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Abstract
Different to traditional clustering methods that deal
with one single type of data, High-Order Co-
Clustering (HOCC) aims to cluster multiple types
of data simultaneously by utilizing the inter- or/and
intra-type relationships across different data types.
In existing HOCC methods, data points routinely
enter the objective functions with squared resid-
ual errors. As a result, outlying data samples can
dominate the objective functions, which may lead
to incorrect clustering results. Moreover, existing
methods usually suffer from soft clustering, where
the probabilities to different groups can be very
close. In this paper, we propose an `1-norm sym-
metric nonnegative matrix tri-factorization method
to solve the HOCC problem. Due to the orthogonal
constraints and the symmetric `1-norm formulation
in our new objective, conventional auxiliary func-
tion approach no longer works. Thus we derive
the solution algorithm using the alternating direc-
tion method of multipliers. Extensive experiments
have been conducted on a real world data set, in
which promising empirical results, including less
time consumption, strictly orthogonal membership
matrix, lower local minima etc., have demonstrated
the effectiveness of our proposed method.

1 Introduction
Recent advancements of Internet and other computational
technologies have brought data with much richer structures,
which often convey useful information for building more ef-
fective learning models. For example, one can use differ-
ent types of information to recommend movies to a user,
such as the user’s watching history, comments on watched
movies, habits, job, age and social networks, to name a few.
These different types of information are represented as dif-
ferent types of data that usually interrelate with each other
by various means. For example, user preferences, com-
ments and watching history can be correlated via weighted
co-occurrence matrices — some movies are more favored by
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a user, if they appear more frequently in the user’s watch-
ing history; while, if a user gave negative comments to a
movie, this user is less likely to watch other movies of the
same genre. Such highly heterogeneous data with inter-
type relationships are called multi-type relational data [Long
et al., 2006]. The learning problems to deal with multi-
type relational data under the unsupervised setting is called
as High-Order Co-Clustering (HOCC) [Wang et al., 2011a;
Wang et al., 2011b], which has attracted more and more at-
tention in recent years.

Spectral clustering [Long et al., 2006] was first proposed
to cluster multi-type relational data, though only inter-type in-
formation was utilized. Recently, Wang et al. [2011b] devised
an indicator Nonnegative Matrix Tri-Factorization (NMTF)
method to avoid soft clustering and improve the computa-
tional speed. But since this method searches the binary space
that is small, it may not always find a good optimum. It was
then further developed by performing optimization in a con-
tinuous space [Wang et al., 2011a]. However, the clustering
performance was not improved, because the orthogonal con-
straints were not imposed on the factor matrices in the new
objective, which, though, was very important to avoid degen-
erate solutions [Ding et al., 2006]. Besides the limitations
mentioned above, all these previous studies routinely formu-
lated their NMTF objectives as least-square error functions,
which are notoriously known to be sensitive to outliers [Kong
et al., 2011]. However, at the era of big data, noise and
outliers are inevitable by nature due to the ever increasing
data sizes. To tackle this problem, Liu and Wang [2015] im-
proved these prior studies by using the `1-norm distances.
However, because the new objective in [Liu and Wang, 2015]
computes the symmetric NMTF that involves the fourth-order
matrix polynomials, the factor matrices in the solution were
not orthogonally constrained due to the mathematical diffi-
culty. Moreover, same as many existing NMTF methods that
derive the solutions using Multiplicative Updating Algorithm
(MUA) [Lee and Seung, 2001], this method also suffers from
suboptimal solutions because it is easily trapped into local
minimum [Lin, 2007].

To address all above difficulties, in this paper we propose a
novel HOCC method via a strictly orthogonal and symmet-
ric `1-norm NMTF method. We derive the solution algo-
rithm using the Alternating Direction Method of Multipliers
(ADMM) [Boyd et al., 2011], such that the orthogonal con-
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straints are strictly enforced on the factor matrices. Extensive
experiments have been conducted with promising results that
validate the effectiveness of our new method on clustering
multi-type relational data.

2 High-Order Co-Clustering via Graph
Regularized Symmetric `1-Norm NMTF

Throughout this paper, we use A(ij) to denote the entry at
the i-th row and j-th column of a matrix A. A K-type re-
lational data set can be denoted as χ = {χ1, χ2, . . . , χK},
where χk =

{
xk1 , x

k
2 , . . . , x

k
nk

}
represents the data of the k-

th type. Suppose that we are given a set of relationship matri-
ces {Rkl ∈ <nk×nl}(1≤k≤K,1≤l≤K) between different types
of data objects, then we assume Rkl = RTlk. Our goal is to
simultaneously partition the data objects in χ1, χ2, . . . , χK
into c1, c2, . . . , cK disjoint clusters respectively.

