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Abstract. Acquired immunodeficiency syndrome (AIDS) is a syndrome
caused by the human immunodeficiency virus (HIV). During the pro-
gression of AIDS, a patient’s the immune system is weakened, which
increases the patient’s susceptibility to infections and diseases. Although
antiretroviral drugs can effectively suppress HIV, the virus mutates very
quickly and can become resistant to treatment. In addition, the virus
can also become resistant to other treatments not currently being used
through mutations, which is known in the clinical research community
as cross-resistance. Since a single HIV strain can be resistant to multiple
drugs, this problem is naturally represented as a multi-label classifica-
tion problem. Given this multi-class relationship, traditional single-label
classification methods usually fail to effectively identify the drug resis-
tances that may develop after a particular virus mutation. In this paper,
we propose a novel multi-label Robust Sample Specific Distance (RSSD)
method to identify multi-class HIV drug resistance. Our method is novel
in that it can illustrate the relative strength of the drug resistance of a
reverse transcriptase sequence against a given drug nucleoside analogue
and learn the distance metrics for all the drug resistances. To learn the
proposed RSSDs, we formulate a learning objective that maximizes the
ratio of the summations of a number of �1-norm distances, which is diffi-
cult to solve in general. To solve this optimization problem, we derive an
efficient, non-greedy, iterative algorithm with rigorously proved conver-
gence. Our new method has been verified on a public HIV-1 drug resis-
tance data set with over 600 RT sequences and five nucleoside analogues.
We compared our method against other state-of-the-art multi-label clas-
sification methods and the experimental results have demonstrated the
effectiveness of our proposed method.
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1 Introduction

According to estimations by the World Health Organization, around 35 million
people suffer from the Human immunodeficiency virus (HIV). HIV is a serious
virus that attacks cells in the human immune system. During the later stages of
the virus it can critically weaken the immune system and increase the patient’s
susceptibility to serious infection and disease. Fortunately, with the advent of
antiretroviral therapies, we have been able to stem the progression of HIV and
extend the lifespan of individuals affected by the virus. Unfortunately, the high
mutation rates of HIV Type 1 (HIV-1) can produce viral strains that adapt very
quickly to new drugs [24]. The mutation of HIV-1 during antiretroviral treat-
ments can lead to a phenomenon called “cross-resistance” [7,23]. Cross-resistance
of HIV-1 occurs when the virus develops resistance against the drugs which are
currently being used in addition to other drugs that have not yet been used in
the treatment of a particular patient. This can make the treatment of HIV-1 sig-
nificantly more difficult, because a collection of drugs may not be effective after
the initial treatment regimen due to the cross-resistance phenomenon observed
in HIV-1. In order to address this problem, it is important that we develop auto-
matic methods that can associate genetic strains of HIV to their corresponding
drug resistances.

