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Abstract
Metric Learning, which aims at learning a dis-
tance metric for a given data set, plays an impor-
tant role in measuring the distance or similarity be-
tween data objects. Due to its broad usefulness,
it has attracted a lot of interest in machine learn-
ing and related areas in the past few decades. This
paper proposes to learn the distance metric from
the side information in the forms of must-links and
cannot-links. Given the pairwise constraints, our
goal is to learn a Mahalanobis distance that min-
imizes the ratio of the distances of the data pairs
in the must-links to those in the cannot-links. Dif-
ferent from many existing papers that use the tra-
ditional squared `2-norm distance, we develop a
robust model that is less sensitive to data noise or
outliers by using the not-squared `2-norm distance.
In our objective, the orthonormal constraint is en-
forced to avoid degenerate solutions. To solve our
objective, we have derived an efficient iterative so-
lution algorithm. We have conducted extensive ex-
periments, which demonstrated the superiority of
our method over state-of-the-art.

1 Introduction
The need of appropriate distance metric is ubiquitous in ma-
chine learning, data mining, and pattern recognition. For in-
stance, in classification, the k-Nearest Neighbor classifier uti-
lizes a metric, through which the nearest neighbors can be
identified; in clustering, K-means clustering is widely used,
which relies on proper distance measurements between data
points; in information retrieval, documents are usually ranked
based on their relevance to a given query. Obviously, the per-
formances of all these methods heavily depend on the qual-
ity of the distance metric. Although some general metrics
exist, such as those in Euclidean distance and cosine simi-
larity, they treat each feature equally, which is inappropriate
because some features may be irrelevant to the topic of in-
terest while others are closely related. A good metric, in the
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end, should be able to capture the idiosyncrasies of the data
of interest and improve the performance of a classification or
clustering task [Xiang et al., 2008; Xing et al., 2003; Wein-
berger et al., 2006; Guo and Ying, 2014; Wang et al., 2013b;
Bellet et al., 2013].

Recently, many methods have been proposed to learn the
distance metric in a weakly-supervised setting using pairwise
constraints: must-links and cannot-links [Xiang et al., 2008;
Xing et al., 2003; Weinberger et al., 2006; Huang et al.,
2012]. Given such side information, traditional distance
metric learning approaches usually solve the problem under
the assumption that the distances of data pairs in must-links
should be small while those in cannot-links large. However,
most of the existing measurements are based on squared `2-
norm distances [Bar-Hillel et al., 2003; Davis et al., 2007],
which is notoriously known to be sensitive to data/feature
outliers or noise. Therefore, it is useful to develop a metric
learning model that is robust to these noises.

Many previous works have been done to improve the ro-
bustness of machine learning models through using `1 or `2,1-
norm formulations [Wang et al., 2012; Liu and Wang, 2015;
Liu and Wang, 2018; Liu et al., 2018; Brand et al., 2019].
However, how to use the `1-norm or `2,1-norm based objec-
tives for distance metric learning has not been well studied,
because such objectives are usually non-trivial to solve. In
this paper, we propose a new robust distance metric learn-
ing objective that uses not-squared `2-norm distance, which
is supposed to be robustness against outliers. Following the
idea of Linear Discriminant Analysis [Fisher, 1936], we for-
mulate our objective to minimize the ratio of the `2,1-norm
of two matrices that characterize the distances of point pairs
in must-links to those in cannot-links with orthogonal con-
straint. To solve our objective, we derive an efficient itera-
tive algorithm, whose convergence is guaranteed by our opti-
mization framework and the Alternating Direction Method of
Multipliers (ADMM) [Boyd et al., 2011]. Our new distance
metric learning is interesting from a number of perspectives
as listed below:

• The solution of our algorithm is strictly orthogonal that
can avoid degenerate solutions for better subsequent
learning performance.
• The objective function is monotonically decreasing with

quadratic convergence rate.
• Our model is more robust w.r.t. outliers and noise that
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widely exist in real-world data.

2 Problem Formalization and Our Objective
Throughout this paper, we write matrices as bold uppercase
letters and vectors as bold lowercase letters. Given a matrix
M = [mij ], its i-th row and j-th column are denoted as mi

and mj , respectively. The Frobenius norm of the matrix M
is denoted as ‖M‖F, and we define the `2,1-norm of M as
‖M‖2,1 =

∑
i

∥∥mi
∥∥
2
.