2.1 Co-clustering Two-Type Relational Data Using
Symmetric `1-Norm NMTF

The simplest multi-type relational data involve only two types
of data objects, which widely appear in many real world ap-
plications, like words and documents in document analysis,
users and items in collaborative filtering, etc. Simultane-
ously clustering two-type relational data is often called co-
clustering or bi-clustering. Ding et al. [2006] proposed to use
NMTF to simultaneously cluster the rows and columns of an
input nonnegative relationship matrix Rij by decomposing it
into three nonnegative factor matrices, which minimizes:

J = ‖R12 −G1S12G
T
2 ‖2F , s.t. G1 ≥ 0, G2 ≥ 0, S12 ≥ 0,

GT1G1 = I,GT2G2 = I, (1)

where ‖ · ‖2F denotes the squared Frobenius norm of a matrix,
G1 ∈ <n1×c1

+ and G2 ∈ <n2×c2
+ are the cluster indicator ma-

trices for χ1 and χ2 respectively, and S12 ∈ <c1×c2+ absorbs
the different scales ofR12, G1 andG2. Simultaneous cluster-
ing of χ1 and χ2 is then achieved by solving Eq. (1). Because
the rows of resulted Gk (k ∈ {1, 2}) (with normalization)
can be interpreted as the posterior probability for clustering
on χk, the cluster label of xki is obtained by:

l(xki ) = argmaxj Gk(ij). (2)

As can be seen, the data points enter the objective function
in Eq. (1) as squared residual errors. Thus, outlying data sam-
ples can easily dominate the objective function because of the
squared errors. To solve the problem, Liu and Wang [2015]
proposed to replace the traditional squared Frobenius norm
into `1-norm and optimize the following objective:

J = ‖R12 −G1S12G
T
2 ‖1, s.t. G1 ≥ 0, G2 ≥ 0, (3)

where ‖X‖1 is defined as
∑n
i=1

∑m
j=1 |X(ij)| for a matrix

X ∈ <n×m.

2.2 Simultaneously Clustering Multi-Type
Relational Data Using Inter-Type
Relationships

A natural way to generalize the co-clustering objective in
Eq. (1) to simultaneously cluster multi-type relational data

is to solve the following optimization problem:

min J =
∑

0<i,j≤K

‖Rij −GiSijGTj ‖1,

s.t. Gi ≥ 0, GTi Gi = I, ∀ 0 < i ≤ K.
(4)

Although Eq. (4) generalizes Eq. (1) to deal with multi-
type relational data, it is not straightforward to solve Eq. (4)
by generalizing existing NMTF algorithms. As a contribution
of this paper, we will derive the solution to Eq. (4).

We first introduce the following useful lemma.
Lemma 1 The optimization problem in Eq. (3) can be equiv-
alently solved by the following problem:

min J = ‖R−GSGT ‖1, s.t. G ≥ 0, (5)
in which

R =

[
0n1×n1 Rn1×n2

12

Rn2×n1
21 0n2×n2

]
,

G =

[
Gn1×c1

1 0n1×c2

0n2×c1 Gn2×c2
2

]
, S =

[
0c1×c1 Sc1×c212

Sc2×c121 0c2×c2

]
,

(6)

where the superscripts denote the matrix sizes, and R12 =
RT21, S21 = ST12. 0n1×n1 is a matrix with all zero entries of
size n1 × n1.
Proof 1 Following the definitions of R, G and S, we can de-
rive

‖R−GSGT ‖1 =

∥∥∥∥[ 0 R12

RT12 0

]
−
[

0 P
PT 0

]∥∥∥∥
1

= 2‖R12 − P‖1,
where P = G1S12G

T
2 , which proves the lemma.

Based upon Lemma 1, we have the following theorem.
Theorem 1 It is equivalent to solve Eq. (4) and to solve

min J = ‖R−GSGT ‖1, s.t. G ≥ 0, (7)
in which

R =


0n1×n1 Rn1×n2

12 · · · Rn1×nK

1K

Rn2×n1
21 0n2×n2 · · · Rn2×nK

2K
...

...
. . .

...
RnK×n1

K1 RnK×n2

K2 · · · 0nK×nK

 ,

G =


Gn1×c1

1 0n1×c2 · · · 0n1×cK

0n2×c1 Gn2×c2
2 · · · 0n2×cK

...
...