Recently, experimental testing of viral resistance in patients has been widely
used in research as well as in clinical settings to gain insight into the ways in
which the drug resistance evolves. For example, large-scale pharmacogenomic
screens have been conducted to explore the relationships between drug resis-
tances and genomic sequences [21]. Furthermore, many clinical trials have been
performed to discover mutation rates of the genetic subtypes of HIV-1 and how
they develop resistances against various drug treatments [19]. In addition to
these experimental phenotypic studies, computational approaches that use var-
ious machine learning methods offer the possibility to predict drug resistance
in HIV-1 by using short sequence information of the viral genotype, such as
the genetic sequence of the viral reverse transcriptase (RT). For example, Rhee
et al . [22] used five different machine learning methods, including decision trees,
artificial neural networks, support-vector machines, least-square regression and
least-angle regression, to investigate drug resistance in HIV-1 based on the RT
sequences. Besides, genotype and phenotype features of HIV-1 extracted from
RT sequences have been studied to predict drug resistance [9]. Additionally, a
Bayesian algorithm that combines kernel-based nonlinear dimensionality reduc-
tion and binary classification has been proposed to predict drug susceptibility
of HIV within a multi-task learning framework [5]. A critical drawback of these
existing studies lies in the fact that they routinely consider HIV-1 drug resis-
tance prediction as a single-label classification problem. This approach has been
recognized to be inappropriate since HIV strains can develop resistances against
multiple drugs at once due to their high mutation rate [7,23]. To tackle this dif-
ficulty, in this paper we propose to solve the problem of HIV-1 drug resistance
prediction as a multi-label classification problem.
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Multi-label classification is an emerging research topic in machine learning
driven by the advances of modern technologies in recent years [27–32,39]. As a
generalization of traditional single-label classification that requires every data
sample to belong to one and only one class, multi-label classification relaxes this
restriction and allows a data sample to belong to multiple different classes at
the same time. As a result, the classes in single-label classification problems are
mutually exclusive, while those in multi-label classification problems are inter-
dependent on one another. Although the labeling relaxation in multi-label clas-
sification problems have brought a number of successes in a variety of real-world
applications [29,30,32], it also causes labeling ambiguity that inevitably compli-
cates the problem [27,28]. In the context of predicting drug resistance developed
by HIV-1, some HIV strains can develop the capability to resist multiple drugs,
including those currently being used and those that have not yet been applied in
a clinical setting. As a result, it is often unclear how to utilize a data sample that
belongs to multiples classes to train a classifier for a given class [27,28]. A simple
strategy to solve this problem is to use such data samples as the training data
for all the classes to which they belong [27,29], which is equivalent to assume
that every data sample contributes equally to a trained classification model [28].
However, this is not true in most real-world multi-label classification problems.
For example, some RT sequences natively resist against a certain drug. On the
other hand, the same RT sequences can develop resistances against other drugs
through mutations, which is assumed to be not as strong as native resistances.
Simply put, in order to create an effective multi-label classifier to predict HIV-1
resistances, it is critical to clarify the labeling ambiguity on data samples that
belong to multiple classes and learn an appropriate scaling factor when we train
the classifiers for different classes [28].

In this paper we propose a novel Robust Sample Specific Distance (RSSD) for
multi-label data to predict HIV-1 drug resistance, which, as illustrated in Fig. 1,
is able to explicitly rank the relevance of a training sample with respect to a spe-
cific class and characterize the second-order data-dependent statistics of all the
classes. To learn the sample relevances and the class-specific distance metrics,
we formulate a learning objective that simultaneously maximizes and minimizes
the summations of the �1-norm distances. To solve the optimization problem of
our objective, using the same method in our previous works [6,15], we derive an
efficient iterative algorithm with theoretically guaranteed convergence, which,
different from our previous works [35,37], is a non-greedy algorithm such that it
has a better chance to find the optima of the proposed objective. In addition,
as an important theoretical contribution of this paper, our new algorithm solves
the general optimization problem that maximizes the ratio of the summations
of the �1-norm distances in a non-greedy way, which can find many applica-
tions to improve a number of machine learning models. We applied our new
method to predict the HIV-1 drug resistance on a public benchmark data set.
The experimental results have shown that our new RSSD method outperforms
other state-of-the-art competing methods.
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Fig. 1. The illustration of the proposed RSSD method. The small squares in the same
color represent the data samples (RT sequences) that belong to one same class (e.g.,
resistance to a specific nucleoside analogue). Two HIV RT sequences are listed in
the right panel, which correspond to the data samples shown by the small squares
(connected by the dash lines). The top sequence in the right column only resists against
drug 1, while the bottom sequence resists against both drug 1 and drug K, i.e., it is
a multi-label data sample. Ideally, the learned Significance Coefficients for each data
sample should be different with respect to different classes. For example, the bottom
RT sequence is associated with si1 for class 1 and siK for class K, which could be
different depending on how the resistances evolved. (Color figure online)

2 Learning Robust Sample Specific Distances (RSSDs)
for Multi-label Classification

In this section, we first formalize the problem of predicting the drug resistance
of HIV-1. Then we derive a novel RSSD to solve the problem following previous
works [26,33–35,38] that solve multi-instance problems.

Throughout this paper, we write matrices as bold uppercase letters and
vectors as bold lowercase letters. The �1-norm of a vector v is defined as
‖v‖1 =

∑
i |vi| and the �2-norm of v is defined as ‖v‖2 =

√∑
i v2

i . Given a
matrix M = [mij ], we denote its Frobenius norm as ‖M‖F and we define its �1-
norm as ‖M‖1 =

∑
i

∑
j |mij |. The trace of M is defined as tr (M) =

∑
i mii.