Assume that we have a set of n data points X =
{xi ∈ Rp}ni=1 and two sets of pairwise constraints which are
manually labeled over the data points X by users under cer-
tain application context:{
S = {(xi,xj) | xi and xj are in the same class} ,

D = {(xi,xj) | xi and xj are in two different classes} ,
(1)

where we call S as must-links and D as cannot-links. Note
that it is not necessary for all the data points in X to be in-
volved in either S or D.

Given any two data points xi and xj , the Mahalanobis dis-
tance between them is defined as:

‖xi − xj‖M =

√
(xi − xj)

T
M (xi − xj) , (2)

where M ∈ Rp×p is the Mahalanobis distance metric, a sym-
metric matrix of size p × p. In general, M is a valid metric
if and only if M is a positive semi-definite matrix by satisfy-
ing the non-negativity and the triangle inequality conditions,
i.e., M � 0. When setting M to be the identity matrix Id×d,
the distance computed in Eq. (2) becomes the Euclidean dis-
tance. Our goal in robust metric learning is to learn an opti-
mal square matrix M from a collection of data points X in
the presence of outliers, such that the distances between the
data point pairs in S are as small as possible, whilst those in
D are as large as possible.

Because M is positive semi-definite, we can reasonably
write M = WWT , where W ∈ Rp×r with r ≤ p. Thus
the Mahalanobis distance under the metric M can be com-
puted as ‖xi − xj‖M =

√
(xi − xj)

T
WWT (xi − xj) =∥∥WT (xi − xj)

∥∥
2
, which indeed defines a transformation

y = WTx under the projection matrix W. Then de-
note the scatter matrix of the point pairs in the must-links
as Sw =

∑
(xi,xj)∈S (xi − xj) (xi − xj)

T and the covari-
ance matrix of the point pairs in the cannot-links as Sb =∑

(xi,xj)∈D (xi − xj) (xi − xj)
T , [Xiang et al., 2008] pro-

posed to learn the transformation matrix W by solving the
following objective :

min
WT W=I

tr
(
WTSwW

)
tr (WTSbW)

=

∑
(xi,xj)∈D

∥∥WT (xi − xj)
∥∥2
2∑

(xi,xj)∈S ‖W
T (xi − xj)‖22

=

∑s
i=1

∥∥WTai
∥∥2
2∑d

i=1 ‖WTbi‖22
=

∥∥WTA
∥∥2

F

‖WTB‖2F
, (3)

where A = [a1,a2, . . . , as] ∈ Rp×s such that each column
of A is one (xi − xj) that satisfies (xi,xj) ∈ S , and simi-
larly B = [b1,b2, . . . ,bd] ∈ Rp×d such that each column

of B is one (xi − xj) that satisfies (xi,xj) ∈ D. Here, we
denote |S| = s and |D| = d for brevity.

The objective in Eq. (3) measures the ratio of two sets of
squared `2-norm distances, one set for the point pairs in the
must-links and the other for those in the cannot-links. As a
result, similar to other least square minimization based mod-
els in machine learning and statistics, Eq. (3) is sensitive to
the presence of outliers. Recent progress [Ding et al., 2006;
Kwak, 2008; Wright et al., 2009; Wang et al., 2011; Wang et
al., 2013a; Liu et al., 2017; Liu and Wang, 2018] has shown
that the not-squared `2-norm distance can promote robustness
against outlier samples as well as outlier features, which have
been widely applied to replace the squared `2-norm distance
in many traditional machine learning methods, such as PCA.

It can be verified the following equality holds with the con-
straint WTW = I:∥∥bi −WWTbi

∥∥2
2
= ‖bi‖22 −

∥∥WTbi
∥∥2
2
, (4)

based on which we can rewrite the objective in Eq. (3) as:

min
WT W=I

∑s
i=1

∥∥WTai
∥∥2
2∑d

i=1 ‖bi‖
2
2 −

∑d
i=1 ‖bi −WWTbi‖22

=

∥∥WTA
∥∥2

F

‖B‖2F − ‖B−WWTB‖2F
.