. . .
...

0nK×c1 0nK×c2 · · · GnK×cK
K

 ,

S =


0c1×c1 Sc1×c212 · · · Sc1×cK1K

Sc2×c121 0c2×c2 · · · Sc2×cK2K
...

...
. . .

...
ScK×c1
K1 ScK×c2

K2 · · · 0cK×cK

 ,

(8)

where Rji = RTij and Sij = STji.
The proof of Theorem 1 can be easily obtained by generaliz-
ing the proof of Lemma 1 to multi-type relational data.

Theorem 1 presents a general framework via `1-norm sym-
metric NMTF (S-NMTF) for simultaneously cluster multi-
type relational data using the mutual relationship matrices.
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2.3 Incorporating Intra-Type Information via
Graph Regularization

The optimization objectives in Eq. (4) and Eq. (7) only use
the inter-type relationships of a multi-type relational data set,
whereas the intra-type information, though often available,
is not used. We can incorporate the intra-type relationship
information through Laplacian regularization. For a multi-
type relational data set, given the intra-type information in
the form of the pairwise affinity matrices W1,W2, . . . ,WK

respectively, we can use them as following:

J =
∑

0<i,j≤K

‖Rij −GiSijGTj ‖1 + λ
∑

0<i≤K

tr
(
GTi LiGi

)
,

s.t. Gi ≥ 0, GTi Gi = I, ∀ 0 < i ≤ K, (9)

where Lk = Dk −Wk is the Laplacian matrix with D(ii)
k =∑

jW
(ij)
k . Because Lk is the discrete approximation of the

Laplace-Beltrami operator on the underlying data manifold,
the regularization term reflects the label smoothness of the
two types of data points. The smoother the data labels are
with respect to the underlying data manifolds, the smaller
their values will be.

Using R, S and G defined in Eq. (8), denote

W =


Wn1×n1

1 0n1×n2 · · · 0n1×nK

0n2×n1 Wn2×n2
2 · · · 0n2×nK

...
...

. . .
...

0nK×n1 0nK×n2 · · · WnK×nK

K

 , (10)

and L = D−W whereD(ii) =
∑
jW

(ij) , it is easy to prove

tr
(
GTLG

)
=

∑
0<i≤K

tr
(
GTi LiGi

)
. (11)

Combining Theorem 1, we approach simultaneous cluster-
ing of multi-type relational data with manifold in Eq. (9) by
solving the following optimization problem:

min J = ‖R−GSGT ‖1 + λ tr
(
GTLG

)
,

s.t. G ≥ 0, GTG = I.
(12)

It can be verified that with constraint GTG = I , then
GT(i)G(i) = I, ∀ 0 < i ≤ K, which means the orthogonality
of G will make membership matrices in each relational data
orthogonal. The benefits of orthogonality constraint on G are
two-fold: 1) get unique solution; 2) avoid soft clustering.

3 Difficulty in Solving the Problem with
Traditional Method

Traditional methods to solve NMTF problem are based on
MUA, where an auxiliary function is introduced to give an
upper bound for the objective during every iteration. How-
ever, our proposed `1-norm objective function, different from
traditional squared Frobenius norm which has nice mathemat-
ical properties, is non-differentiable. As a result, we cannot
apply the traditional method to solve Eq. (12).

In our previous work [Liu and Wang, 2015], we attempted
to solve the `1 norm by transforming it into a trace problem
as:

J(G) = ‖R−GSGT ‖1
= tr

(
(R−GSGT )D(R−GSGT )T

)
= tr

(
−2RDGSGT +GSGTDGSGT

)
.

(13)

where D is a diagonal matrix defined as:

D(i, i) =

∑
|R−GSGT |i
‖R−GSGT ‖2i

. (14)

By taking the derivative of J with respect to G and S, they
get the solution following the traditional method. However,
the derivation is not rigorous since D is a dependent variable
on G and S, while they are suppose to be independent when
we take derivatives.

As a contribution of our paper, we propose an algorithm
which can give the optimal solution with rigorous mathemat-
ical guarantee. Moreover, a strictly orthogonal membership
matrix will be given to avoid soft clustering while the objec-
tive loss is usually lower than MUA based methods.