In a multi-label classification problem, we are given a data set with n samples
(n RT sequences) {xi,yi}n

i=1 and K classes (resistances to K target nucleoside
analogues). Here xi ∈ �d, and yi ∈ {0, 1}K such that yi(k) = 1 if xi belongs to
the k-th class, and yi(k) = 0 otherwise. Our goal is to learn from the training
data {xi,yi}n

i=1 a classifier that is able to predict which nucleoside analogues
(drug variants) a HIV-1 RT sequence is resistant to.

2.1 The Class-to-Sample (C2S) Distance

To learn the distance from a class to a data sample, we first represent each
class as a bag that consists of all samples that belong to this class, i.e.,
Ck = {xi|i ∈ πk}, where πk = {i|Yik = 1} is the set of indices of all training
samples that belong to the k-th class. The number of samples in Ck is denoted
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as mk, i.e., |Ck| = mk. Note that, in a single-label classification problem, a data
sample precisely belongs to one and only one class at a time. It follows that∑K

i=1 Yik = 1 and Ck ∩ Cl = ∅ (∀k �= l). In contrast, in a multi-label classifi-
cation problem, a data sample may belong to more than one class at the same
time. It can happen that Ck ∩ Cl �= ∅ (∃k �= l), i.e., different class bags may
overlap and an individual data sample xi may appear in multiple class bags.

We first define the elementary distance from a sample xi in the k-th class
bag Ck to a data sample xi′ as the squared Euclidean distance between the two
involved vectors in the d-dimensional Euclidean space:

dk(xi,xi′) = ‖xi − xi′‖22, ∀ i ∈ πk, ∀ k 1 ≤ k ≤ K. (1)

We then compute the C2S distance from Ck to xi′ by summing all the ele-
mentary distances from the samples that belong to the k-th class to the data
sample xi′ as following:

D(Ck,xi′) =
∑

xi∈Ck

dk(xi,xi′) =
∑

xi∈Ck

‖xi − xi′‖22. (2)

2.2 Parameterized C2S Distance

Because the C2S distance in Eq. (2) does not take into account the resistance
strength against a certain nucleoside analogue, we further develop it by weighting
the samples in a class bag by their relevance to this class.

Due to the ambiguous associations between the samples and the labels in
a multi-label classification problem [27,28], some samples in a class may char-
acterize that particular class more strongly than the others from the statistical
point of view. For example [23], some viral RT sequences may develop a stronger
drug resistance, while other viral RT sequences may be less resistant to a drug
but may still be considered to be resistant. We must capture both of these in
order for our method to be effective. As a result, we should assign less weight to
less resistant RT sequences when determining whether to apply the “resistant”
label to a query viral RT sequence.

Because we assume that counter-resistance against a target nucleoside ana-
logue does not exist, we define sik ≥ 0 as a nonnegative constant that assess
relative importance of xi with respect to the k-th class, by which we can further
develop the C2S distance as following:

D(Ck,xi′) =
∑

xi∈Ck

s2ik‖xi − xi′‖2. (3)

Because sik reflects the relative importance of a sample xi when we train a clas-
sifier for the k-th class, we call it the Significance Coefficient (SC) of xi with
respect to the k-th class. Obviously, the SCs quantitatively assess the resistances
developed by the training viral RT sequences against the target nucleoside ana-
logues during the learning process.
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2.3 Parameterized C2S Distance Refined by Class Specific Distance
Metrics

The RSSD defined in Eq. (3) is simply a weighted Euclidean distance that does
not take into account the information conveyed by the input data other than
the first-order statistics. Similar to many other statistical models in machine
learning, using the Mahalanobis distances with appropriate distance metrics is
recommended in order to capture the second-order statistics of the input data.
Instead of learning one single global distance metric for all the classes as in many
existing statistical studies, we propose to learn K different class-specific distance
metrics {Mk � 0}K

k=1 ∈ �d×d, one for each class. Thus we further develop the
parameterized C2S distance as:

