, months, and seasons. Experimental
results demonstrate that our ROMS method outperforms the existing loop closure detection methods in long-term SLAM,
and achieves the state-of-the-art performance.

Keywords Long-term place recognition · Loop closure detection · Visual SLAM · Long-term autonomy

1 Introduction

Autonomous robots as well as self-driving cars must have the
ability to navigate themselves in unstructured and unknown
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environments. To achieve this goal, a map of the navigating
area has to be built so that autonomous robots and self-driving
cars are able to localize themselves in it. This is one of the
fundamental problems in the robotics community known as
SimultaneousLocalization andMapping (SLAM),which has
been applied in many applications (Kleiner and Dornhege
2007; Estrada et al. 2005; Thrun et al. 2000; Goldberg et al.
2002). Unlike odometry which interprets the environment as
an infinite map and suffers from the drifting problem, SLAM
incorporates the loop closure detection module and is able
to understand the global real topology of the environment
(Cadena et al. 2016). Loop closure detection can improve
improve the accuracy of the maps and robot moving trajec-
tories.

Numerous results on loop closure detection have been
reported over the last decade due to its importance in visual
SLAM (Angeli et al. 2008; Cummins and Newman 2008;
Latif et al. 2013, 2014). Visual features of images are applied
to represent different places in visual SLAM, including local
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features (Angeli et al. 2008; Cummins and Newman 2009;
Labbe and Michaud 2014; Mur-Artal et al. 2015) and global
features (Arroyo et al. 2015; Latif et al. 2014; Milford and
Wyeth 2012). Inmost existing approaches, a newquery scene
is matched with a scene template in the database using scene
matching methods, i.e. maximum similarity score or nearest
neighbor search (Arroyo et al. 2015; Cummins and Newman
2008). However, most of those previous techniques cannot
perform well when two places have the similar appearance,
which is also known as the perceptual aliasing problem (Gut-
mann and Konolige 1999). Moreover, the appearance of a
place can be extremely changed in different times of the day,
month, or seasons due to changes of illumination, weather,
and vegetation conditions (Johns andYang2013;Milford and
Wyeth 2012). This is called long-term loop closure detection
problem in visual SLAM. When a SLAM system needs to
update the map during the long-term operation, this long-
term loop closure detection is essential (Labbe and Michaud
2013; Han et al. 2017). The traditional loop closure detec-
tors tend to fail when considering this long-term issue (Zhang
et al. 2016; Han et al. 2017).

There are various methods reported to address these chal-
lenges. One direction is to fuze data from various feature
modalities and/or sensors (i.e. depth, radar, and LiDAR,
etc) to construct a more discriminative and robust repre-
sentation of places (Cadena et al. 2012; Henry et al. 2012;
Santos et al. 2015). Instead of representing places using
single image, a sequence of consecutive images are pro-
posed to be the representation of one place, which integrates
much more information than the single image-based repre-
sentation method (temporal and more spatial information).
It has been demonstrated that sequence-based loop closure
detection methods are more robust when dealing with both
perceptual aliasing problems and appearance changes caused
by light, weather, and vegetation changes in long-term loop
closure detection (Arroyo et al. 2015; Ho and Newman 2007;
Johns and Yang 2013; Milford and Wyeth 2012).

In this paper, we propose a novel RObust Multimodal
Sequence-based (ROMS) method for loop closure detec-
tion in long-term visual SLAM. It integrates both spatial and
temporal information via multimodal features and sequence-
based scene recognition, respectively. In our ROMSmethod,
a sequence of images is used for the representation of a single
place, where each image in the sequence is encoded by mul-
timodal features. Inspired by (Latif et al. 2014) that the query
sequence of frames only matches a small subset of template
sequences stored in the database, the loop closure detection
problem becomes to find the most representative sequence
in templates that matches the query sequence. By this idea,
we propose a new sparse optimization formulation as well
as an efficient algorithm to solve the loop closure detection
problem in long-term visual SLAM.

The contribution of the paper is threefold:

1. We propose a novel ROMS method for loop closure
detection that integrates the insights of the place sparsity
and the sequence-based place recognition framework,
which allows to robustly model the long-term variability
of places for loop closing in visual SLAM.

2. We develop and implement a new paradigm to formu-
late robust sequence-based loop closure detection as a
regularized optimization problem based on structured
sparsity-inducing norms.

3. We introduce an efficient algorithm to solve the for-
mulated non-smooth convex optimization problem, by
which the theoretical convergence to the global optima
is guaranteed.

The rest of the paper is organized as follows. We first
review state-of-the-art approaches addressing loop closure
detection in Sect. 2. Then, the proposed ROMS method
with structured sparsity regularization is presented in Sect. 3.
Experimental results are illustrated in Sect. 4. Finally, the
conclusion is drawn in Sect. 5.

2 Related work

SLAM addresses the robot navigation problem in unknown
environments,which can provide accurate environmentmod-
els and robot pose estimates.

We can broadly categorize existing SLAM methods into
three groups based on extended Kalman filters, particle fil-
ters, and graph optimization paradigms (Thrun and Leonard
2008). Loop closure detection is an integrated component of
all visual SLAM techniques, which uses visual features to
recognize revisited locations (Lowry et al. 2016). The global
topology of the environment will be updated when a loop
closure is detected (Cadena et al. 2016). In this section, we
provide a brief review of visual features and image matching
methods used in visual SLAM.

2.1 Visual features for scene representation

In the computer vision and robotics community, scenes
observed by robots during navigation are usually represented
by visual features. Many visual features are developed and
applied in SLAM systems during the past decade, which can
be generally divided into two classes: global and local fea-
tures.