4 The Solution Algorithm
Before giving our algorithm, we will first introduce the
ADMM, which was proposed in [Bertsekas, 1996; Boyd et
al., 2011] to solve convex optimization problems by breaking
them into smaller pieces that are easier to handle. Specif-
ically, given the following objective with the equality con-
straint:

min
x,z

f(x) + g(z), s.t. h(x, z) = 0, (15)

Algorithm 1 solves the problem by decoupling it into sub-
problems and optimizing each variable while fixing oth-
ers [Bertsekas, 1996; Boyd et al., 2011], where y is the La-
grangian multiplier to the constraint h. It is worth noting that
Algorithm 1 was proved to converge Q-linearly to the optimal
solution [Bertsekas, 1996].

Algorithm 1: The ADMM algorithm.
1 Set 1 < ρ < 2 and initialize µ > 0 and y;
2 while not converge do
3 1. Update x by solving

xk+1 = arg minx(f(x) + µ
2 ‖h(x, zk) + yk

µ ‖
2);

4 2. Update z by solving

zk+1 = arg minz(g(z) + µ
2 ‖h(xk+1, z) + yk

µ ‖
2);

5 3. Update y by yk+1 = yk + µh(xk+1, zk+1);
6 4. Update µ by µ = ρµ.
7 end

Huang et al. [2014] used the ADMM to solve the mani-
fold regularized NMF problem. Following the same idea, we
derive the solution algorithm to our objective.

Because there are two constraints (nonnegative and or-
thogonal) on G in our objective in Eq. (12), which is dif-
ficult to optimize, we introduce three auxiliary variables:
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F = G;P = F ;H = G. In addition, considering that the
`1-norm objective is non-differentiable, we introduce one ad-
ditional variable of E = R − FSGT to solve the following
new objective function:

min
G,E,F,S

J = ‖E‖1 + λ tr
(
GTLF

)
+
µ

2
‖H −G+

1

µ
Ω‖2F

+
µ

2
‖E −R+ FSGT +

1

µ
Λ‖2F (16)

+
µ

2
‖F −G+

1

µ
Σ‖2F +

µ

2
‖P − F +

1

µ
∆‖2F .

The constraints in Eq. (12) now become: GTG = I, FTF =
I,H ≥ 0, P ≥ 0, where each variable has only one constraint
which is easier to be optimized.

Eq. (16) can be reduced to several manageable subprob-
lems, where each subproblem yields a closed-form solution
as following. We repeat the optimizing procedure until con-
vergence, which is summarized in Algorithm 2.

Step 1. Solving S when fixing other variables:

min
S

∥∥∥R̃− FSGT∥∥∥2
F
, (17)

where we write R̃ = R−E− 1
µΛ for brevity. Taking deriva-

tive of Eq. (17) with respect to S and setting it as 0, we
can easily obtain the solution to this optimization problem
as S =

(
FTF

)−1
FT R̃G

(
GTG

)−1
.

Step 2. Solving E when fixing other variables:

min
E
‖E‖1,1 +

µ

2
‖E − Z‖2F , (18)

where we write Z = R− FSGT − 1
µλ for brevity.

The optimization problem in Eq. (22) can be decoupled to
solve the following problem for every entry of E:

min
eij

1

2
(eij − zij)2 +

1

µ
|eij |. (19)

Taking derivative of Eq. (19) with respect to eij and setting it
as 0, we can solve Eq. (19) as follows:

eij =


zij − 1

µ if zij >
1
µ ;

zij + 1
µ if zij < − 1

µ ;

0 else.
(20)

Step 3. Solving G when fixing other variables:

min
G

µ

2

∥∥∥∥E −R+ FSGT +
1

µ
Λ

∥∥∥∥2
F

+
µ

2
‖H −G+

1

µ
Ω‖2F

+
µ

2

∥∥∥∥F −G+
1

µ
Σ

∥∥∥∥2
F

+ λ tr
(
GTLF

)
s.t. GTG = I. (21)

By mathematical derivation, the problem in Eq. (21) can be
rewritten as follows:

max
G

tr
(
GTM

)
, s.t. GTG = I, (22)

where we write M =
(
R− E − 1

µΛ
)T

FS +(
F + 1

µΣ +H + 1
µΩ− λ

µLF
)

for brevity.