D(Ck,xi′) =
∑

xi∈Ck

s2ik (xi − xi′)T Mk (xi − x′
i) . (4)

Because the class-specific distance metric Mk is a positive definite matrix, we
can reasonably write it as Mk = WkWT

k , where Wk ∈ �d×r is an orthonormal
matrix such that WT

k Wk = I. Here we can also reasonably assume that d > r,
because Mk = WkWT

k is a d × d matrix and its maximum rank is d. Thus we
can rewrite Eq. (4) as follows:

D(Ck,xi′) =
∑

xi∈Ck

s2ik (xi − xi′)T WkWT
k (xi − xi′)

=
∑

xi∈Ck

∥
∥WT

k (xi − xi′) sik

∥
∥2

2
.

(5)

A critical problem of D(Ck,xi′) defined in Eq. (5) lies in that it computes the
summation of a number of squared �2-norm distances. These squared terms are
notoriously known to be sensitive to both outlying samples and features [2,37].
Due to the cross-resistance phenomenon [7], this problem is particularly critical
for identifying HIV-1 drug resistance. To promote the robustness of D(Ck,xi′)
against outliers, following many previous works [11,12,17,18,36,37,40], we define
it using the �1-norm distance as follows:

D(Ck,xi′) =
∑

xi∈Ck

∥
∥WT

k (xi − xi′) sik

∥
∥
1
, (6)

which we call the proposed Robust Sample Specific Distance (RSSD).
To use RSSD defined in Eq. (6), we need to learn two sets of parameters

sik and Wk for every class. Following the most broadly used machine learning
strategy to maximize data discriminativity for classification, such as Fisher’s
linear discriminant [4], for a given class Ck we simultaneously maximize the
overall RSSDs from every class bag to all its non-belonging samples and minimize
the overall RSSDs from every class bag to all the samples belonging to that class:

max

∑
x′
i /∈Ck

∑
xi∈Ck

∥
∥WT

k (xi − xi′) sik

∥
∥
1

∑
x′
i∈Ck

∑
xi∈Ck

∥
∥WT

k (xi − xi′) sik

∥
∥
1

, s.t. WT
k Wk = I, sik ≥ 0. (7)
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Algorithm 1. Algorithm to solve Eq. (8).
1. Randomly initialize v0 ∈ Ω and set t = 1.
while not converge do

2. Calculate λt = h(vt−1)

m(vt−1)
.

3. Find a vt ∈ Ω satisfying h(vt) − λtm(vt) > h(vt−1) − λtm(vt−1) = 0.
4. t = t + 1.

Output: v.

Learning the RSSDs by solving Eq. (7) and classifying query viral RT
sequences using the adaptive decision boundary method [29], our proposed RSSD
method can be used for identifying HIV-1 drug resistance, as well as general
multi-label classification problems.

3 An Efficient Solution Algorithm

Our new objective in Eq. (7) maximizes the ratio of the summations of a number
of �1-norm distances, which is obviously not smooth and therefore difficult to
solve in general. To solve this challenging optimization problem, we use the
optimization method proposed in our previous works in [6,15].

We first turn to solve the following generalized the objective:

vopt = arg max
v∈Ω

h(v)
m(v)

, ∀v ∈ Ω

{
C2 ≥ m(v) ≥ C1 > 0,

C4 ≥ h(v) ≥ C3 > 0,
(8)

where Ω is the feasible domain. Next, we propose a simple, yet efficient, iterative
framework in Algorithm1 to solve the objective in Eq. (8). The convergence of
Algorithm 1 is rigorously guaranteed by Theorem 1. Due to space limit, the
proofs of all the theorems in this paper are provided in the extended journal
version of this paper.

Theorem 1. In Algorithm 1, for each iteration we have h(vt)
m(vt) ≥ h(vt−1)

m(vt−1) and

∀δ, there must exist a t̂ such that ∀t > t̂ h(vt)
m(vt) − h(vt−1)

m(vt−1) < δ.