Global features extract information from the entire image,
and a feature vector is often formed based on feature statis-
tics (e.g., histograms). These global features can encode
raw image pixels, shape signatures and color information.
For example, GIST features (Latif et al. 2014), built from
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responses of steerable filters at different orientations and
scales, were applied to perform place recognition (Sünder-
hauf and Protzel 2011). The Local Difference Binary (LDB)
features were used to represent scenes by directly computing
a binary string using simple intensity and gradient differ-
ences of image grid cells (Arroyo et al. 2015). The SeqSLAM
approach (Milford andWyeth 2012) utilized the sum of abso-
lute differences between contrast low-resolution images as
global features to perform sequence-based place recogni-
tion. Deep features based on convolutional neural networks
(CNNs) were adopted to match image sequences (Naseer
et al. 2015). Global features can encode whole image infor-
mation and no dictionary-based quantization is required,
which showed promising performance for long-term place
recognition (Arroyo et al. 2015; Milford and Wyeth 2012;
Milford et al. 2004; Naseer et al. 2014; Pepperell et al. 2014).

On the other hand, local features utilize a detector to locate
points of interest (e.g., corners) in an image and a descrip-
tor to capture local information of a patch centered at each
interest point. The Bag-of-Words (BoW) model is often used
as a quantization technique for local features in order to
construct a feature vector in place recognition applications.
For example, this model was applied to the Scale-Invariant
Feature Transform (SIFT) features to detect loops from 2D
images (Angeli et al. 2008). FAB-MAP (Cummins and New-
man 2008, 2009) utilized the Speeded Up Robust Features
(SURF) for visual loop closure detection. Both local fea-
tures were also applied by the RTAB-Map SLAM (Labbe
and Michaud 2013, 2014). A bag of binary words based on
BRIEF and FAST features were used to perform fast place
recognition (Gálvez-López andTardós 2012).Recently,ORB
features showedpromising performance of loop closure iden-
tification (Mur-Artal andTardós 2014;Mur-Artal et al. 2015).
The BoW representation based on local visual features are
discriminative and (partially) invariant to scale, orientation,
affine distortion and illumination changes, thus are widely
used in SLAM for place recognition.

Different from most existing methods that use only one
kind of feature modality as the place representation, our pro-
posed ROMS loop closure detection algorithm is a general
multimodal approach that can utilize a combination of global
and/or local features to construct a more comprehensive spa-
tial representation of scenes.

2.2 Imagematching for place recognition

Given a query observation and the scene templates of previ-
ously visited locations (represented as feature vectors), image
matching aims at determining the most similar templates to
the query observation, thereby recognizing the revisits.

Most of the place recognition methods are based on
image-to-image matching, which localize the most similar
individual image that bestmatches the current frameobtained

by a robot. The existing image-to-imagematchingmethods in
the SLAM literature can be generally categorized into three
groups, based on pairwise similarity scoring, nearest neigh-
bor search, and sparse optimization. Early methods compute
a similarity score of the query image and each template
based on certain distance metrics and select the template
with the maximum similarity score (Chen and Wang 2006;
Gutmann and Konolige 1999). Matching techniques based
on nearest neighbor search typically construct a search tree
to efficiently locate the most similar scene template to the
query image. For example, the Chow Liu tree was used by
the FAB-MAP SLAM (Cummins and Newman 2008, 2009).
The KD tree was implemented using FLANN to perform
fast nearest neighbor search in the RTAB-MAP (Labbe and
Michaud 2013, 2014) and some other methods (Arroyo et al.
2015; Labbe andMichaud 2013) for efficient image-to-image
matching. Very recently, methods based on sparsity-inducing
norms were introduced to decide the globally most simi-
lar template to the query image (Latif et al. 2014) (details
in Sect. 3.1). These image-to-image matching methods typ-
ically suffer from the perceptual aliasing problem, due to
the limited information carried by a single image (Arroyo
et al. 2015;Milford andWyeth 2012). In addition, approaches
based on nearest neighbor search or sparse optimization
are typically incapable to address sequence-based loop clo-
suring, because they cannot satisfy the constraint that the
selected group of the most similar templates are temporally
adjacent.

It has been demonstrated that integrating information from
a sequence of frames can significantly improve place recog-
nition accuracy and decrease the effect of perceptual aliasing
(Arroyo et al. 2015; Ho and Newman 2007; Johns and Yang
2013; Milford and Wyeth 2012; Milford et al. 2004). The
majority of sequence-based matching techniques, inclsuding
RatSLAM (Milford et al. 2004), SeqSLAM (Milford and
Wyeth 2012), Cooc-Map (Johns and Yang 2013), among
others (Ho and Newman 2007; Klopschitz et al. 2008),
compute sequence similarity using all possible pairings of
images within the template and query sequences to cre-
ate a similarity matrix, and then select the local template
sequence with a statistically high score from this matrix.
Other sequence-based matching methods were also pro-
posed. For example, this problem is formulated in (Naseer
et al. 2014) as a minimum cost flow task in a data associa-
tion graph to exploit sequence information. Hidden Markov
Models (HMMs) (Hansen and Browning 2014) and Con-
ditional Random Fields (CRFs) (Cadena et al. 2012) were
also applied to align a pair of template and query sequences.
However, all previous sequence-based methods are not capa-
ble to model the sparsity nature of place recognition for loop
closuring. Also, previous approaches only used a local simi-
larity score without considering global constraints to model
the interrelationship of the sequences. The proposed ROMS
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loop closure detection method addresses these issues and is
theoretically guaranteed to find the best solution.