(5)

Note that given the training data,
∑d
i=1 ‖bi‖

2
2 is a constant.∑d

i=1

∥∥bi −WWTbi
∥∥2
2

is the reconstruction error. Equa-
tion (5) minimizes the projection distance in the numerator,
and minimizes reconstruction error in the denominator. Thus,
we can replace the squared `2-norm distances in both of them
by non-squared `2-norm distances. To be consistent, we do
the same replacement in

∑d
i=1 ‖bi‖

2
2. Thus, we develop the

objective in Eq. (5) for better robustness as following:

min
WT W=I

∑s
i=1

∥∥WTai
∥∥
2∑d

i=1(‖bi‖2 − ‖bi −WWTbi‖2)

=

∥∥∥(WTA
)T∥∥∥

2,1∥∥∥(B)
T
∥∥∥
2,1
−
∥∥∥(B−WWTB)

T
∥∥∥
2,1

.

(6)

3 Optimization Algorithm
Given the general optimization problem as below:

min
v∈C

f(v)

g(v)
, where g(v) ≥ 0 (∀ v ∈ C) , (7)

according to [Wang et al., 2014b, Theorems 1–3] and [Wang
et al., 2014a, Theorems 1–3], we can solve Eq. (7) by Algo-
rithm 1. According to Step 2 of Algorithm 1, we can solve
our objective in Eq. (6) by solving the following problem in
every iteration1:

min
WT W=I

∥∥∥(WTA
)T∥∥∥

2,1

− λ
(∥∥∥(B)

T
∥∥∥
2,1
−
∥∥∥(B−WWTB

)T∥∥∥
2,1

)
,

(8)

1It can be easily verified that the denominator of Eq. (6) is always
nonnegative, such that the constraint in Eq. (7) is satisfied.
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Algorithm 1: The algorithm to solve the problem (7)
Set Initialize v ∈ C;
while not converge do

1. Calculate λ = f(v)
g(v) ;

2. Update v by solving the following problem:

v = argmin
v∈C

f(v)− λg(v) . (10)

end

Algorithm 2: ADMM Method to solve Eq. (11)
Initialize µ > 0 and set ρ > 1;
while not converge do

1. Update X by solving Xk+1 =
argminX(f(X,Zk) + µ

2 ‖h(X,Z
k) + 1

µYk‖2F );
2. Update Z by solving
Zk+1 = argminZ(f(X

k+1,Z) +
µ
2 ‖h(X

k+1,Z) + 1
µYk‖2F );

3. Update Y by Yk+1 = Yk + µh(Xk+1,Zk+1);
4. Update µ by µ = ρµ;

end

which is equivalent to solve the following problem:

min
WT W=I

∥∥∥(WTA
)T∥∥∥

2,1
+ λ

∥∥∥(B−WWTB
)T∥∥∥

2,1
,

(9)
because

∥∥∥(B)
T
∥∥∥
2,1

is a constant given a training data set.

Now we solve Eq. (9) using the ADMM method. The
ADMM method was originally proposed for convex prob-
lems and was extended to nonseparable, nonconvex prob-
lems. Consider the following constrained problem:

min
X,Z

f(X,Z), s.t. h(X,Z) = 0 , (11)

ADMM gives the solution through the updating procedure de-
scribed in Algorithm 2 [Boyd et al., 2011].

Using the ADMM described in Algorithm 2, we derive the
solution algorithm of the optimization problem in Eq. (9).
First, we introduce some variables F =

(
WTA

)T
,G =(

B−WWTB
)T
,H = W, where the orthonormal con-

straint on W is implicitly imposed due to the constraints of
H = W and HTH = I.

Now we need to solve the following problem:

min
W,F,G,H,Λ,Σ,Θ

‖F‖2,1 +
µ

2

∥∥∥∥F− (WTA
)T

+
1

µ
Λ

∥∥∥∥2
F

+ λ ‖G‖2,1 +
µ

2

∥∥∥∥G− (B−HWTB
)T

+
1

µ
Σ

∥∥∥∥2
F

+
µ

2

∥∥∥∥W −H +
1

µ
Θ

∥∥∥∥2
F

s.t. HTH = I , (12)

where Λ ∈ Rs×r is the Lagrangian multiplier for the con-
straint of F =

(
WTA

)T
, Σ ∈ Rs×d is the Lagrangian

multiplier for the constraint of G =
(
B−WWTB

)T
, and

Θ ∈ Rp×r is the Lagrangian multiplier for H = W.
The solution to Eq. (12) are summarized as follows.

Step 1. Initialization.

Step 2. We solve F, when we fix the other variables:

min
F
‖F‖2,1 +

µ

2
‖F−M‖2F , (13)

where we denote M =
(
WTA

)T − 1
µΛ for brevity.