3.1 Fixing sik to Solve Wk

According to Step 3 in Algorithm 1, we can easily write the corresponding
inequality of our objective in Eq. (7) as:

F (Wk) = H(Wk) − λtM(Wk) ≥ 0, (9)

where λt is computed by

λt =

∑
x′
i /∈Ck

∑
xi∈Ck

∥
∥(Wt−1

k )T (xi − xi′)sik

∥
∥
1

∑
x′
i∈Ck

∑
xi∈Ck

∥
∥(Wt−1

k )T (xi − xi′)sik

∥
∥
1

. (10)
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In Eq. (10), Wt−1
k denotes the projection matrix in the (t−1)-th iteration. Here,

we define the following:

H(Wk) =
∑

x′
i /∈Ck

∑

xi∈Ck

∥
∥WT

k (xi − xi′) sik

∥
∥
1
,

M(Wk) =
∑

x′
i∈Ck

∑

xi∈Ck

∥
∥WT

k (xi − xi′) sik

∥
∥
1
.

(11)

Now we need solve the problem in Eq. (9), for which we first introduce the
following two lemmas:

Lemma 1. [16, Theorem 1]. For any vector ξ = [ξ1, · · · , ξm]T ∈ �m, we have
‖ξ‖1 = max

η∈�m
(sign(η))T

ξ, where the maximum value is attained if and only if

η = a × ξ, where a > 0 is a scalar.

Lemma 2. [10, Lemma 3.1] For any vector ξ = [ξ1, · · · , ξm]T ∈ �m, we have

‖ξ‖1 = min
η∈�m

+

1
2

m∑

i=1

ξ2i
ηi

+
1
2
‖η‖1, where the minimum value is attained if and only

if ηj = |ξj |, j ∈ {1, 2, · · · ,m}.
Motivated by Lemmas 1 and 2, we construct the following objective:

L(Wk,Wt−1
k ) = K(Wk) − λtN(Wk), (12)

where K(Wk) and N(Wk) are defined as:

K(Wk) =
r∑

g=1

wT
g B sign

(
BTwt−1

g

)
,

N(Wk) =
1
2

r∑

g=1

wT
g Agwg +

(
wt−1

g

)T
Agwt−1

g .

(13)

Here wg and wt−1
g denote the g-th column of matrices Wk and Wt−1

k , respec-
tively; B and Ag for g = 1, 2, · · · , r are defined as follows:

B = [x̄1 − x̄, x̄2 − x̄, · · · , x̄n − x̄] ,

Ag =
n∑

i=1

∑

xj∈{Ni∪{xi}}

(xj − x̄i) (xj − x̄i)
T

∣
∣
∣
(
wt−1

g

)T
(xj − x̄i)

∣
∣
∣
,

(14)

and sign(x) is the sign function.
Then, using the definition of L(Wk,Wt−1

k ) in Eq. (12) and Lemmas 1 and
2, we can prove the following theorem:

Theorem 2. For any Wk ∈ �d×r, we have:

L(Wk,Wt−1
k ) ≤ F (Wk). (15)

The equality holds if and only if Wk = Wt−1
k .
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Algorithm 2. Algorithm to maximize F (Wk).
Input: Wt−1

k and Armijo parameter 0 < β < 1.
1. Calculate λk by Eq. (10).
2. Calculate the subgradient
Gk−1 = ∂L(Wt−1

k ,Wt−1
k ) = B sign

(
BTWt−1

k

) − λk [A1w1,A2w2, · · · ,Arwr].
3. Set t = 1.

while not F (Wt
k) > F (Wt−1

k ) = 0 do
4. Calculate Wt

k = P (Wt−1
k + βmGt−1).

5. Calculate F (Wt
k) by Eq. (9).

6. t = t + 1.

Output: Wk
k.

Algorithm 3. Algorithm for non-greedy ratio maximization of the �1-norm
distances.
1. Randomly initialize W0

k satisfying
(
W0

k

)T
W0

k = I and set t = 1.
while not converge do

2. Calculate λt by Eq. (10).

3. Find a Wt
k satisfying F (Wt

k) > F (Wt−1
k ) = 0 by Algorithm 2.

4. t = t + 1.

Output: W.