3 ROMS loop closure detection

In this section, the formulation of loop closure detection
from the sparse convex optimization point of view is intro-
duced. Then, we present the novel multimodal algorithm
to detect loop closure from a sequence of frames based on
heterogenous features, namedRObustMultimodal Sequence-
based (ROMS) loop closure recognition. A new optimization
algorithm is also proposed to efficiently solve this problem.
Theoretical analysis of the algorithm is also provided.

Notation Throughout the paper, matrices are written using
boldface, capital letters, and vectors are represented as bold-
face lowercase letters. Given a matrix M = {mi j } ∈ R

n×m ,
we refer to its i th row and j th column asmi andm j , respec-
tively. The �1-norm of a vector v ∈ R

n is defined as ‖v‖1 =∑n
i=1 |vi |. The �2-norm of v is defined as ‖v‖2 = √

v�v.
The �2,1-norm of the matrix M is defined as:

‖M‖2,1 =
n∑

i=1

√
√
√
√

m∑

j=1

m2
i j =

n∑

i=1

‖mi‖2 . (1)

3.1 Formulation of image-to-imagematching as
sparse convex optimization for loop closure
detection

Given a collection of image templates from the mapped area
D = [d1,d2, . . . ,dn] ∈ R

m×n , and a feature vector extracted
from the current image b ∈ R

m , loop closure detection prob-
lem can be formulated as a convex optimization problemwith
sparsity regularization, as presented by Latif et al. (2014):

min
a

‖Da − b‖2 + λ‖a‖1 , (2)

where λ > 0 is a trade-off parameter, and a ∈ R
n indicates

the weights of all image templates to encode b. A larger
value of ai means the image template di is more similar to
the current image b and can better represent it.

The first term in Eq. 2 is a loss function based on �2-
norm to measure the error of using the templates to explain
the current image. The second term is a regularization used
to prevent overfitting or introduce additional information to
encode structure in themodel for design objectives.By apply-
ing the �1-norm as a regularization term in Eq. 2, we can
enforce the sparsity of a, and seek an explanation of the
query imageb that uses the fewest templates from themapped
region. A loop is recognized if an image template has a high
similarity (i.e., with a large weight) to the current frame b.
If no matches are found within D, then a is dense, which

assigns a small weight to a large portion of the image tem-
plates in D. As validated in Latif et al. (2014), loop closure
detection methods based on sparse convex optimization are
able to obtain very promising performance to detect revisited
locations and close the loop in SLAM.

3.2 Multimodal sequence-based loop closure
detection

Our objective is to solve the loop closure detection problem
in challenging environments through incorporating a tem-
poral sequence of image frames for place recognition and a
set of heterogenous visual features to capture comprehensive
image information. Formally, we have a set of templates that
encode scenes from themapped areaD = [d1,d2, . . . ,dn] ∈
R
m×n , which has rich information structures. Each template

contains a set of heterogenous features extracted from dif-
ferent sources di = [(d1i )�, (d2i )

�, . . . , (dri )
�]� ∈ R

m ,

where d j
i ∈ R

m j is the feature vector of length m j that is
extracted from the j th feature modality and m = ∑r

j=1m j .
In addition, the feature templates [d1,d2, . . . ,dn] are divided
into k separate groups, i.e., D = [D1,D2, . . . ,Dk], where
each group D j denotes the j th sequence that contains n j

images acquired in a short time interval and used together
for sequence-based matching, where n = ∑k

j=1 n j . Given
a query observation of the current scene, which contains a
sequence of s image frames encoded by their multimodal
feature vectors B = [b1,b2, . . . ,bs] ∈ R

m×s , solving
the loop closure detection problem from the perspective
of sparse optimization is to learn a set of weight vectors,
A = [a1, a2, . . . , as], which can be expended as:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 . . . a1s
a21 a22 . . . a1s
...

...
. . .

...

ak1 ak2 . . . aks

⎤

⎥
⎥
⎥
⎥
⎥
⎦

∈ R
n×s , (3)

where each component weight vector aqp ∈ R
nq represents

the weights of the templates in the qth groupDq with respect
to the pth query image bp, which indicates the similarity of
the templates in Dq and bp.

Sincewewant each frameb in the observation relies on the
fewest number of templates for place recognition, following
Latif et al. (2014), an intuitive objective function to solve the
problem is:

min
A

s∑

i=1

(‖Dai − bi‖2 + λ‖ai‖1) , (4)

which minimizes the error of applying D to explain each
bi in the query observation, and at the same time enforces
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sparsity of the used scene templates by using the �1-norm to
regularize each ai inA (1 ≤ i ≤ s).We concisely rewrite Eq.
4 utilizing the following traditional Lasso model (Tibshirani
1996):

min
A

‖(DA − B)�‖2,1 + λ‖A‖1, (5)

where ‖A‖1 = ∑s
i=1 ‖ai‖1.

However, this formulation suffers from two critical issues.
First, the Lasso model in Eq. 5 is equivalent to independently
applying Lasso to each b and ignores the relationship among
the frames in the observationB. Since the frames in the same
observation are obtainedwithin a short time period, the visual
content of these image frames is similar; thus the frames are
correlated and should be explained by the same subset of the
templates. Second, the model in Eq. 5 ignores the underlying
group structure of the scene templates (each group contain-
ing a sequence of templates acquired in previous time), and
thus is incapable of matching between sequences, i.e., the
selected scene templates with large weights are typically not
temporally adjacent or from the same template group. Both
issues must be addressed to accurately model the sequence-
based loop closure detection problem.