The optimization problem in Eq. (13) can be decoupled
row by row to solve the following s subproblems:

min
f i

1

µ

∥∥f i∥∥
2
+

1

2

∥∥f i −mi
∥∥2
2
. (14)

Thus, the solution of Eq. (14) can be derived as:

f i =

{(
1− 1

µ‖mi‖2

)
mi,

∥∥mi
∥∥
2
> 1/µ ,

0
∥∥mi

∥∥
2
≤ 1/µ .

(15)

Step 3. We solve G, when we fix the other variables:

min
G

λ ‖G‖2,1 +
µ

2
‖F−N‖2F , (16)

where we denote N =
(
B−HWTB

)T − 1
µΣ for brevity.

The optimization problem in Eq. (16) can be decoupled
row by row to solve the following d subproblems:

min
gi

λ

µ

∥∥gi∥∥
2
+

1

2

∥∥gi − ni
∥∥2
2
. (17)

Similarly, the closed solution of Eq. (17) is given by:

gi =

{(
1− λ

µ‖ni‖2

)
ni,

∥∥ni∥∥
2
> λ/µ ,

0
∥∥ni∥∥

2
≤ λ/µ .

(18)

Step 4. We solve H, when we fix the other variables:
max

H
tr
(
HTZ

)
s.t. HTH = I , (19)

where we denote Z = (BT−G− 1
µΘ)TBTW+W+ 1

µΘ for
brevity. According to [Schönemann, 1966] and [Wang et al.,
2013a, Theorem 1], the problem in Eq. (19) can be solved by
computing the SVD of Z: if svd (Z) = UAVT , the solution
of Eq. (19) is UVT .

Step 5. We solve W, when we fix the other variables:

min
W

∥∥∥∥F− (WTA
)T

+
1

µ
Λ

∥∥∥∥2
F
+

∥∥∥∥W −H +
1

µ
Θ

∥∥∥∥2
F

+

∥∥∥∥G− (B−HWTB
)T

+
1

µ
Σ

∥∥∥∥2
F
. (20)

Because there is no constraint in Eq. (20), by taking the
derivative of it w.r.t. W and setting it to 0, we have:

W =
(
AAT + BBT + I

)−1
Q , (21)

where Q = A
(
F + 1

µΛ
)

+ B(BT − G − 1
µΘ)H +(

H− 1
µΘ
)

.

Step 6. Update Λ, Σ, Θ and µ as in Algorithm 2.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3010



0
6

2

64

4

4

6

2 2
0 0

(a) Original data with noise

-4 -2 0 2 4 6
-5

0

5

(b) Projection with `2,1-norm (900 links)
-6 -4 -2 0 2 4

-7

-6

-5

-4

-3

-2

-1

0

(c) Projection with squared `2-norm

Figure 1: Projection from 3-D space to 2-D space by our proposed algorithm under different numbers of links constraint comparing with
traditional squared `2 method. Projections are different but data could be separated in new space.
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Figure 2: Objective in Eq. (6) changes through update with projec-
tion into 2-D space.

As can be seen, the most computationally intensive steps in
our algorithm are computing SVD in Step 4 and computing
matrix inversion in Step 5. For the former, recent research
has shown that it can solved with quadratic complexity; for
the latter, it can be easily solved in quadratic complexity with
one single-core computing processor or in about linear com-
plexity by a multiple-core computing processor by using off-
the-shelf solution packages. Being said that, the complexity
of a single of ADMM is O(p2), suppose there are there are
k iterations in Algorithm 1 and n iterations in Algorithm 2,
then the total complexity would be O(nkp2).

The convergence rate in Algorithm 1 is quadratic, which
is considerably fast and experiments illustrate that ADMM in
Algorithm 2 usually converges within 20 iterations, both of
which are validated by the results in following experiments.

4 Experiments
In this section, we evaluate the proposed method in the tasks
of data clustering. Our goal is to examine the robustness of

our new method under the conditions when data outliers exist.

4.1 Experiment on Synthetic Data Set
Figure. 1(a) shows three classes, each of which contains 100
data points in <3 . In all, there are 3× 100× 99/2 = 14850
point pairs which can be used as must-links and 3 × 100 ×
100 = 30000 point pairs which can be used as cannot-links.
In our experiments, we randomly select some point pairs to
construct three sets consisting of certain number of must-link
and cannot-link which correspond to A and B in Eq. (5). We
learn the optimized projection matrix W from Algorithm 3.
Figure. 1(b)) show the projection in <2 (i.e., y = WTx and
W ∈ R3×2). We see that the data mixed in the original space
from a certain perspective could be separated after projection
with certain numbers of links.