Now we continue to solve our objective. Let Wk = Wt−1
k , by substitut-

ing it into the objective, we have L(Wk,Wk−1
k ) = F (Wt−1

k ) = 0. In the k-
th iteration in solving the objective in Eq. (7), W�

k satisfies L(W�
k,Wt−1

k ) ≥
L(Wt−1

k ,Wt−1
k ) = 0. Then, we have:

F (W�
k) ≥ L(W�

k,Wt−1
k ) ≥ L(Wt−1

k ,Wt−1
k ) = F (Wt−1

k ) = 0. (16)

Lemma 1 and Eq. (16) indicate that the solution of the objective function in
Eq. (9) can be transformed to solve the objective function L(Wk,Wt−1

k ) ≥ 0,
which can be easily solved by the projected subgradient method with Armijo
line search [25]. Note that, for any matrix Wk the operator P (Wk) =

Wk

(
WT

k Wk

)− 1
2 can project it onto an orthogonal cone. This guarantees the

orthogonality constraint of the projection matrix, i.e. (Wt
k)T (Wt

k) = I. Algo-
rithm 2 summarizes the algorithm to solve the objective in Eq. (9).

Finally, based on Algorithm2, we can derive a simple yet efficient iterative
algorithm as summarized in Algorithm 3 to solve our objective in Eq. (7) when
sik is fixed. In addition, Theorem 3 indicates that our proposed Algorithm 3
monotonically increase the objective function value in each iteration. Theorem 4
indicates that the objective function is upper bounded, which, together with
Theorem 3, indicates that Algorithm 3 converges to a local optimum.

Theorem 3. If Wt
k is the solution of the objective function in Eq. (9) and

satisfies (Wt
k)T (Wt

k) = I, then we have J (Wt
k) ≥ J (Wt−1

k ).
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Theorem 4. The objective in Eq. (7) is upper bounded.

3.2 Fixing Wk to Solve sik

When Wk is fixed, we define a scalar dii′k =
∥
∥WT

k (xi − xi′)
∥
∥
1
. Then we write

Eq. (7) as:

max

∑
x′
i /∈Ck

∑
xi∈Ck

sikdii′k
∑

x′
i∈Ck

∑
xi∈Ck

sikdii′k
, s.t. sik ≥ 0. (17)

Defining that dw
ik =

∑

i′∈πk

dii′k and db
ik =

∑

i′ /∈πk

dii′k, we can further rewrite

the objective as:

max

∑
xi /∈Ck

sikdw
ik∑

xi∈Ck
sikdb

ik

, s.t. sik ≥ 0. (18)

Again, to solve Eq. (18), to Step 3 in Algorithm 1, we solve the following
optimization problem:

max
∑

xi∈Ck

sikdw
ik − λ

∑

xi∈Ck

sikdb
ik, s.t. sik ≥ 0, (19)

where λ is computed as Eq. (10) in the t-th iteration.
Define that dik = dw

ik − λdb
ik, we can rewrite the optimization problem in

Eq. (19) as:
max

∑

xi∈Ck

sikdik, s.t. sik ≥ 0, (20)

The problem in Eq. (20) can be decoupled to solve the following subproblems
separately for each xi ∈ Ck:

max sikdik, s.t. sik ≥ 0, (21)

which is a convex linear programming problem [41] and can be solved effi-
ciently by many off-the-shelf solution algorithms [41]. By inserting the solution
to Eq. (21) after Step 3 of Algorithm 3, we can finally solve our objective in
Eq. (7), which is equivalent to perform alternative optimization. Therefore, the
algorithm is guaranteed to converge to a local optimum.

4 Experimental Results

We evaluate the proposed RSSD method using a publicly available HIV drug
resistance database [22], which contains HIV-1 RT sequences with associated
resistance factors measured by IC50 ratios. We analyze the drug resistance of
these RT sequences against five nucleoside analogues: Lamivudine (3TC), Aba-
cavir (ABC ), Zidovudine (AZT ), Stavudine (d4T ) and Didanasine (ddI ). Fol-
lowing [8], although the Tenofovir (TDF ) nucleoside analogue is included in this
database, it is not used in our study, because the number of the RT sequences
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resistant to this nucleoside analogue is very low. As a result, we end up with 623
RT sequences for our experiments.