To model the correlation among the frames in an observa-
tion B, the �2,1-norm is proposed as follows:

min
A

‖ (DA − B)� ‖2,1 + λ‖A‖2,1. (6)

The �2,1-norm is an advanced technique that addresses both
the frame correlation and sparsity issues, by enforcing an
�2-norm across frames (i.e., all frames in B have a similar
weight for a same template) and an �1-norm across templates
(i.e., selected templates are sparse), as illustrated in Fig. 1.

To model the grouping structure among the templates in
D and achieve sequence-based matching, which was not
addressed in previous loop closure detection techniques
based on nearest-neighbor search or sparsity optimization,

Fig. 1 Illustration of the proposed ROMS algorithm. We model the
grouping structure of the scene templates using the G1-norm regular-
ization (‖A‖G1 ), and enforce the query sequence of images to jointly
match the same templates using the �2,1-norm regularization (‖A‖2,1)

we propose to further regulate the weight matrixA by adding
a new regulation term named the group �1-norm (G1-norm)
to Eq. 6, which is an �1 sum of the �2-norms of group-specific
weight vectors:

‖A‖G1 =
s∑

i=1

k∑

j=1

‖a j
i ‖2 . (7)

Because the G1-norm uses �2-norm within each group and
the �1-norm between groups, it enforces sparsity between
different groups, i.e., if a group of templates are not repre-
sentative for the observation B, the weights of the templates
in this group are assigned with zeros (in ideal case, usu-
ally they are very small values); otherwise, their weights are
large. The �2-norm applied on each group enables that the
templates within the same group have similar weight values.
We illustrate the effect of the G1-norm regulation in Fig. 1.

To sum up, the final objective function is formulated as:

min
A

‖(DA − B)�‖2,1 + λ1‖A‖2,1 + λ2‖A‖G1 . (8)

Through combining the �2,1-norm with the G1-norm, a
small number of scene templates (can be none) in non-
representative groups can also learn a large weight. The
combined regularizer can address sequence misalignment
challenges, by activating individual templates that are highly
similar to the observation but not in the most representa-
tive template group. Comparing to traditional regression that
utilizes a squared loss (e.g., the Frobenius norm) as the loss
function, in our new objective in Eq. 8, the loss term encoded
by the �2,1-norm is an absolute loss, which can significantly
improve the robustness of loop closure detection, by reduc-
ing the effect of outliers caused by occlusions and dynamic
objects (e.g., pedestrians and cars).

After obtaining the optimalA in Eq. 8, a revisited location
(i.e., a loop) is recognized, if one group of scene templates
D j have large weights, i.e.,

∑s
i=1 ‖a j

i ‖1/s ≥ τ , where τ is
close to 1, meaning D j well matches the query sequence B.
After the query sequence B is processed, the scene templates
D = [D1,D2, . . . ,Dk] are updated as D = [D,B].1

3.3 Optimization algorithm and analysis

Although the optimization problem in Eq. 8 is convex, it
is very challenging for us to solve it efficiently since the

1 The template groups can be designed to have overlaps, e.g., using
sliding window techniques. However, in the experiments, we found that
groups with or without overlaps result in almost identical performance,
as demonstrated by the example in Fig. 5c, since ourmethod can activate
highly similar scene templates outside of the selected group (and vise
versa) to solve the sequence misalignment issue.
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objective function contains non-smooth terms. We can for-
mulate the problem as a second-order cone programming
(SOCP) or semidefinite programming (SDP) problem, which
can be solved by some existing methods, i.e., interior point
method or the bundle method. However, solving those prob-
lems is expensive in computation,which limits its application
in robust loop closure detection of visual SLAM.

Addressing this problem, we derive a new efficient algo-
rithm to solve the optimization problem in Eq. 8, and provide
a theoretical analysis to prove that the proposed algorithm
converges to the global optimal solution.

Taking the derivative of Eq. 8 with respect toA and setting
it to zero, we obtain2:

D�DAU − D�BU + λ1VA + λ2WiA = 0 , (9)

whereU is a diagonal matrix with the i th diagonal element as
uii = 1

2‖bi−Dai‖2 ,V is a diagonal matrix with the i th element

as 1
2‖ai‖2 , andW

i (1 ≤ i ≤ s) is a block diagonal matrix with

the j th diagonal block as 1
2‖a j

i ‖2
I j , where I j (1 ≤ j ≤ k) is

an identity matrix of size n j for each template group. Thus,
for each i , we have:

uiiD�Dai − uiiD�bi + λ1Vai + λ2Wiai = 0 . (10)

Then, we calculate ai as follows:

ai = uii
(
uiiD�D + λ1V + λ2Wi

)−1
D�bi , (11)

where we can efficiently compute ai through solving the lin-
ear equation uii (D�D+λ1V+λ2Wi )ai = ui iD�bi , without
computing the computationally expensive matrix inversion.

Note thatU,V, andW in Eq. 11 depend onA and thus are
also unknown variables. Accordingly, we propose an itera-
tive algorithm to solve this problem, which is presented in
Algorithm 1.

In the following, we analyze the algorithm convergence
and prove that Algorithm 1 converges to the global optimum.
First, we present a lemma from Nie et al. (2010):

2 When Dai − bi = 0, Eq. 8 is not differentiable. Following Gorod-
nitsky and Rao (1997) and Wang et al. (2013), we can regularize the
i-the diagonal element of the matrix U using uii = 1

2
√

‖Dai−bi ‖22+ζ
.