We set the number of links fixed to be 300 and study the
projection with update in Algorithm 1. Since we optimize W
through an updating method and in each update the objective
function monotonically decreases, the clustering of a projec-
tion is expected to be better with update. Figure. 2 shows the
objective changes through iteration with W initialized ran-
domly. We see that, the objective converges within several it-
erations, and the clustering becomes better with update which
validates our proposed algorithm.

Within each update in Algorithm 1 to optimize W given
certain λ, we make use of ADMM to derive W with orthog-
onal constraint (WTW = I). Figure. 3 demonstrates the
objective changes in Eq. (9) through update, we see that our
algorithm will get the objective decrease sharply and result in
a strictly orthogonal matrix W.

4.2 Application to Real World Data Set Clustering
We first experiment with four benchmark data sets down-
loaded from the UCI machine learning data repository, in-
cluding the Breast, Iris, Wine and Ionosphere2, and one
image data set downloaded from the ORL3 database, whose
details are summarized in Table 2.

2https://archive.ics.uci.edu/ml/datasets.html
3http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Datasets (#data, #classes) Mah RCA DCA Xiang’s LMNN ITML Wang’s KISSME WDML Ours

MNIST (70000, 10) 54.69 56.12 55.04 58.76 57.61 59.87 62.04 64.76 64.61 65.87
MIRFlickr (25000, 18) 30.13 32.50 33.09 33.11 32.55 34.07 35.18 38.96 39.12 39.41

TDT2 (10212, 30) 18.89 19.20 19.41 19.76 20.20 21.01 22.51 27.16 26.27 26.61
NUS-WIDE (269648, 81) 10.28 10.12 11.00 11.16 11.86 12.03 13.14 14.89 14.97 15.13

Table 1: Clustering accuracies (%) of different methods on large datasets
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Figure 3: Objective in Eq. (9) changes with update and the heatmap
of WTW in different iteration through ADMM.

Data set Breast Wine Iris Iono. ORL

# Samples 569 178 150 351 400
Original dimensions 30 13 4 33 10304

# Clusters 2 3 3 2 40
Reduced dimensions 4 6 4 4 80

Table 2: Descriptions of the experimental data sets.

The proposed method has two parameters: the reduced di-
mensionality of the projected (sub)space r by the transforma-
tion of W and the number of (must/cannot) links. We study
their impact on the learned distance metrics by performing
clustering on the data set from UCI.

For each experimental trial, first we learn the distance met-
ric from the input data by changing the value of r or number
of links while fixing the other parameter, then we performK-
means clustering using the learned distance metric. For each
different parameter value, we repeat the experiments 20 times
to eliminate the difference caused by the initialization of K-
means clustering. We report the accuracy of the clustering
results (Acc) [Xu et al., 2003].

We evaluate the proposed method on noisy data with out-
lier samples using the four UCI data sets. We compare our
method against its two closest counterparts, including (1) the
Euclidean distance (EU) that sets M = I and (2) the stan-
dard Mahalanobis distance (Mah) that sets the distance met-
ric as the inverse of the sample covariance matrix, i.e. M =

(Cov (X))
−1. We also compare our method against several

OriginalNoisy Diff. OriginalNoisy Diff.

Breast data Ionosphere data

Eu 86.99 81.43 6.39% 77.21 73.50 4.80%
Mah 89.28 84.09 5.81% 80.06 76.63 4.28%
RCA 90.16 85.41 5.26% 81.48 79.77 2.10%
DCA 90.69 86.12 5.04% 83.76 80.61 3.87%
Xiang’s 91.04 88.93 2.32% 85.19 81.75 4.04%
ITML 91.26 89.24 2.21% 86.21 82.67 4.11%
LMNN 90.83 88.53 2.53% 85.72 82.48 3.78%
KISSME 90.45 88.19 2.5% 85.89 83.22 3.11%
WDML 90.89 88.43 2.7% 86.90 83.78 3.56%
Wang’s 91.71 89.95 1.92% 87.94 84.48 3.93%
Ours 92.27 90.74 1.66% 89.46 88.32 1.27%

