Enriched Representation Learning for Longitudinal Chest X-ray Analysis: A Novel Approach for Improved Disease Detection and Localization

Xiangyu Li, Armand Ovanessians, Hua Wang

ICDM - 2023

Chest X-rays are commonly used for diagnosing and characterizing lung diseases, but the complex morphological patterns in radiographic appearances can challenge clinicians in making accurate diagnoses. To address this challenge, various learning methods have been developed for algorithm-aided disease detection and automated diagnosis. However, most existing methods fail to account for the heterogeneous variability in longitudinal imaging records and the presence of missing or inconsistent temporal data. In this paper, we propose a novel longitudinal learning framework that enriches inconsistent imaging data over sequential time points by leveraging 2D Principal Component Analysis (2D-PCA) and a robust adaptive loss function. We also derive an efficient solution algorithm that ensures both objective and sequence convergence for the non-convex optimization problem. Our experiments on the CheXpert dataset demonstrate improved performance in capturing indicative abnormalities in medical images and achieving satisfactory diagnoses. We believe that our method will be of significant interest to the research community working on medical image analysis.