Drug resistance of a particular HIV strain is measured by the IC50 ratio
[7]. We label the viral RT sequences as “resistant” using the same drug-specific
IC50 ratio cutoff thresholds as in [7], which are set to 3.0 for 3TC and AZT,
2.0 for ABC, and 1.5 for ddI and d4T. We use hydrophobicity characteristics
[13] to represent the RT sequences, which has demonstrated good prediction
performance in many protein classification studies [8]. For each RT sequence, we
extract a hydrophobicity vector, which is obtained from the amino acid sequence
and smoothed within a window. The length of the original hydrophobicity vectors
may be different due to the different lengths of the RT sequences. In this study,
following [7] we set a fixed window size of 11 and interpolate all hydrophobicity
vectors to length 230 using the spline interpolation method [13].

4.1 Comparative Studies

Predicting drug resistance for HIV-1 RT sequences is a multi-label classifica-
tion problem. Therefore, we evaluate the proposed method by two broadly used
multi-label performance metrics [14]: Hamming loss and average precision. The
Hamming loss is computed over all instances over all classes. The average pre-
cision is calculated for both the micro and macro averages. In multi-label clas-
sification, the macro average is computed as the average of the precision values
over all the classes, thus it attributes equal weights to every individual class.
In contrast, the micro average is obtained from the summation of contingency
matrices for all binary classifiers, thus it gives equal weight to all classifiers and
emphasizes the accuracy of categories with more positive samples.

Fig. 2. Multi-label classification performance of the proposed method on the HIV-1
drug resistance data with respect to r (the dimensionality of Wk).

Parameter Selection. The proposed RSSD has only one parameter: the
dimensionality r of Wk. Ideally, each class can have its own fine tuned parame-
ter. Although, to reduce the experimental effort, we fix the parameter r across
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all classes in our studies. We evaluate the impacts of the parameter in a stan-
dard 5-fold cross-validation experiment, where we select r in the range from 10
to 100. The classification performance measured by the three aforementioned
performance metrics are reported in Fig. 2, when we vary r. The results in these
experiments show that the classification performance of the proposed method is
reasonably stable when we vary r in a considerably large selection range. This
illustrates that tuning parameters in our proposed method is not a difficult task;
this property adds to the practical value of our method to solve real-world prob-
lems. Based on these observations, we fix r = 50 in all our future experiments
for simplicity.

Comparative Studies. We use a standard 5-fold cross-validation to evalu-
ate the predictive capability of the proposed RSSD method. We implement two
versions of our proposed method, one version that defines D(Ck,xi′) using the
�1-norm distances as in Eq. (6) (denoted as “Ours-�1”) and another that defines
D(Ck,xi′) using the squared �2-norm distances as in Eq. (5) (denoted as “Ours-
�22”). We compare our new method to two broadly evaluated multi-label classifi-
cation methods in literature: the Green’s Function method [29] and the Sylvester
Equation (SMSE) method [1]. We also compare the proposed method against two
multi-label classification methods designed to study drug resistance in HIV-1:
the Classifier Chain (CC) method and its ensemble version [7,20] (denoted as the
ECC method). Finally, we also compare our method to two recent multi-instance
classification methods: the multi-task learning (MTL) method [42] designed to
study general drug resistance study and the deep MIML method [3] designed
to study general multi-instance data. The Green’s Function method and the
Sylvester Equation methods are implemented following their original papers in
[29] and [1] respectively, where the parameters are set to the suggested values.
The CC method is implemented with logistic regression, where the chaining
order for the CC method is 3TC → ABC → AZT → d4T → ddI as suggested
in [7]. Following [7,23], we implement the ECC method by using both random
forests and logistic regression as base classifiers, which are denoted as “ECC-RF”
and “ECC-LR” respectively. The MTL method and the deep MIML method are
implemented using the code published by the respective authors. The resistance
prediction performances of the compared methods are reported in Table 1.

The comparison results in Table 1 show that the �1-norm version of the pro-
posed method consistently outperforms all competing methods in terms of all
the three performance metrics, sometime very significantly. The squared �2-norm
version of our new method is, as expected, not as effective as its counterpart using
the �1-norm distance, but it still provides adequate performance when compared
to the other methods in Table 1.

