Fast Multi-Modal Multi-Instance Support Vector Machine for Fine-grained Chest X-ray Recognition

Hoon Seo, Hua Wang

ICDM - 2023

Chest X-ray (CXR) analysis plays an important role in patient treatment. As such, a multitude of machine learning models have been applied to CXR datasets attempting automated analysis. However, each patient has a differing number of images per angle, and multi-modal learning should deal with the missing data for specific angles and times. Furthermore, the large dimensionality of multi-modal imaging data with the shapes inconsistent across the dataset introduces the challenges in training. In light of these issues, we propose the Fast MultiModal Support Vector Machine (FMMSVM) which incorporates modality-specific factorization to deal with missing CXRs in the specific angle. Our model is able to adjust the fine-grained details in feature extraction and we provide an efficient optimization algorithm scalable to a large number of features. In our experiments, FMMSVM shows clearly improved classification performance.

Links