Similarly, when ai = 0, the i th diagonal element of the matrixV can be
regularized using 1

2
√

‖ai ‖22+ζ
. When a j

i = 0, we employ the same small

perturbation to regularize the j th diagonal block ofWi as 1

2
√

‖a j
i ‖22+ζ

I j .

Then, the derived algorithm can be proved to minimize the fol-

lowing function:
∑s

i=1

√
‖Dai − bi‖22 + ζ + λ1

∑n
i=1

√
‖ai‖22 + ζ +

λ2
∑s

i=1
∑k

j=1

√

‖a j
i ‖22 + ζ . It is easy to verify that this new problem

is reduced to the problem in Eq. 8, when ζ → 0.

Algorithm 1: An efficient algorithm to solve the opti-
mization problem in Eq. 8.
Input : The scene templates D ∈ R

m×n ,
the query sequence of frames b ∈ R

m×s .
Output: The weight matrix A ∈ R

n×s .

1: Initialize A ∈ R
n×s ;

2: while not converge do
3: Calculate the diagonal matrix U with the i th diagonal element

as uii = 1
2‖bi−Dai ‖2 ;

4: Calculate the diagonal matrix V with the i th diagonal element
as 1

2‖ai ‖2 ;
5: Calculate the block diagonal matrix Wi (1 ≤ i ≤ s) with the

j th diagonal block as 1
2‖a j

i ‖2
I j ;

6: For each ai (1 ≤ i ≤ s), calculate

ai = uii
(
uiiD�D + λ1V + λ2Wi

)−1
D�bi ;

7: end
8: return A ∈ R

n×s .

Lemma 1 For any vector ṽ and v, the following inequality

holds: ‖ṽ‖2 − ‖ṽ‖22
2‖v‖2 ≤ ‖v‖2 − ‖v‖22

2‖v‖2 .

Proof in “Appendix”. 	

Then, we have the following theorem to prove the conver-

gence of our Algorithm 1.

Theorem 1 Algorithm 1 monotonically decreases the objec-
tive value of the problem in Eq. 8 in each iteration.

Proof in “Appendix”. 	

Since the optimization problem in Eq. 8 is convex, Algo-

rithm 1 converges to the global optima. In each iteration of
our algorithm, computing Steps 3–5 is trivial.We could com-
pute Step 6 by solving a system of linear equations with a
quadratic complexity without the matrix inverse operation.
The complexity of Algorithm 1 can be further improved by
dimension reduction techniques, e.g. PCA (Li et al. 2015)
and its derivations (Han et al. 2018).

4 Experimental results

Extensive experiments were conducted to evaluate the per-
formance of our ROMS algorithm on place recognition for
loop closure detection. In this section, our implementations
are discussed firstly. Then, the experimental results using
three public benchmark datasets are presented and analyzed.

4.1 Experiment setup

Three large-scale public benchmark datasets were used for
validation in different conditions with various time spans. A
summary of the used dataset statistics is presented in Table
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1. Four types of visual features were employed in our experi-
ments for all three datasets, including LDB features (Arroyo
et al. 2015) applied on 64× 64 downsampled images, GIST
features (Latif et al. 2014) applied on 320 × 240 down-
sampled images, CNN-based deep features (Ren et al. 2015)
applied on 227 × 227 downsampled images, and ORB local
features (Mur-Artal et al. 2015) extracted from 320 × 240
downsampled images. These features are concatenated into
a final vector to represent scene templates and query obser-
vations.

We implement three versions of the proposed ROMS
loop closure detection method. First, we set λ2 in Eq. 8
to 0, which only employs the �2,1-norm and thereby only
considers frame consistency in the query observation. Sec-
ond, we set λ1 in Eq. 8 equal to 0, which only uses the
G1-norm to match between sequences without considering
frame correlations. Finally, the full version of the proposed
ROMS algorithm is implemented, which both models frame
consistency and performs sequence matching. The current
implementation was programmed using a mixture of unopti-
mizedMatlab and C++ on a Linux laptop with an i7 3.0 GHz
GPU, 16G memory and 2G GPU. Similar to other state-of-
the-art methods (Naseer et al. 2015; Sünderhauf et al. 2015),
the implementation in this current stage is not able to perform
large-scale long-term loop closure detection in real time. A
key limiting factor is that the runtime is proportional to the
number of previously visited places. Utilizing memory man-
agement techniques (Labbe and Michaud 2014), combined
with an optimized implementation, can potentially overcome
this challenge to achieve real-time performance. In these
experiments, we qualitatively and quantitatively evaluate our
algorithms, and compare them with several state-of-the-art
techniques, including BRIEF-GIST (Sünderhauf and Protzel
2011), FAB-MAP (Cummins and Newman 2009) [using
the implementation from OpenFABMAP v2.0 (Glover et al.
2012)], and SeqSLAM (Milford and Wyeth 2012) [using the
OpenSeqSLAM implementation (Sünderhauf et al. 2013)].

4.2 Results on the St Lucia dataset (various times of
the day)

The St Lucia dataset (Glover et al. 2010) was collected by
a single camera installed on a car in the suburban area of
St Lucia in Australia at various times over several days dur-
ing a 2-week period. Each data instance includes a video
of 20–25min. GPS data was also recorded, which is used
in the experiment as the ground truth for place recognition.
The dataset contains several challenges including appearance
variations due to illumination changes at different times of
a day, dynamic objects including pedestrians and vehicles,
and viewpoint variations due to slight route deviations. The
dataset statistics is shown in Table 1.