According to [Wang et al., 2013], the problem in
Eq. (22) can be solved by computing the SVD of M :
if svd (M) = UAV T , the solution of Eq. (22) is given by
UV T .
Step 4. Solving F when fixing other variables, similar to
optimize G, the subproblem is equal to:

max
F

tr
(
FTM

)
, s.t. F TF = I, (23)

where we write M =
(
R− E − 1

µΛ
)
GST +(

G− 1
µΣ + P + 1

µ∆− λ
µLG

)
for brevity. By com-

puting the SVD of M : svd (M) = UAV T , the solution of F
is given by UV T .
Step 5. Solving H when fixing other variables:

min
H

∥∥∥∥H −G+
1

µ
Ω

∥∥∥∥2
F
, s.t. H ≥ 0. (24)

and the solution is H = max
(
G− 1

µΩ, 0
)

.
Step 6. Solving P when fixing other variables, similar to
optimize H , P = max

(
F − 1

µ∆, 0
)

.
Step 7. Update Lagrangian Multipliers Λ,Σ,∆,Ω.
Step 8. Update µ.

Algorithm 2: The solution algorithm to our objective.

Data: Multi-relational data:
{
R1, R2, ..., RnK

}
,

Number of Clusters K and set 1 ≤ ρ ≤ 2.
Result: Factor matrices: G.

1 1. Construct R and W with
{
R1, R2, ..., RnK

}
;

2 2. Initialize G, Λ,Σ,∆,Ω;
3 while not converge do
4 3. Optimize G, S, F , E, P , H as Eq. (17–24);
5 4. Update Lagrangian Multipliers Λ,Σ,∆,Ω;
6 5. Update µ = ρµ.
7 end
8 6. Get the clustering result from G.

We can get the corresponding solution by changing `1
norm to traditional squared Frobenius norm. The only dif-
ference is to update E. When it is squared Frobenius norm,
we can solve the subproblem at every entry ofE as following:

min
eij

1

2
(eij − zij)2 +

1

µ
(eij)

2
. (25)

Taking derivative of Eq. (25) with respect to eij and setting it
as 0, we can solve Eq. (25) as follows:

eij =
µ

2 + µ
zij . (26)

Due to space limit, we skipped some details in above
derivations, which will be supplied in our extended journal
version of this paper.
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Figure 1: Objective value with
updates.
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Figure 2: Left: Objective comparison between our proposed method and MUA based algorithm. Right:
Zoom in iteration 25 to 29, showing ours can eventually get a lower local minimum.

5 Experiments
Although multi-relational data can help to improve cluster-
ing, there is no such existing real-world data set which can
be directly used for experiments. For our experiments, we
created a new multi-relational information from ACL-IMDB
data set.

5.1 Multi-Relational Data Set and Its Collection
In the ACL-IMDB [Maas et al., 2011] data set, there are 25000
reviews for highly popular movies, in which positive and neg-
ative comments come up with one half (12500) each. In our
experiments, we build three relational matrices: comment-
word, user-comment and user-word respectively.

Comment-word matrix. Since the comments are scored
from 1 to 10 points (positive from 7 and 10 while negative
from 1 to 4) with detailed content (word as the unit or fea-
ture), we can build the comment-word matrix along with its
corresponding labels (ground truth), which will be used for
sentiment analysis (comment clustering) of our proposed al-
gorithm. We first rule out the stopwords (stopwords, such
as the, here, etc., are words which are common across doc-
uments and contribute little to the content of the document),
and then get the top 700 most commonly used words such as
cool, great, etc. as the features.

User-comment matrix. Comments from the same person by
using the same words are more likely to belong to the same
cluster (positive or negative). Since each comment in the data
set has its corresponding URL, of which we can make use to
identify the author. Therefore we can build the user-comment
matrix.

User-word matrix. Given the comment-word and user-
comment matrix respectively, the user-word matrix can be
obtained by multiplying the two matrices described above.

The three matrices create the multi-relational data, which
are expected help improve the clustering performance. It
is worth noting that the generated comment-word matrix is
noisy due to some inevitable post typos. To make our ex-
periments more convincing, we add some noise to the three
relationship matrices with a ratio up to 25% (up to 20% in
amplitude). By randomly choosing 500 authors from the top
1500 who post most comments, we can generate sub-data sets
to conduct our experiments.
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Figure 3: Time consumption in each iteration: comparison between
our proposed method and `1-norm symmetric NMF based on MUA.

5.2 Convergence of the Algorithm
Because our solution algorithm employs an iterative method,
we first study its convergence property. From Fig. 1 we can
see that, though there is an increase in the first update, it de-
creases sharply later. In our experiment, we initialize µ as
0.02 and keep updating it by µ = ρµ during the iterations to
accelerate the decrease. we find that if µ is fixed to be very
small such as 0.001, the decrease will be slow; while if it is
large such as 0.5, the decrease will be insignificant, trapped
into a poor local minimum.