Iris data Wine data

Eu 85.52 80.41 5.97% 90.07 86.74 3.70%
Mah 94.42 89.44 5.27% 92.70 89.16 3.82%
RCA 95.91 89.40 6.79% 93.26 90.71 2.73%
DCA 96.54 90.15 6.62% 94.38 91.90 2.63%
Xiang’s 96.60 91.24 5.55% 95.51 92.42 3.24%
ITML 96.27 92.95 3.45% 95.44 92.48 3.10%
LMNN 96.33 92.88 3.58% 95.61 92.39 3.37%
KISSME 96.40 92.94 3.59% 95.57 93.07 2.62%
WDML 96.36 93.12 3.36% 95.68 93.1 2.70%
Wang’s 96.57 93.53 3.15% 95.90 93.18 2.83%
Ours 96.78 95.23 1.60% 96.63 95.07 1.61%

Table 3: Clustering accuracies of the compared methods.

related and more recent metric learning methods, including
(3) RCA method [Bar-Hillel et al., 2003], (4) DCA method
[Hoi et al., 2006], (5) Xiang’s method [Xiang et al., 2008],
(6)Information-Theoretic Metric Learning (ITML) method
[Davis et al., 2007], (7) Wang’s method [Wang et al., 2014b],
(8)KISSME [Koestinger et al., 2012], (9) LMNN [Wein-
berger and Saul, 2009] and (10) WDML [Li and Tang, 2015].
We implement these compared methods following their orig-
inal papers, and fine tune their parameters to achieve the best
clustering accuracy in independent preliminary experiments.
Once the distance metric is learned by a method on a data set,
K-means clustering is performed on the same data using the
learned distance metric.

We conduct experiments in following two conditions: (1)
original data and (2) noisy data with outlier samples. To
emulate the outlier data samples, given the input data set
X = [x1, . . . ,xn] ∈ Rd×n, we corrupt it by a noise ma-
trix X̃ ∈ Rd×n whose element are i.i.d. standard Gaussian
variables. Then, we carry out the same learning and clus-
tering procedures on X + σX̃ as those on the original data,
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Figure 4: Retrieval performance given a certain image query.

where σ = δ
‖X‖F

‖X̃‖F

and δ is a given noise factor. In all our

experiments, we set δ = 0.1. For every experimental case,
the clustering performance is measured by averaging over 20
trials to eliminate the difference in initializing the K-means
clustering procedures, which are reported in Table 3.

We have the following interesting observations. First, our
method is consistently better than all other compared meth-
ods on all four experimental data sets, which demonstrates
that our method is able to learn an effective distance metric
that can improve clustering performance. Second, although
the improvements by our method over the competing methods
on the original data are small, the improvement on data with
outliers is much larger. This observation clearly demonstrates
the robustness of our method against outlier data samples and
empirically justifies our motivation to use the `2,1-norm dis-
tance to improve distance metric learning.

We also conduct the experiments on large datasets, includ-

ing MNIST4, MIRFlicker5, TDT26 and NUS-WIDE7, and find
that our proposed method is again clearly better than its com-
peting counterparts as reported in Table 1.

4.3 Visual Retrieval on ORL Data Set
In addition to above comparisons, we also qualitatively evalu-
ate the visual retrieval performance by different metric learn-
ing methods. The ORL data set includes 40 distinct individ-
uals and each individual has 10 gray images with different
expressions and facial details. The size of each image in this
data set is 112× 92. When the optimal Mahalanobis distance
matrix is learned by side information through links, we calcu-
late the new distance between each image to others and sort
them in ascending order and use the first nine ranks to esti-
mate the projection performance. Figure. 4 shows the results
of visual comparison for a certain query case. In the figures,
the first image in each row is the query image and among the
other four, the first two are the closest distance after projec-
tion while the last two rank 8-9th closest. From the results,
we can see that, our proposed technique returned consider-
ably more relevant images in the top ranked results, which
are consistent to the previous quantitative evaluation results.

5 Conclusion
We proposed a robust distance metric learning method us-
ing the `2,1-norm distance, which formulated a simultaneous
`2,1-norm minimization and maximization (minmax) prob-
lem. The new objective uses the `2,1-norm to calculate dis-
tance between data points, thus our method is more robust to
data outliers. However, the new objective is much more chal-
lenging to optimize. To solve this new objective, we derived
an efficient algorithm and rigorously proved its convergence.
We have performed extensive experiments on both noiseless
and noisy data, which have shown our proposed method is
superior to traditional methods.
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