Loop closure detection results over the St Lucia dataset
are illustrated in Fig. 2. In Fig. 2a, an example sequence
of multimodal features for the place representation is illus-
trated. The quantitative performance is evaluated using a
standard precision-recall curve, as shown in Fig. 2c. The
high precision and recall values (close to 1) indicate that
our ROMSmethodswithG1-norms obtain high performance
and well match morning and afternoon video sequences.
The ROMS method only using the G1-norm regulation
outperforms the implementation only using the �2,1-norm
regulation, which underscores the importance of grouping
effects and sequence-based matching. When combined both
norms together, the full version of the ROMS algorithm
obtains the best performance, which indicates that promot-
ing consistency of the frames in the query sequence is also
beneficial. To qualitatively evaluate the experimental results,
an intuitive example of the sequence-based matching is pre-
sented in Fig. 2b.We show the template image (left column of
Fig. 2b) that has themaximumweight for a query image (right
column of Fig. 2b) within a sequence containing 75 frames.
This qualitative results demonstrate that the proposed ROMS
algorithm works well with the presence of dynamic objects
and other vision challenges including camera motions and
illumination changes.

Comparisons with some of themain state-of-the-art meth-
ods are also graphically presented in Fig. 2c. It is observed
that for long-term loop closure detection, sequence-based
methods, such as our ROMS algorithms with G1-norms
and SeqSLAM, outperform the methods based on individual
imagematching, includingFAB-MAPandBRIEF-GIST, due
to the significant appearance variations of the same location
at different times. In addition, our sequence-based ROMS
methods (i.e., with the G1-norm) obtain superior perfor-
mance over SeqSLAM, which is mainly resulted from the
ability of our ROMS algorithm to detect the global optimal
match, comparing to depending on a local similarity score for
place recognition. The quantitative comparison of the evalu-
ated sequence-based approaches, using the metric of recall at
100% precision, is summarized in Table 2, which indicates
the percentage of loop closures that can be recognized with-
out any false positives (Cummins and Newman 2009).We do
not include the methods based on individual image matching
in this table, because they generally obtain a zero-percent
recall at a perfect precision, as illustrated in Fig. 2c. As indi-
cated by Table 2, our ROMS loop closure detection algorithm
achieves the best recall of 65.31% with a perfect precision.

4.3 Results on the CMU-VL dataset (different
months)

The CMU Visual Localization (VL) dataset (Badino et al.
2012) was gathered using two cameras installed on a car that
traveled the same route five times in Pittsburgh areas in the
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Table 1 Statistics and scenarios of the public benchmark datasets used for algorithm validation in our experiments

Dataset Sequence Image statistics Scenario

St Lucia (Glover et al. 2010) 10 × 12 km 10× ∼ 22,000 frames, 640 × 480 at 15 FPS Different times of the day

CMU-VL (Badino et al. 2012) 5 × 8 km 5× ∼ 13,000 frames, 1024 × 768 at 15 FPS Different months

Nordland (Sünderhauf et al. 2013) 4 × 728 km 4× ∼ 900,000 frames, 1920 × 1080 at 25 FPS Different seasons

...
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Fig. 2 Experimental results over the St Lucia dataset. a illustrates an
example sequence of multimodal features used for the place represen-
tation. b presents an example showing the matched template and query
sequences recorded at 15:45 on 08/18/2009 and 10:00 on 09/10/2009,
respectively. c illustrates the precision-recall curves that indicate the
performance of our ROMS algorithms. Quantitative comparisons with
some of the main state-of-the-art loop closure detection methods are
shown in (c). The figures are best seen in color (Color figure online)

USAduring differentmonths in varying climatological, envi-
ronmental and weather conditions. GPS information is also
available, which is used as the ground truth for algorithm
evaluation. This dataset contains seasonal changes caused
by vegetation, snow, and illumination variations, as well
as urban scene changes due to constructions and dynamic
objects. The visual data from the left camera is used in this
set of experiments.

The qualitative and quantitative testing results obtained by
our ROMS algorithms on the CMU-VL dataset are graphi-
cally shown in Fig. 3. Each of the scene template groups
and query sequences include 75 frames obtained every 5 s.
An example sequence of multimodal features for the place
representation is illustrated in Fig. 3a. The qualitative results
in Fig. 3b show the template images (left column) with the
maximum weight for each query image (right column) in
an observed sequence. It is clearly observed that our ROMS
method is able to well match scene sequences and recognize

same locations across different months that exhibit signif-
icant weather, vegetation, and illumination changes. The
quantitative experimental results in Fig. 3c indicate that the
ROMS methods with G1-norm regulations obtain much bet-
ter performance than the version using only the �2,1-norm,
which is the same phenomenon observed in the experiment
using the St Lucia dataset. The reason is the ROMS method
usingonly �2,1-norm regulations actuallymatches a sequence
of observed images to a set of independent scene templates,
i.e., the group structure of the scene templates is not consid-
ered. On the other hand, the ROMS methods using G1-norm
regulations perform sequence-based matching, by using the
G1-norm to model the underlying structure of the scene tem-
plates. This underscores the importance of sequence-based
matching for long-term loop closure detection acrossmonths.
By integrating both sparsity-inducing norms, the full version
of our algorithm achieves very promising performance as
shown in Fig. 3 and Table 2.