In addition, we compare clustering method using the
squared Frobenius norm loss function (solved by the ADMM
method by updating E using Eq. (26)) against the same ob-
jective solved by the MUA based method in [Wang et al.,
2011a]. As demonstrated in Fig. 2, our proposed method can
get a lower minimum that may lead to a better clustering re-
sult.

5.3 Time Consumption
We also compare the time consumption between our proposed
`1-norm algorithm against that in [Liu and Wang, 2015] (even
though the proof is not rigorous and the loss does not decrease
monotonically as expected) . We find that our algorithm is
faster during each iteration, and it only takes 1/3 to 1/2 time
as the counterpart does. We experiment with different sizes
of matrices, and find our method is always faster as Fig. 3
shows.
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Figure 4: Clustering accuracies comparison of `1-norm objective
with `2-norm based on our proposed ADMM method with regular-
ization parameter changes.
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Figure 5: Heatmap of GTG. Top row: our proposed method; Bot-
tom row: MUA-based algorithm. The two methods are given the
same initialized G as the left column images show, and during the
update demonstrated as central and right column images, our method
always yield strict orthogonal clustering matrix G.

5.4 Parameter Study and Robustness of `1-norm
Objective Function

We incorporate the intra-type data through manifold regular-
ization. We study the influence of regularization item to clus-
tering accuracy by changing λ from 0.1 to 2 with a step size of
0.1, and find that `1-norm objective function remains robust
with parameter changes, and its accuracy is constantly higher
than the counterpart as Fig. 4 demonstrates. In our new
method, we strictly enforce the orthogonal constraints onto
the clustering membership matrix G, which plays an impor-
tant role in getting rid of soft clustering (weights to different
clusters are close) may lead to more distinguishable in clus-
tering result. As we can see from Fig. 5, our solution of G
satisfies the orthogonality constraint. In contrast, methods
based on traditional MUA all fail to yield a strict orthogonal
clustering matrix, which results in many soft clustering cases.

5.5 Clustering Result
We compare our proposed methods with some typical algo-
rithms w.r.t. Accuracy (Acc), Normalized Mutual Informa-
tion (NMI) [Xu et al., 2003] and Adjusted Rand Index [Ye-
ung and Ruzzo, 2001]:
K-means: We conduct K-means on comment-word and

user-comment matrix respectively and take the best result.
ONMTF: Ding et al. [2006] solves symmetric matrix tri-
factorization with orthogonal constraint while ignoring the
intra-type data.
GNMF: By making use of graph, Cai et al. [2011] imposes
the graph regularization to improve clustering.
HOCC: We only utilize two types of relational data
(comment-word matrix) as Eq. (9) (where K = 2) for clus-
tering, while ignoring other relational type data.
`2-MUA: Wang et al. [2011a] solves `2-norm HOCC with
traditional MUA based method.
`1-MUA: Liu et al. [2015] solves `1-norm HOCC which is
supposed to be robust with noise and outliers.
`2-ADMM: Our proposed `2-norm objective algorithm
which is sensitive to outliers.
`1-ADMM: Our proposed `1-norm objective algorithm.

In Table 1, we change the number of users to generate sym-
metric matrices with different dimensions, and run the algo-
rithms for 20 times and take the average for comparison. We
also add some artificial noise to the data as mentioned in Sec-
tion 5.1. In Table 2, the top section are clustering accuracies
and NMI with different matrix sizes without noise while the
middle and bottom sections show the clustering results be-
fore and after the noise added. We see that, in most cases, our
method can get the best clustering result.

Due to space limit, we cannot report the experimental re-
sults on two-type relational data, which will be supplied in
our extended journal version of this paper.

6 Conclusion
In this paper, we explored the high-order co-clustering prob-
lem and solved with the symmetric nonnegative matrix tri-
factorization method. Different from traditional squared error
loss, we proposed a non-differentiable `1-norm objective to
stay robust with both sample and feature outliers. Instead of
following traditional MUA method, we propose an ADMM-
based algorithm and compare our method with other methods
on real-world multi-relational data set we collect. All exper-
iment results demonstrate that our methods are superior in
terms of less time consumption, lower local minimum, higher
clustering accuracy, NMI and Adjusted Rand Index, as well
as strictly orthogonal membership matrix to get rid of soft
clustering. Our method is flexible and could also be a new
framework to solve non-smooth, non-convex problems with
promising preliminary experimental results.
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