4.2 A Case Study

We explore the learned distances by our method between RT sequence pairs
and compared them with the Euclidean distances for the same RT sequence
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Table 1. Performance of the compared methods by standard 5-fold cross validations,
where “↓” means that smaller is better and “↑” means that bigger is better.

Compared methods Hamming loss (↓) Micro precision (↑) Macro precision (↑)

Green’s 0.450 ± 0.040 0.319 ± 0.046 0.241 ± 0.033

SMSE 0.385 ± 0.020 0.402 ± 0.032 0.241 ± 0.020

CC 0.302 ± 0.028 0.467 ± 0.046 0.434 ± 0.037

ECC-LR 0.313 ± 0.014 0.481 ± 0.011 0.442 ± 0.012

ECC-RF 0.301 ± 0.005 0.476 ± 0.020 0.461 ± 0.021

MTL 0.382 ± 0.010 0.475 ± 0.021 0.461 ± 0.010

Deep MIML 0.315 ± 0.010 0.478 ± 0.042 0.474 ± 0.022

Ours-�22 0.322 ± 0.015 0.505 ± 0.040 0.492 ± 0.050

Ours-�1 0.282 ± 0.007 0.518 ± 0.012 0.527 ± 0.013

pairs. The distance between two RT sequences by our method is defined as the
sum of the two learned RSSDs: for the k-th class, the pairwise distance between
sequence xi and xi′ is the sum of D(Ck,xi) and D(Ck,xi′). Because we learn a
distance metric and significance coefficients for each class, this distance is class-
dependent. Under this definition, the distances given by our method between
sample pairs that belong to the same class are expected to be small and those
between sample pairs not belonging to the same class are expected to be large.
Using the learned class specific metrics and significance coefficients, we compute
the pairwise distances between the RT sequences for every class (nucleoside
analogue), which are plotted in Fig. 3. The Euclidean distances are also plotted
for comparison.

To demonstrate the effectiveness of the proposed method, we study the dis-
tances between two example RT sequences, which are listed at the top of Fig. 3.
These two RT sequences are known to be resistant to all five nucleoside ana-
logues. As a result, the pairwise distance between these two RT sequences are
expected to be small. However, as can be seen in top left panel of Fig. 3, the
Euclidean distance between these two RT sequences is ranked at the 1855-th
smallest distance among all pairwise Euclidean distances, which is not in accor-
dance with the clinical evidences. In contrast, we can see that the pairwise dis-
tances between these RT sequences computed by our learned RSSDs for the five
classes are small, which are at the 138-th smallest distance for 3CT, the 525-
th smallest distance for ABC, the 574-th smallest distance for AZT, the 406-th
smallest distance for d4T, and 678-th smallest distance for ddI, respectively. This
observation clearly demonstrates that the learned distances by our new meth-
ods, can better capture the relationships between data samples in terms of class
membership.
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Fig. 3. Exploration of the learned sample-to-sample distance between RT sequence
pairs for each class. Top panel: The two RT sequences (with known drug resistance)
we are comparing; Top Left Heatmap: the Euclidean distances between RT sequence
pairs. Remaining Heatmaps: the learned sample-to-sample distances between RT
sequence pairs for each of the five classes. We can see that the sample-to-sample distance
between the two RT sequences in the top panel for 3CT nucleoside analogue is ranked
as the 138-th smallest pairwise distance among all 1722 RT sequence pairs. Compared
to the Euclidean distance, which is ranked as 1855-th smallest distance, the pairwise
distance computed by the projection and significance coefficients learned for this class
is more clinically meaningful.

5 Conclusions

In this paper, we proposed a novel RSSD method for multi-label classification. To
learn the parameters of the proposed RSSDs, we formulated a learning objective
that maximizes the ratio of the summations of a number of �1-norm distances;
this problem is difficult to solve in general. To solve this problem we derived a new
efficient iterative algorithm with rigorously proved convergence. The promising
experimental results have demonstrated the effectiveness of our new method for
identifying HIV-1 drug resistances.
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