Figure 3c also illustrates comparisons of our ROMSmeth-
ods with several previous loop closure detection approaches,
which shows the same conclusion as in the St Lucia experi-
ment that sequence-based loop closure detection approaches
significantly outperform methods based on single image
matching for long-term place recognition. In addition, we
observe that the ROMS algorithm only using �2,1-norms
as the regularization (i.e., not sequence-sequence match-
ing) still performs much better than traditional approaches
based on image-image matching. This is because although
the group structure of the scene templates is not modeled,
the ROMS algorithm with only the �2,1-norm considers a
sequence of currently observed frames to match a small set
of independent templates, which essentially performs the
optimal sequence-image matching. The comparison in Fig.
3c also demonstrates that even the optimal sequence-image
matching approach (i.e., our ROMS algorithm using only
the �2,1-norm) cannot perform as good as sequence-based
methods (e.g., SeqSLAM and ROMS with G1-norms).

4.4 Results on the Nordland dataset (different
seasons)

The Nordland dataset (Sünderhauf et al. 2013) contains
visual data from a ten-hour long journey of a train traveling
around 3000 km, which was recorded in four seasons from

123



Autonomous Robots

Table 2 Comparison of used sequence-based loop closure detection methods using the metric of recall (%) at 100% precision

Methods St Lucia CMU-VL Nordland

SeqSLAM (Milford and Wyeth 2012; Sünderhauf et al. 2013) 32.25 12.83 16.26

ROMS (�2,1-norm only) 31.81 2.54 4.83

ROMS (G1-norm only) 52.55 50.17 36.92

Our ROMS algorithm 65.31 66.47 57.36

Approaches based on single image matching are not included here because they generally obtain a zero value

...+ + +
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Fig. 3 Experimental results over the CMU-VL dataset. a illustrates
an example sequence of multimodal features used for the place repre-
sentation. b presents an example demonstrating the matched template
and query sequences recorded in October and December, respectively.
c illustrates the precision-recall curves and compares our methods with
several previous loop closure detection approaches. The figures are best
viewed in color (Color figure online)

the viewpoint of the train’s front cart. GPS data was also col-
lected, which is employed as the ground truth for algorithm
evaluation. Because the dataset was recorded across differ-
ent seasons, the visual data contains strong scene appearance
variations in different climatological, environmental and illu-
mination conditions. In addition, since multiple places of
the wilderness during the trip exhibit similar appearances,
this dataset contains strong perceptual aliasing. The visual
information is also very limited in several locations such as
tunnels. The difficulties make the Nordland dataset one of
the most channelling datasets for loop closure detection.

Figure 4 presents the experimental results obtained by
matching the spring data to the winter video in the Nordland
dataset. Figure 2a illustrates an example sequence of multi-
modal features for the place representation. Figure4bdemon-
strates several example images fromoneof thematched scene
template (left column) and query (right column) sequences,
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Fig. 4 Experimental results over the Nordland dataset. a illustrates an
example sequence of multimodal features used for the place representa-
tion. b presents an example illustrating the matched scene template and
query sequences recorded in Winter and Spring, respectively. c shows
the precision-recall curves and compares our methods with previous
loop closure detection methods. The figures are best viewed in color
(Color figure online)

each including 300 frames. Figure 4b validates that our
ROMS algorithm can accurately match image sequences that
contain dramatic appearance changes across seasons. Figure
4c illustrates the quantitative result obtained by our ROMS
algorithms and the comparison with the previous techniques.
We can observe similar phenomena that show the state-
of-the-art performance of our sequence-based loop closure
detection algorithm, which is also supported by its highest
recall value at a perfect precision as compared in Table 2.

4.5 Discussion and parameter analysis

We discuss and analyze the characteristics and key parame-
ters of theROMSalgorithm, using experimental results of the
first hour of the winter and spring visual data in the Nordland
dataset as an example, as demonstrated in Fig. 5.
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Fig. 5 Performance analysis of our ROMS algorithm with respect to varying parameters and algorithm setups using the Nordland dataset. These
figures are best viewed in color (Color figure online)

The effect of the trade-off parameters used by our prob-
lem formulation in Eq. 8 is illustrated in Fig. 5a, using
recall at 100% perception as an evaluation metric. When
λ1 = 102 and λ2 = 103, our ROMS approach obtains
the best performance. This validates both sparsity-inducing
norms are necessary, and theG1-norm regulation that enables
sequence-basedmatching ismore important.Whenλ1 andλ2
take very large values, the performance decreases, because
the loss function that models the sequence matching error
is almost ignored. When λ1 and λ2 take very small values,
the algorithm cannot well enforce sequence-based matching
and frame consistency of the query sequence, thus resulting
in performance decrease. Specifically, when λ1 = λ2 = 0,
i.e., no global sparsity is considered, the algorithm only min-
imizes the error of using template groups to explain query
sequences, which is similar to the methods based on simi-
larity scores (e.g., SeqSLAM). Similar phenomena are also
observed on other datasets in the experiments.

The temporal length of the image sequences is another key
parameter that affects the performance of sequence-based
loop closure detection techniques.We illustrate the precision-
recall curves obtained by our ROMS methods with varying
sequence lengths in Fig. 5b. In general, a longer sequence
results in a better performance. On the other hand, when the
sequence is longer than 250 (for the Nordland dataset), the
improvement is limited. Similar observations are obtained
using other datasets. In suburban environments, we notice a
sequence length of 5 s (i.e., 75 images for St Lucia and CMU-
VL datasets) can result in promising performance. In natural
environments with stronger perceptual aliasing, a longer
image sequence that includes more information is needed,
as demonstrated in Fig. 5b using the Nordland dataset. The
camera’s frame rate and movement speed also need to be
considered when determining the number of frames used in
the sequences.

Effects of different algorithm setups are also analyzed.
For example, the sliding window technique can be flexibly
used by our ROMS algorithm through overlapping a num-

ber of frames in the sequences. However, we observe in the
experiments that the approaches using different sizes of over-
laps obtain almost identical performance, as shown by the
Nordland example in Fig. 5c. This is mainly because the
highly similar templates outside of the selected group can
be activated (and vise versa) by the �2,1-norm to address
the sequence misalignment issue. In addition, we analyze
algorithm performance variations with respect to different
modality settings. The experimental results over the Nord-
land dataset are demonstrated in Fig. 5d. It is observed that
the global features (i.e., LDB, GIST, and CNN-based deep
features) applied on downsampled images perform better
than local features, and are more descriptive to deal with sig-
nificant scene changes across seasons. The experiment also
illustrates that using an ensemble of features can improve the
performance of sequence-based image matching. An inter-
esting futurework can be focused onmulti-feature learning to
study the optimal combination of the features for long-term
loop closure detection (Han et al. 2017).

5 Conclusion

In this paper, a novel robust loop closure detectionmethod for
long-term visual SLAM is proposed, which is formulated as
a convex optimization problemwith structured sparsity regu-
larization. Our ROMS method enables to model the sparsity
nature of place recognition,where only a small set of template
sequences can be matched to the query sequence. Besides
that, it is also able tomodel the grouping structure of template
and query sequences, and incorporate multimodal features
for discriminative scene representations. In order to solve
the formulated non-smooth optimization problem efficiently,
a new algorithm with the capability to converge to the global
optima is also developed. The proposed ROMS method is
finally evaluated by extensive experiments using three large-
scale benchmark datasets. Qualitative results have validated
that our algorithm is able to robustly perform long-term place
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recognitionunder significant scenevariations across different
times of the day,months and seasons. Quantitative evaluation
results have also demonstrated that our ROMSalgorithmout-
performs previous techniques and obtains the state-of-the-art
place recognition performance.
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Appendix Proof of Lemma 1:

Forany vector ṽ and v, the following inequality holds:‖ṽ‖2−
‖ṽ‖22
2‖v‖2 ≤ ‖v‖2 − ‖v‖22

2‖v‖2 .

Proof Obviously, the inequality−(‖ã‖2−‖a‖2)2 ≤ 0 holds.
Thus, we have:

−(‖ṽ‖2 − ‖v‖2)2 ≤ 0 ⇒ 2‖ṽ‖2‖v‖2 − ‖ṽ‖22 ≤ ‖v‖22
⇒ ‖ṽ‖2 − ‖ṽ‖22

2‖v‖2 ≤ ‖v‖2 − ‖v‖22
2‖v‖2

This completes the proof. 	


Proof of Theorem 1:

Algorithm 1 monotonically decreases the objective value of
the problem in Eq. 8 in each iteration.

Proof Assume the update of A is Ã. According to Step 6 in
Algorithm 1, we know that:

Ã = argmin
A

Tr((DA − B)U(DA − B)�)

+ λ1Tr(A�VA) + λ2

s∑

i=1

a�
i W

iai , (12)

where Tr(·) is the trace of a matrix. Thus, we can derive

Tr((DÃ − B)U(DÃ − B)�)

+ λ1Tr(Ã�VÃ) + λ2

s∑

i=1

ã�
i W

i ãi

≤ Tr((DA − B)U(DA − B)�)

+ λ1Tr(A�VA) + λ2

s∑

i=1

a�
i W

iai (13)

According to the definition of U, V, and W, we have

s∑

i=1

⎛

⎝
‖Dãi − bi‖22
2‖Dai − bi‖2 + λ1

‖ã‖22
2‖a‖2 + λ2

k∑

j=1

‖ã j
i ‖22

2‖a j
i ‖2

⎞

⎠

≤
s∑

i=1

⎛

⎝
‖Dai − bi‖22
2‖Dai − bi‖2 + λ1

‖a‖22
2‖a‖2 + λ2

k∑

j=1

‖a j
i ‖22

2‖a j
i ‖2

⎞

⎠

(14)

According to Lemma 1, we can obtain the following inequal-
ities:

s∑

i=1

(

‖Dãi − bi‖2 − ‖Dãi − bi‖22
2‖Dai − bi‖2

)

≤
s∑

i=1

(

‖Dai − bi‖2 − ‖Dai − bi‖22
2‖Dai − bi‖2

)

s∑

i=1

(

‖ã‖2 − λ1
‖ã‖22
2‖a‖2

)

≤
s∑

i=1

(

‖a‖2 − λ1
‖a‖22
2‖a‖2

)

s∑

i=1

k∑

j=1

(

‖ã j
i ‖2 − ‖ã j

i ‖22
2‖a j

i ‖2

)

≤
s∑

i=1

k∑

j=1

(

‖a j
i ‖2 − ‖a j

i ‖22
2‖a j

i ‖2

)

(15)

Computing the summation of the three equations in Eq. 15
on both sides (weighted by λs), we obtain:

s∑

i=1

‖(Dãi − bi )�‖2 + λ1‖ã‖2 + λ2‖ã‖2

≤
s∑

i=1

‖(Dai − bi )�‖2 + λ1‖a‖2 + λ2‖a‖2 (16)

Therefore, Algorithm 1 monotonically decreases the objec-
tive value in each iteration. 	
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